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ON THE NONLINEAR DYNAMICS OF THE TRAVELING-WAVE

SOLUTIONS OF THE SERRE EQUATIONS

DIMITRIOS MITSOTAKIS∗, DENYS DUTYKH, AND JOHN D. CARTER

Abstract. In this paper, we study numerically nonlinear phenomena related to the dy-

namics of the traveling wave solutions of the Serre equations including their stability, their

persistence, resolution into solitary waves, and wave breaking. Other forms of solutions

such as Dispesive Shock Waves (DSWs), are also considered. Some differences between

the solutions of the Serre equations and the full Euler equations are also studied. Euler

solitary waves propagate without large variations in shape when they are used as initial

conditions in the Serre equations. The nonlinearities seem to play a crucial role in the gen-

eration of small-amplitude waves and appear to cause a recurrence phenomenon in linearly

unstable solutions. The numerical method used in the paper utilizes a high order Finite

Element Method (FEM) with smooth, periodic splines in space and explicit Runge-Kutta

methods in time. The solutions of the Serre system are compared with the corresponding

ones of the asymptotically-related Euler system whenever is possible.
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Naghdi system; stability

MSC: [2010]76B15 (primary), 76B25, 65M08 (secondary)

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Solitary waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Head-on collision of solitary waves . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Physical relevance of the Serre system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Comparison with the Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Stability of traveling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Stability of solitary waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Persistence of the solitary waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

∗ Corresponding author.



D. Mitsotakis, D. Dutykh, & J.D. Carter 2 / 40

5.3 Stability of Cnoidal waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Dispersive shock waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A Traveling wave solutions to the full Euler equations . . . . . . . . . . . . . . 32

A.1 Evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.2 Traveling wave solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1. Introduction

The Serre equations (also known as the Green–Naghdi or Su–Gardner equations) [55,
58, 32, 33] approximate the Euler equations of water wave theory and model the one-
dimensional, two-way propagation of long waves. If a denotes a typical amplitude of a
wave, d the mean depth of the fluid, and λ a typical wavelength, then the Serre equa-
tions are characterized by the parameter ε ≐ a/d = O(1) and the shallow water condition,
σ ≐ d/λ≪ 1, contrary to the Boussinesq equations which model the propagation of small-
amplitude, long waves, i.e. ε≪ 1 and σ ≪ 1, when the Stokes number is S ≐ ε/σ2 = O(1).
The Boussinesq equations are often called weakly nonlinear, weakly dispersive equations
while the Serre equations are often called fully-nonlinear shallow-water equations. In di-
mensionless and scaled form, the Serre equations take the form:

ηt + ux + ε(ηu)x = 0 , (1.1a)

ut + ηx + εuux − σ
2

3h
[h3(uxt + εuuxx − ε(ux)2)]x = 0 , (1.1b)

for x ∈ R, t > 0, along with the initial conditions

η(x,0) = η0(x), u(x,0) = u0(x). (1.2)

Here η = η(x, t) is the free surface displacement, while

h ≐ 1 + εη , (1.3)

is the total fluid depth, u = u(x, t) is the depth-averaged horizontal velocity, and η0, u0 are
given real functions, such that 1+εη0 = h0 > 0 for all x ∈ R. In these variables, the location of
the horizontal bottom is given by y = −1. This system was originally derived by F. Serre
[56] while the same system was later re-derived (independently) by Su & Gardner [58].
Moreover, Green & Naghdi [33] proposed an alternative method for the approximation
of the waves in the same regime called the direct approximation of fluid motion with a
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free surface. Recently, Lannes & Bonneton [41] derived and justified several asymptotic
models for surface wave propagation including the Serre system of equations. For a review
of the derivation and the basic properties of this system we also refer to [4].

The Euler equations along with the model system (1.1) admit traveling wave solutions,
i.e. waves that propagate without change in shape or speed. Solitary waves is a special
case of traveling wave solutions of these systems. These waves are of classical form, [20],
i.e. they consist of a single hump that decay to zero exponentially. The other important
class of traveling wave solutions is the class of cnoidal wave solutions which can be thought
of as the periodic generalization of solitary waves.

Many Boussinesq equations are known to possess solitary and cnoidal wave solutions, but
they do not admit nontrivial, closed-form solutions [16, 15]. In contrast, the Serre equations
admit closed-form solitary and cnoidal wave solutions. The solitary wave solutions of the
Serre system traveling with constant speed cs are given by the formulas

hs(ξ) ≐ hs(x, t) = (a0 + a1sech2(Ks ξ))/σ , (1.4a)

us(ξ) ≐ us(x, t) = cs (1 − a0

σhs(ξ))/ǫ , (1.4b)

where ξ = x − cst,

Ks =
√

3a1
4σa20c

2
s

, cs =
√
a0 + a1
σ

,

and a0 > 0 and a1 > 0. By taking a0 = σ and a1 = εσAs we obtain the formulas for the
classical solitary waves that are homoclinic to the origin.

The cnoidal waves of the Serre system traveling with constant speed cc is given by

hc(ξ) ≐ hs(x, t) = (a0 + a1dn2(Kc ξ, k))/σ , (1.5a)

uc(ξ) ≐ us(x, t) = cc (1 − h0

h(ξ))/ǫ , (1.5b)

where

h0 = a0 + a1E(m)
K(m) ,

Kc =
√
3a1

2
√
a0(a0 + a1)(a0 + (1 − k2)a1) , cc =

¿ÁÁÀa0(a0 + a1)(a0 + (1 − k2)a1)
σh20

,

k ∈ [0,1], m = k2, a0 > 0, and a1 > 0. Here K and E are the complete elliptic integrals of
the first and second kind respectively. Note that (1.4) is the k = 1 limit of (1.5).

Another fundamental property of the Serre system is the conservation of the energy
which plays also the role of the Hamiltonian,

H(t) = 1
2 ∫

∞

−∞
[εhu2 + εσ2

3
h3u2x +

1

ε
h2] dx, (1.6)

in the sense that H(t) = H(0) for all t > 0 up to the maximal time T of the existence of
the solution.
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A very important property of the traveling wave solutions is their stability. In the theory
of traveling waves there are two basic kinds of stability: the orbital and the asymptotic
stability. Both notions predicate that perturbations of an exact traveling-wave solutions
will forever remain close in some sense to the exact solution. Somewhat more precisely, a
traveling-wave solution φc(x−ct) is said to be orbitally stable if given any ǫ > 0, there exists
a δ > 0 such that infγ ∥φ(x, t)−φc(x−ct+γ)∥ < ǫ for t > 0 whenever inf ∥φ(x,0)−φc(x)∥ < δ.
This means that if the perturbed solution φ is initially close to the exact solution φc then
it will remain close to the set of translates of the solution, φc(x − ct + γ), forever. This
notion of stability establishes that the shape of the wave is stable, but does not fully
resolve the question of what the asymptotic behavior of the system is. The property of
asymptotic stability describes the long-time asymptotic behavior of the solutions which are
initially close to the traveling wave. Specifically, this notion of stability establishes that if
inf ∥φ(x,0) − φc(x)∥ < δ then

inf ∥φ(x, t) − φc(x − ct)∥→ 0, as t→ +∞. (1.7)

If this property holds, then the traveling wave is said to be asymptotically stable. We
refer to the papers [6, 7, 51, 52] for more information about stability in general and results
related to the stability of solitary waves of some model equations of the water wave theory.

Due to their complex structure, both the Serre and Euler equations are difficult to study
theoretically and/or numerically. The Euler equations admit no known nontrivial closed-
form solutions and only a few accurate numerical solutions have been computed. Although
the situation for the Serre equations is slightly better because of the known analytical
formulas for the families of traveling wave solutions, (1.4) and (1.5), there is no known
proof of the orbital or asymptotic stability of these solutions. The only known analytical
results are related to solitary waves and are based on the linearization of the Serre system.
As is noted in [44, 45] the solitary wave solutions of the Serre equations are not minimizers
of the Hamiltonian functionals (this is also true for the full Euler system) and therefore
techniques applied for other model equations [6, 7, 34] fail to prove the stability of the
traveling waves. For this reason the theoretical and numerical studies of the stability of
the traveling waves are focused on their linear (or spectral) stability. The linear stability
analysis is based on the study of the eigenvalue problem related to the system linearized
about a traveling wave, [52, 2, 38]. The linear stability of the solitary waves of the Serre
system has been studied studied in [44, 45] where it is shown that the solitary waves of
small amplitude are linearly stable since the problem has no eigenvalues of positive real
part and the Evans function is nonvanishing everywhere except the origin. Even more
fascinating are the results related to the linear stability of the cnoidal waves. Specifically,
it was shown by numerical means that cnoidal waves of sufficiently small amplitude and
steepness are spectrally stable and solutions with sufficiently large amplitude or steepness
are spectrally unstable [13]. Although the linear stability results for traveling waves are
very useful, they do not necessarily provide information about nonlinear stability.

Other properties related to the nonlinear dynamics are the ability of solitary waves to
be spawned by random initial conditions and the ability of one soliton to pass through
another without changing form. Although these properties are fundamental for nonlinear,
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Figure 1. Sketch of a dispersive shock wave.

dispersive waves, it is very difficult to establish a theory and therefore only a few results
are known about these properties of the Serre and Euler equations. The justification of
the Serre equations has been studied theoretically [46, 40]. Specifically, it has been proven
that if the Serre and Euler equations share the same initial data, then there is an interval
0 ≤ t ≤ T during which the solutions of the Euler and Serre systems remain close. Although
analogous results exist for Boussinesq models, it is not clear whether the the dynamics of
the traveling wave solutions of the Serre equations are close to those of the Euler equations
during their propagation. One example where a shallow water model has totally different
dynamical properties compared to the Euler system is the KdV–KdV system of Boussinesq
equations. This system possesses generalized solitary waves that decay to periodic orbits
instead of classical solitary waves, [9, 10].

In this paper we study the problem of the nonlinear stability (orbital and asymptotic) of
the traveling waves of the Serre system by using numerical techniques. We provide numer-
ical evidence of stability with respect to certain classes of perturbations. Phenomena such
as perturbations of the traveling waves, perturbations of the Serre system and interactions
of traveling waves are studied analyzing the stability properties of the waves at hand. The
physical relevance of the Serre equations is addressed whenever possible.

When the dispersive terms in the Serre system are neglected, the resulting nondispersive
nonlinear shallow water equations admit shock waves, i.e. discontinuous solutions. When
such shocks are regularized by dissipative effects, this gives rise to classical or viscous
shocks, which are characterized by a rapid and monotonic change in the flow properties.
On the other hand, in systems where dissipation is negligible compared with dispersion,
the dispersive effects give rise to dispersive shock waves. DSWs are characterized by an
expanding train of rapidly oscillating waves. The leading edge of a DSW consists of large
amplitude waves which decay to linear waves at the trailing edge, cf. Fig. 1.

The DSWs of the Serre equations have been studied by asymptotic and numerical meth-
ods, cf. [28, 29, 43, 49]. Although some of the asymptotic characteristics of these waves are
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known due to the work in [28] the behavior of the DSWs during their interactions remains
unknown.

The numerical method of preference is a high-order accurate and non-dissipative Galerkin
/ Finite element method (FEM) for the spatial discretization combined with the classical
fourth-order explicit Runge–Kutta scheme in time. In some cases adaptive time-stepping
methods, such as the Runge–Kutta–Fehlberg, the Cash–Karp and the Dormand–Prince
methods [35] were employed to verify that there are no spurious solutions or blow-up
phenomena. Because the results obtained by all methods were identical to the fourth-
order Runge–Kutta we don’t present their results here. This numerical scheme has been
previously analyzed and it has been shown that it is highly accurate and stable since there
is no need for a restrictive condition on the step-size but only mild conditions of the form
∆t ≤ C∆x, while the conservation properties such as the conservation of the Hamiltonian
H(t) are very satisfactory and ideal for studying stability issues, cf. [49]. In contrast, other
numerical methods such as finite volume [14, 25, 26], finite differences or spectral methods
are not ideal due to the artificial, spurious dissipative or dispersive effects polluting the
numerical solutions by either suppressing or triggering instabilities. In order to ensure
the accuracy of the numerical results obtained with the FEM we compared them with
the analogous results obtained with the pseudo-spectral method described and analyzed in
[24].

The paper is organized as follows. The numerical method is presented briefly in Section 2.
The compatibility of the solitary waves of the Serre and the Euler systems is examined in
Section 3. The head-on collision of solitary waves is studied in Section 4. A number of issues
related to the stability of the traveling waves are discussed in Sections 5. The interaction of
DSWs is presented in Section 6. Finally, the major conclusions are summarized in Section 7.
Additionally, Appendix A presents the numerical scheme for the numerical solution of the
full Euler equations as well as the generation of solitary wave solutions in the finite depth
case.

2. The numerical method

In this section we present a FEM for the initial-boundary value problem (IBVP) com-
prised of system (1.1) subject to periodic boundary conditions. For simplicity we use
ε = σ = 1. We also rewrite the system (1.1) in terms of (h, u) rather than (η,u). This is
done by using (1.3) and yields the IBVP

ht + (hu)x = 0 , (2.1a)

ut + hx + uux − 1

3h
[h3(uxt + uuxx − (ux)2]x = 0 , (2.1b)

∂ixh(a, t) = ∂ixh(b, t), i = 0,1,2, . . . , (2.1c)

∂ixu(a, t) = ∂ixu(b, t), i = 0,1,2, . . . , (2.1d)

h(x,0) = h0(x) , (2.1e)

u(x,0) = u0(x) , (2.1f)
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where x ∈ [a, b] ⊂ R and t ∈ [0, T ]. Considering a spatial grid xi = a + i ∆x, where
i = 0,1,⋯,N , ∆x is the spatial grid length, and N ∈ N, such that ∆x = (b − a)/N . We
define the space of the periodic cubic splines

S = {φ ∈ C2
per[a, b]∣φ∣[xi,xi+1] ∈ P3, 0 ≤ i ≤ N − 1} ,

where C2
per = {f ∈ C2[a, b]∣f (k)(a) = f (k)(b), 0 ≤ k ≤ r} and Pk is the space of polynomials

of degree k. The semi-discrete scheme is reduced to finding h̃, ũ ∈ S such that

(h̃t, φ) + ((h̃ũ)x, φ) , (2.2a)

B(ũt, φ; h̃) + (h̃(h̃x + ũũx), φ) + 1
3
(h̃3(ũũxx − (ũx)2), φx)) = 0 , (2.2b)

where B is defined as the bilinear form that for fixed h̃ is given by

B(ψ,φ; h̃) ≐ (h̃ψ,φ) + 1

3
(h̃3ψx, φx) for φ,ψ ∈ S . (2.3)

The system of equations (2.2) is accompanied by the initial conditions

h̃(x,0) = P{h0(x)} , ũ(x,0) = P{u0(x)} , (2.4)

where P is the L2-projection onto S satisfying (Pv,φ) = (v,φ) for all φ ∈ S. Upon
choosing appropriate basis functions for S, (2.2) is a system of ordinary differential equa-
tions (ODEs). For the integration in time of this system, we employ the classical, four-stage,
fourth-order explicit Runge–Kutta method, which is described by the following Butcher
tableau:

A b

τ
=

0 0 0 0 1/6
1/2 0 0 0 1/3
0 1/2 0 0 1/3
0 0 1/2 0 1/6

0 1/2 1/2 1

. (2.5)

We also used the Runge–Kutta–Fehlberg, the Cash–Karp, and the Dormand–Prince
adaptive time-stepping methods [35]. Since we did not experience any numerical instabil-
ities, the results using the classical Runge–Kutta method were almost identical to those
obtained using the other methods and we do not present the results obtained using the
other methods here. The temporal integration of the semi-discrete system does not require
implicit or any other sophisticated time-stepping methods and there is no need for very
restrictive conditions on the choice of the time-step ∆t, [49]. It’s worth mentioning that
we monitor the conservation of the hamiltonian H for most of the experiments presented in
this paper and usually it is conserved with 8 to 10 significant digits. For more information
about the convergence and other properties of the numerical method we refer to [49].
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3. Solitary waves

Solitary waves are fundamental solutions of nonlinear, dispersive equations including
the Euler equations. It is therefore important for all approximate wave models to possess
solitary wave solutions that are similar to the Euler solitary waves. The Serre system and
the Euler equations both possess solitary waves that decay to zero at infinity. Although
the justification of the Serre equations ensures that the Serre solutions will remain close
to Euler solutions, it is not known whether an Euler solitary wave propagates as a Serre
solitary wave that differs only by a small amount from the original one, when it is used as
initial condition to the Serre system.

While the Serre system admits solitary wave solutions of the form given in equation
(1.4), there are not known formulas for solitary waves of the Euler system. For this reason
we compute Euler solitary waves numerically. The numerical method is a Petviashvili
iteration applied to the Babenko equation [53, 18, 23]. This method is presented in detail
in Appendix A.

By comparing the solitary waves of the Euler system with the solitary waves of the Serre
system, one may deduce that they are not identical. To demonstrate the ability of the
Serre equations to approximate the Euler equations, we first compare the characteristics
of two solitary waves with speeds cs = 1.1 and cs = 1.2. Figure 2 includes plots of the Serre
and Euler solitary wave solutions with each of these speeds.

In Figure 2 and when cs = 1.1 it is difficult to observe any significant differences between
the Euler and Serre solitary waves. However, there are obvious differences in the shape
and the amplitude of the two solitary waves when cs = 1.2.

In order to emphasize the differences between the Euler and Serre solitary waves, Figure 3
contains plots of the normalized difference

d(ηEuler, ηSerre) = ∣ηEuler − ηSerre
max(ηSerre) ∣ (3.1)

of the solitary waves shown in Figure 2. The difference of the solutions with cs = 1.2 is
larger than the difference between the solutions of cs = 1.1. Specifically, a 10% increase in
the phase speed leads to an increase in solitary wave amplitude of almost 50% while the
normalized difference between the Euler and Serre solitary waves increases from under 3%
to over 6%. The amplitude of several solitary waves are presented in Table 1. It is easily
observed that the difference in amplitude (and consequently in shape) is larger for larger
values of the speed cs.

Next, we examine how the solitary waves of the Euler system propagate when they are
used as initial conditions to the Serre system. Specifically, we use the numerically generated
solitary wave solutions of the Euler equations and the exact formula u = csη/(1 + η) to
define the initial conditions η0 and u0 for the Serre equations. Then, we integrate the Serre
system using the fully-discrete scheme presented in Section 2. Figures 4 and 5 contain
plots of the solutions at t = 150 obtained using the Euler solitary waves with cs = 1.1 and
cs = 1.2. These figures demonstrate that the difference between the Euler solitary wave
and numerical Serre solution is greater when cs = 1.2 than when cs = 1.1. We note that the
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Figure 2. Solitary waves for the Serre system and Euler equations.
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cs Euler Serre

1.01 0.02012 0.0201
1.05 0.10308 0.1025
1.1 0.21276 0.2100
1.15 0.33007 0.3225
1.2 0.45715 0.4400
1.28 0.70512 0.6384

Table 1. Amplitudes of the Euler and Serre solitary waves corresponding to

different speeds.
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Figure 4. The evolution of an Euler solitary wave with cs = 1.1 when used as
initial condition in the Serre system.

value cs = 1.2 is a relatively large value since the largest value we can use to generate an
Euler solitary wave is cs = 1.29421. For smaller values of the cs, the agreement is better.
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Figure 5. The evolution of an Euler solitary wave with cs = 1.2 when used as

initial condition in the Serre system.

To study further the differences between the Euler and Serre solitary waves, we consider
three quantities pertinent to the propagation of the solitary waves: the amplitude, shape
and phase. First, we define the normalized peak amplitude error as

AE[F ] ≐ ∣F (x∗(t), t) −F (0,0)∣∣F (0,0)∣ , (3.2)

where x∗(t) is the curve along which the computed solution F (x, t) achieves its maximum.
Monitoring AE as a function of time, we observe that even though the Euler solitary waves
do not propagate as traveling waves to the Serre system, their amplitude asymptotically
tends toward a constant indicating that they evolve into a solitary wave solution of the
Serre equation, see Figures 6 and 7.

We define the normalized shape error as

SE[F ] ≐ log10(min
τ
ζ(τ)) , ζ(τ) ≐ ∥F (x, tn) − Fexact(x, τ)∥∥Fexact(x,0)∥ . (3.3)
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Figure 6. The amplitude, shape and phase error of the Euler’s solitary wave of

cs = 1.1 propagating with Serre equations. See also Figure 4.

The minimum in (3.3) is attained at some critical τ = τ∗(tn). This, in turn, is used to
define the phase error as

PE[F ] ≐ log10(∣τ∗ − tn∣). (3.4)

In order to find τ∗, we use Newton’s method to solve the equation ζ ′′(τ) = 0. The initial
guess for Newton’s method is chosen as τ 0 = tn −∆t. Having computed τ∗, the shape error
(3.3) is then SE[F ] = log10(ζ(τ∗)). These error norms are closely related to the orbit of
the solitary wave. In Figures 6 and 7 we present the respective shape and phase errors as
a function of the temporal variable t. We observe that the shape error is of O(10−3) in the
case where cs = 1.1 and of O(10−2) in the case where cs = 1.2. The phase error increases
since the solitary waves propagate with different speeds. It is remarkable that the phase
speeds of the new solitary waves of the Serre system are almost the same as the phase
speeds of the Euler’s solitary waves. For example, the speeds are cs ≈ 1.09 and cs ≈ 1.19.

Similar comparisons have been performed for other model equations such as the classical
Boussinesq system, [8], and the results are comparable cf. [22]. It is also shown that the
agreement between the Euler and Boussinesq solitary waves does not depend only on the
order of the asymptotic model or on the linear properties (such as the linear dispersion
relation). The conclusion of this analysis is that Euler solitary waves evolve into different
solitary waves with very similar shape when they are used as initial conditions in the Serre
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Figure 7. The amplitude, shape and phase errors of the Euler’s solitary wave of

cs = 1.1 propagating with Serre equations. See also Figure 5.

system. This indicates that the Serre equations are consistent with the Euler system and
extends the justification of the Serre equations of [40] to the propagation of solitary waves.

4. Head-on collision of solitary waves

The head-on collision of two solitary waves of the Serre system has been studied numer-
ically before in [49, 24, 47]. It has been observed that the interaction is more inelastic
than in other weakly nonlinear models such as the classical Boussinesq system [8]. Highly
nonlinear interactions result in the generation of large amplitude dispersive tails. The
dispersive tails are usually considered linear waves, however in practice their generation is
due to both nonlinear and dispersive interactions of the solitary waves. In this section we
study the physical relevance of the Serre equation during the collision of two solitary waves
with different amplitudes. We also perform a comparison between the collision of solitary
waves of the Euler and the Serre equations.

4.1. Physical relevance of the Serre system

In order to study the physical relevance of the head-on collision of two Serre solitary
waves, we compare the Serre numerical solution with the experimental data of [19]. In this
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Figure 8. Comparison of the head-on collision of two solitary waves of the Serre

system with experimental data.

experiment, the Serre system is written in dimensional and unscaled form with an initial
condition that includes two counter-propagating solitary waves in the interval [−5,5]. The
speeds of these solitary waves are cs,1 = 0.7721 m/s and cs,2 = 0.7796 m/s. Their amplitudes
are A1 = 0.0108 m and A2 = 0.0120 m respectively. At t = 18.3 s these solitary waves
achieved their maximum values at x1 = 0.247 m and x2 = 1.348 m respectively. Figures 8
and 9 include comparisons between the numerical solution and experimental data. The
agreement between the numerical results and the experimental data is impressive. The
agreement in the generated dispersive tails in Figure 9 is even more impressive. Such
agreement cannot be found in the case of head-on collisions of solitary waves of Boussinesq
type models, [25], indicating that the high-order nonlinear terms are important in studying
even these small-amplitude solutions. Finally, we mention that the maximum amplitude of
the solution observed in Figure 8(c) during the collision is smaller than the real amplitude,
possibly, because of a splash phenomenon that cannot be described by any model (see also
[25]).
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Figure 9. (Cont’d) Comparison of the head-on collision of two solitary waves of
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4.2. Comparison with the Euler equations

The previous experiments showed that the Serre equations provide an accurate prediction
for the head-on collision of two solitary waves. Next, we compare a head-on collision of
two unequal solitary waves via numerical solutions of the Serre and Euler equations. For
both models, we consider a right-traveling solitary wave with cs = 1.1 and a left-traveling
with cs = 1.2. These solitary waves are initially translated so that the maximum peak
amplitudes are achieved at x = −100 and x = 100 respectively. Results from both numerical
simulations are included in Figures 10 and 11. Both models show similar behavior, however
the maximum amplitude observed during the collision using the Euler equations is larger
than in the Serre system. Also the interaction in the Euler equations lasts longer and
therefore a larger phase shift can be observed. Figure 11 contains magnifications of the
solitary waves and generated trailing dispersive tails after the interaction. The leading
waves of the dispersive tails are almost identical in the two models, but the amplitude
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Figure 10. Comparison between the head-on collisions of two solitary waves for

the Serre and Euler systems.

of the tails in the Euler system decay to zero slower than the amplitude of the tails in
the Serre system. These numerical simulations verify the ability of the Serre system to
accurately model head-on collisions of solitary waves. They also show that the Serre
system is consistent with the Euler equations during and after the head-on collision with
almost identical solutions.

5. Stability of traveling waves

The previous experiment of the head-on collision of two solitary waves indicates that
the solitary waves are robust. Other head-on collision experiments with larger amplitude
solitary waves show further robustness. In this section, we present the behavior of a solitary
wave under small perturbations. We also explore the effects of the modification of some of
the high-order terms of the Serre system on the persistence of the solitary waves. We also
show that modifying one such term one can produce regularized shock waves, as opposed



On the nonlinear dynamics of traveling waves 17 / 40

−200 200
 

 

t = 200 Serre
Euler

−200 200
−0.02

0.02

x

η

−150 −130
−0.1

0.6

x

η

110 130
x

Figure 11. (Cont’d) Comparison between the head-on collisions of two solitary

waves for the Serre and Euler systems.

to classical dispersive shock waves. Finally, we examine the stability of the cnoidal waves
solutions.

5.1. Stability of solitary waves

We consider three different types of perturbations: perturbations of the amplitude, per-
turbations of the wavelength, and perturbations of the shape by random-noise. These
perturbations alter the shape of the solitary wave by a small amount. If the solitary wave
is orbitally stable with respect to the given perturbation, then as time evolves it will not
differ significantly from appropriate translations of the unperturbed solitary wave. If the
solitary wave is asymptotically stable with respect to a given perturbation, then the solu-
tion will limit to a very similar to that of the unperturbed solution as t increases. All of
the solitary waves we tested were stable to all of the perturbations we considered.

We chose a solitary wave with speed cs = 1.4 and amplitude A = 0.96 for all numerical
simulations in this section. We perturb the amplitude of the solitary wave by multiplying
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the pulse by a parameter p such that

hp(x,0) = 1 + p ⋅ a1sech2(Ks x) , (5.1)

while keeping the velocity component of the solution unperturbed as in (1.4b). By taking
p = 1.1, i.e. by perturbing the solitary wave uniformly by 10% the initial condition sheds
a small-amplitude dispersive tail and results in a new solitary wave with amplitude A =
1.02050. Figure 12 presents the initial condition and the resulting solution at t = 130.
Similar observations resulted in all cases we tested. We also consider perturbations of the
wavelength Ks by taking the initial condition for h to be

hp(x,0) = 1 + a1sech2(p ⋅Ks x) . (5.2)

We note that when we perturb the wavelength the results were very similar to the results
we got when we perturbed the amplitude of the solitary waves and so we don’t show the
results here. Table 2 shows the amplitudes of the solitary waves that result from various
amplitude and wavelength perturbations.
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p Amplitude perturbation Wavelength perturbation

0.8 0.83860 1.02710
0.9 0.89936 0.99225
1.1 1.02050 0.93017
1.2 1.08087 0.90260

Table 2. Amplitudes of the uniformly perturbed solitary waves.

p Amplitude

−0.2 0.90110
−0.1 0.93055
0.1 0.98942
0.2 1.01883
0.5 1.10694

Table 3. Amplitudes of the randomly perturbed solitary waves.

Similar results were obtained when extreme non-uniform perturbations were used. In
order to consider non-uniform perturbations, we used pseudo-random noise distributed
uniformly in [0,1]. Denoting the noise function by N(x), the perturbed solitary wave is
given by

hp(x, t) = 1 + (1 − p N(x)) ⋅ a1sech2(Ks x − cst) , (5.3)

where the parameter p determines the magnitude of the noise. Figure 13 shows the noise
N(x) and the perturbed solitary wave with p = 0.2. This type of perturbation is not
only non-uniform, but is also non-smooth. Nevertheless the initial condition (shown in
Figure 13) is the L2-projection of the actual solution which ensures the required by the
FEM smoothness. Figure 14 shows the evolution of a randomly perturbed solitary wave
with p = 0.2. The solution does not differ qualitatively from the solution shown in Figure 12.
The solution consists of a new solitary wave and a small-amplitude dispersive tail. In this
case, the solitary wave has amplitude A = 1.01883 while the dispersive tail contains part
of the noise initially applied to the solitary pulse. The values of the amplitudes of the
emerging solitary waves are presented in Table 3. These results suggest that the solitary
waves of the Serre system are orbitally stable with respect to this class of perturbations.

5.2. Persistence of the solitary waves

One other aspect related to the stability of the solitary waves is their ability to persist
when we perturb some high-order terms of the system. In this section, we examine if a
Serre solitary wave persists when some of the terms of the Serre system are perturbed.
Introducing the parameters α, β, and γ, we rewrite the Serre equations in the following
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form

ηt + ux + (ηu)x = 0 , (5.4a)

ut + ηx + uux − 1

3h
[h3(αuxt + βuuxx − γ(ux)2)]x = 0 . (5.4b)

The unperturbed Serre equations correspond to α = β = γ = 1. We study the persistence
of the solitary waves when the system is perturbed by perturbing the parameters α, β,
γ and considering a solitary wave of the unperturbed system as an initial condition. In
this section we use the solitary wave (1.4) with cs = 1.4 as an initial condition. Taking
α = 0.9 the solitary wave persists and the perturbation of the parameter α acts in a manner
similar to the amplitude perturbations in Section 5.1. Figure 15 includes the evolution of
the solitary wave of the perturbed system. The new solitary wave is very similar to the
unperturbed solitary wave further indicating that the solitary waves of the Serre system
are stable. The results for the β = 0.9 and γ = 0.9 cases are very similar and are not
presented here.
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Figure 15. The evolution of a solitary wave of a perturbed system (α = 0.9, β = γ = 1).

More interesting phenomena including the persistence of the solitary waves and wave
breaking results can be observed when the solitary waves are used as initial conditions to
a system with small values of the parameters α, β and γ. When all the three parameters
are very small, the solutions tend to break into dispersive shock waves or other forms of
undular bores. In the first numerical simulation, we consider α = β = γ = 0.01. This
is similar to the case of the small dispersion limit where the weakly nonlinear terms are
dominant. As expected, the solitary wave breaks into a dispersive shock wave. Figure 16



D. Mitsotakis, D. Dutykh, & J.D. Carter 22 / 40

presents the formation of the dispersive shock. This phenomenon has been previously
observed in dispersive systems, cf. [25, 28, 42]. Unexpectedly, taking the parameters β and
γ to be very small, i.e. β = γ = 0.001 and keeping the parameter α = 1, the solitary wave
appears to persist and appears to evolve into a new solitary wave which is very similar
to the unperturbed solitary wave. This persistence is remarkable because the solitary
wave remains almost the same even if two of the most important terms have been almost
eliminated. Figure 17 shows the generation of the new solitary wave if α = 1, β = γ = 0.001.
If α = β = 1 and γ = 0.001 or if α = γ = 1 and β = 0.001 the behavior and persistence of the
solitary wave are similar in all cases.

The behavior changes completely when large perturbations of the parameter α are con-
sidered. For example, when α = 0.001 and β = γ = 1, the time evolution is very different,
but remains interesting. In this case, as it is shown in Figure 18, the initial condition breaks
into other solutions but instead of forming a dispersive shock wave, it forms a new kind of
regularized shock wave. This suggests a new breaking mechanism by the elimination of the
uxt term. Similar dissipative behavior has been observed in nonlinear KdV-type equations
where some high-order nonlinear terms introduce dissipation to the system [12].

When a solitary wave is perturbed by a large amount, the solitary wave is resolved into
a series of solitary waves. This property is related to the ability of the solitary waves to be
generated from other general initial conditions and is known to as the resolution property
of the solitary waves. Many of the previous experiments are also related to this property
and additional experiments on the resolution of solitary waves can be found in [49].

5.3. Stability of Cnoidal waves

We follow the work of Carter & Cienfuegos [13] in order to study the linear stability
of the solutions given in equation (1.5). We enter a coordinate frame moving with the
speed of the solutions by defining χ = x − cc t and τ = t. In this moving frame, the Serre
equations are given by

hτ − cchχ + (hu)χ = 0 , (5.5a)

uτ − ccuχ + uuχ + hχ − 1

3h
(h3(uχτ − ccuχχ + uuχχ − (uχ)2))

χ
= 0 , (5.5b)

and the solution given in equation (1.5) simplifies to the following time-independent solu-
tion

h = h0(χ) = a0 + a1dn2(Kcχ,k) , (5.6a)

u = u0(χ) = cc (1 − h0

h(χ)) . (5.6b)

We consider perturbed solutions of the form

hpert(χ, τ) = h0(χ) + µh1(χ, τ) +O(µ2) , (5.7a)

upert(χ, τ) = u0(χ) + µu1(χ, τ) +O(µ2) , (5.7b)
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Figure 16. The evolution of a solitary wave of a perturbed system (α = β = γ = 0.01).
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Figure 18. The evolution of a solitary wave of a perturbed system and the

generation of a regularized shock (α = 0.001, β = γ = 1).

where h1 and u1 are real-valued functions and µ is a small real parameter. Substituting
(5.7) into (5.5) and linearizing leads to a pair of coupled, linear partial differential equations
that are constant coefficient in τ . Without loss of generality, assume

h1(χ, τ) = H(χ)eΩτ + c.c. , (5.8a)

u1(χ, τ) = U(χ)eΩτ + c.c. , (5.8b)

where H(χ) and U(χ) are complex-valued functions, Ω is a complex constant, and c.c.
denotes complex conjugate. If Ω has a positive real part, i.e. if Re(Ω) > 0, then the
perturbations h1 and u1 grow exponentially in τ and the solution is said to be unstable.

Substituting (5.8) into the linearized PDEs gives

L(H
U
) = ΩM(H

U
) , (5.9)
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where L andM are the linear differential operators defined by

L = (−u′0 + (cc − u0)∂χ −η′0 − η0∂χL21 L22 ) , (5.10a)

M = (1 0
0 1 − η0η′0∂χ − 1

3
η20∂χχ

) , (5.10b)

where prime represents derivative with respect to χ and

L21 = −η′0(u′0)2 − ccη′0u′′0 − 2

3
ccη0u

′′′
0 + η′0u0u′′0 − 2

3
η0u

′
0u
′′
0+

2

3
η0u0u

′′′
0 + (η0u0u′′0 − g − η0(u′0)2 − ccη0u′′0)∂χ , (5.11a)

L22 = −u′0 + η0η′0u′′0 + 13η20u′′′0 + (cc − u0 − 2η0η′0u′0 − 1

3
η20u

′′
0)∂χ+

(η0η′0u0 − ccη0η′0 − 1

3
η20u

′
0)∂χχ + (13η20u0 − 1

3
ccη

2
0)∂χχχ . (5.11b)

The Fourier–Floquet–Hill method described in Deconinck & Kutz [21] is then used
to solve the differential eigenvalue problem given in (5.9). This method establishes that all
bounded solutions of (5.9) have the form

(H
U
) = eiρχ (HP

UP ) , (5.12)

where HP and UP are periodic in χ with period 2K/Kc and ρ ∈ [−πKc/(4K), πKc/(4K)].
Using this method, Carter & Cienfuegos [13] established that solutions of the form

given in (5.6) with sufficiently small amplitude and steepness are spectrally stable and
solutions with sufficiently large amplitude or steepness are spectrally unstable. For example,
the solution with a0 = 0.3, a1 = 0.2 and k = 0.75 is unstable with respect to the perturbation
shown in Figure 19. The period of this perturbation is twelve times the period of the exact
solution (ρ = 1/12). The theory establishes that the magnitude of this perturbation will
grow like e0.00569t. We corroborated this result by using the following perturbation-seeded
solution as the initial condition in our Serre solver

hpert(x,0) = h(x,0) + 10−7h1(x) , (5.13a)

upert(x,0) = u(x,0) + 10−7u1(x) . (5.13b)

Here (h(x,0), u(x,0)) is the solution given in equation (5.6) with a0 = 0.3, a1 = 0.2, k = 0.75
and t = 0 and (h1(x), u1(x)) is the perturbation shown in Figure 19. Figure 21 contains a
plot of the magnitude of the first Fourier mode of the perturbation versus time. This mode
initially (up to t = 1500) grows exponentially with a rate of 0.00577, very close to the rate
predicted by the linear theory. However after more time, the solution returns to a state
close to the initial one. The first portion of this recurrence phenomenon is depicted in
Figure 21. Figure 22 contains plots demonstrating that the solution at t = 2870 has nearly
returned to its initial state. Similar behavior has been observed to other shallow water
models by Ruban [54] and it is referred to as the Fermi-Pasta-Ulam (FPU) recurrence.
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Figure 22. Recurrence of the solution to the initial state after one time-period.
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6. Dispersive shock waves

A simple DSW traveling to the right can be generated using the Riemann initial data,
cf. [28]

h(x,0) = { h−, for x < 0
h+, for x > 0 , u(x,0) = { u−, for x < 0

u+, for x > 0 , (6.1)

with the compatibility condition (Riemann invariant)

u−

2
−√h− = u+

2
−√h+ . (6.2)

DSWs can also be generated during the dam-break problem simulation. In this case, the
initial data for h(x,0) are the same as in (6.1). However, there is no flow at t = 0, i.e. ,
u(x,0) = 0. As shown in [28], this generates two counter-propagating DSWs, one on each
side of the “dam”, and two rarefaction waves that travel toward the center. It appears
that similar initial conditions trigger similar solutions. We consider the initial condition
for h to be a smooth step function that decays to zero as ∣x∣→∞. Specifically, we choose

η(x,0) = 1

2
η0 [1 + tanh(x0 − ∣x∣

2
)] , (6.3)

where η0 = 0.1, x0 = 350, and u(x,0) = 0. A plot of this initial condition is included in
Fig. 23. Both the Euler and Serre equations generate two counter propagating DSWs and
two rarefaction waves. Figure 23 demonstrates that the amplitude of the leading wave
for both solutions is almost the same. For example, the amplitude of the Euler leading
wave at t = 200 is A = 0.06372 while the amplitude of the Serre leading wave at t = 200
is A = 0.06356. Although the leading waves have almost the same amplitudes, the phase
speeds are slightly different. The difference in phase speeds can easily be observed in
Figure 23.

After verifying that the Serre system has dispersive shock waves that are compatible with
the full Euler equations, we examine the interactions of simple DSWs starting with the
head-on collision. For the head-on collision we again consider two initial waveforms similar
to (6.1) but translated as it is shown in Figure 24(a). These step functions generate two
counter-propagating waves that begin to interact at approximately t = 27. The collision is
inelastic. After the collision there are two DSWs propagating in different directions on the
trailing edge of the DSWs.

We close this analysis with a description of the overtaking collision of DSWs. For this
collision we consider two step-like initial conditions that are translated and are attached at
x = −300 as is shown in Figure 25. The first step has amplitude of 0.1 and it is translated to
the left of a shorter step with amplitude 0.05. The two steps generate two DSWs that are
propagating to the right. Because shorter DSWs propagate with smaller phase speeds than
taller DSWs, the taller DSW approaches the shorter one and eventually they interact. The
interaction is so strong that the symmetry of the leading wave of both DSWs is destroyed.
The two waves appear to merge and propagate as one single-phase DSW. Similar behavior
has been observed in NLS-type and KdV-type equations [36, 1]. We note that larger DSWs
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Figure 23. The dam break problem.

can lead to blow-up. These phenomena are in general unphysical and are not presented
in this paper. Finally, we mention that the solutions shown in Figures 24 and 25 are
magnifications of the actual solutions. The rest of the solution, not shown in these figures,
consists of dispersive rarefaction waves that we do not study in this paper. For more
information see [49].

7. Conclusions

In this paper we studied several important nonlinear and dispersive phenomena related
to the Serre equations using a stable and highly accurate FEM scheme. Among other
problems, we studied the stability of solitary and cnoidal waves, the persistence of the
solitary waves, the head-on collision of solitary waves and DSWs, the consistency with the
Euler equations, and the physical relevance of the Serre equations.

The numerical experiments presented in this paper demonstrate that solitary waves
are stable with respect to large classes of perturbations and that some cnoidal waves are
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Figure 24. Head-on collision of two simple DSWs.

unstable with respect to very specific perturbations. A new recurrence phenomenon also
is presented. The solitary wave solutions appear to persist even if some high-order terms
of the system are almost eliminated, while in one case the solitary wave was transformed
into a new form of regularized shock wave. The last observation implies a new method for
the description of the wave breaking.

Finally, we verified that the solutions of the Serre equations are close to the solutions of
the full Euler equations in many cases. We verified the consistency of the Serre equations
even when large-amplitude solitary waves were used, reaching the limits of the full Euler
equations. We also showed that the generation of the dispersive tails in various interactions
is a highly nonlinear process that cannot be captured accurately by weakly nonlinear
models.
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Figure 25. Overtaking interaction of two simple DSWs.
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A. Traveling wave solutions to the full Euler equations

We consider surface gravity waves in an ideal incompressible and irrotational fluid of
finite depth. A two-dimensional Cartesian coordinate system xOy is chosen such that the
ordinate axis Oy is directed vertically upwards and the horizontal axis Ox coincides with
the still water level. The fluid layer is bounded above by the free surface y = η(x, t) and
below by the flat bottom y = −h. The governing equations for the flow are [57, 60, 37]

∆φ = φxx + φyy = 0, −h < y < η(x, t), (A.1)

ηt + φxηx = φy, y = η(x, t), (A.2)

φt + 1
2
∣∇φ∣2 + gy = 0, y = η(x, t), (A.3)

φy = 0, y = −h, (A.4)

where φ(x, y, t) is the velocity potential and g is the acceleration due to gravity. The
Laplace equation (A.1) expresses the combination of fluid incompressibility and flow irro-
tationality. This equation is completed by the boundary conditions (A.2)-(A.4). There is
one kinematic (A.2) and one dynamic isobarity condition (A.3) on the free surface. On the
solid bottom we require that the impermeability condition (A.4) is satisfied.

A.1. Evolution equations

One of the main difficulties of the water wave problem (A.1) – (A.4) is that the fluid
domain is unknown a priori and has to be determined amongst other unknowns. Conse-
quently, in order to simplify the solution procedure, it would be advantageous to transform
the dynamic physical domain into a fixed computational one. For numerical purposes the
idea to use time-dependent conformal maps was formalized and implemented for the first
time by A. Dyachenko et al. (1996) [27]. Later this technique was exploited by other au-
thors in the infinite and finite depth cases [17, 47, 48]. Our exposition below differs slightly
from that of A. Dyachenko et al. (1996) in that we manipulate the Euler equations
directly and not their Hamiltonian variational formulation.

The main idea behind handling the unknown free surface computationally is to refor-
mulate the system using a time-dependent conformal map from the physical domain on a
uniform strip1. This transformation is schematically depicted in Figure 26. The new hor-
izontal and vertical coordinates are denoted by ξ and ζ respectively. The transformation
x = x(ξ, ζ, t), y = y(ξ, ζ, t) can be found by solving the harmonic boundary value problem

yξξ + yζζ = 0, −h0 ≤ ζ ≤ 0, (A.5)

y = γ(ξ, t), ζ = 0, (A.6)

y = = −h, ζ = −h0, (A.7)

where γ(ξ, t) = η(χ(ξ, t), t) and χ(ξ, t) = x(ξ,0, t). We will explain below how the constant
h0 is chosen. The harmonic conjugate variable x(ξ, ζ, t) can be computed through the

1In the infinite depth case the conformal map is done on the lower half-plane [48].
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Figure 26. Conformal map of the physical domain into a uniform strip.

Cauchy-Riemann relations for the complex function z(ξ, ζ, t) = x(ξ, ζ, t) + iy(ξ, ζ, t)
xξ = yζ, xζ = −yξ. (A.8)

Using harmonic analysis one can solve the problem (A.5) – (A.7) to obtain

y(ξ, ζ, t) = h

h0
ζ + S(ζ)[γ(ξ, t)],

where the nonlocal operator S(ζ) is defined by its symbol in Fourier space

Ŝ(ζ) = sinh(∣k∣(ζ + h0))
sinh(∣k∣h0) .

The variable k is the Fourier transform parameter classically defined as

f̂(k) = F[f(ξ)] = ∫
R

f(ξ)e−ikξ dξ, f(ξ) = F−1[f̂(k)] = ∫
R

f̂(k)eikξ dk.
By using the first Cauchy-Riemann relation (A.8) we can determine the trace of the con-
jugate variable at the free surface

χξ = 1 −H[γξ].
After one integration we easily recover the function χ(ξ, t) from its derivative

χ(ξ, t) = ξ −H[γ] + x0(t),
where x0(t) is the origin of the x-coordinate in the physical domain. Without loss of
generality we assume that the origins of both coordinate systems coincide, i.e. x0(t) ≡ 0.
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The operator H has the following expressions in Fourier and physical space

Ĥ = i coth(kh0), H[f](x) = 1

2h0
∫
R

f(y) coth( π
2h0
(y − x))dy.

The last improper integral has to be understood in the sense of the Cauchy principal value.
It can be shown by direct computations that in the transformed plane the velocity po-

tential φ(ξ, ζ, t) = φ(x(ξ, ζ, t), y(ξ, ζ, t), t) and its harmonic conjugate (the stream function)
Ψ(ξ, ζ, t) also satisfy the respective Laplace equations

Ψξξ +Ψζζ = 0, −h0 ≤ ζ ≤ 0,
Ψ = ψ(ξ, t), ζ = 0,
Ψ = −f(t), ζ = −h0,

where ψ(ξ, t) = Ψ(χ(ξ, t),0, t) is the stream function at the free surface. The bottom is
always a streamline2. Since the only difference between the stream function at the free
surface and at the bottom is physically meaningful, we choose f(t) ≡ 0 without loss of
generality and absorb the time dependence into ψ(ξ, t).

By applying the same harmonic analysis technique that we used for the independent
variables (x, y), we can obtain the following relations between the traces of conjugate
functions ψ(ξ, t) and ϕ(ξ, t) ∶= φ(χ(ξ, t),0, t) at the free surface

ψξ = T [ϕξ], ψ = T [ϕ] + ψ0(t),
where the operator T is defined as

T̂ = i tanh(kh0), T [f](x) = 1

2h0
∫
R

f(y) cosech( π
2h0
(y − x))dy.

Moreover, one can show that the following relations hold for the operators H and T

H[T [f]] = −f, T [H[f]] = −f.
In other words, T is the inverse operator to −H and vice versa.

Remark 1. If we take the deep-water limit, h0 → +∞, the operators H and T will become
the usual Hilbert transform H0 that routinely arises in deep water and internal wave models
[5, 50, 48]

Ĥ0 = i sign(k), H0[f](x) = ∫
R

f(y)
y − x dy.

The evolution equations for γ and ϕ are found from the free surface boundary conditions
(A.2) and (A.3). By using the chain rule of differentiation, the kinematic condition (A.2)
becomes

χt γξ − γt χξ = ψξ. (A.9)

2Using the Cauchy-Riemann relations one can show that the normal derivative of the velocity potential

vanishes along the streamlines. Thus, the bottom impermeability (A.4) is automatically ensured in this

way.
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The integration of this expression with respect to ξ leads to the mass conservation property
(see also Remark 2)

d

dt ∫R γχξ dξ = 0.
Similarly, the dynamic equation (A.3) can be rewritten as

ϕt + gγ + 1

J
[1
2
(ϕ2

ξ +ψ2
ξ) − (χt χξ + γt γξ)ϕξ − (χt γξ − γt χξ)ψξ] = 0, (A.10)

where the Jacobian J is given by

J = χ2
ξ + γ2ξ . (A.11)

So far, the relations (A.9) and (A.10) are implicit in the time derivative. However, we can
solve them by isolating the derivatives of dependent variables. In fact, χt and γt are not
independent. Notice that zt/zξ is an analytic function of ξ + iζ . Therefore, the real and
imaginary parts of their boundary values are also related by the H-transform

Re( zt
zξ
) = −H[Im( zt

zξ
)].

After some simple computations we obtain

Im( zt
zξ
)∣

ζ=0

= γt χξ − χt γξ

J
= −ψξ

J
, Re( zt

zξ
)∣

ζ=0

= γt γξ + χt χξ

J
=H[ψξ

J
]. (A.12)

The last two relations can be seen as a linear system for χt and γt

χt γξ − γt χξ = ψξ,

χt χξ + γt γξ = J H[ψξ

J
].

By solving this system, we have explicit evolution equations for χ and γ

χt = χξH[ψξ

J
] + γξ ψξ

J
,

γt = γξH[ψξ

J
] −χξ

ψξ

J
.

Using relations (A.12) we can rewrite the free surface kinematic and dynamic conditions
(A.9), (A.10) as

γt = γξH[ψξ

J
] − χξ

ψξ

J
, (A.13)

ϕt = 1

2

ψ2
ξ − ϕ2

ξ

J
− gγ +ϕξH[ψξ

J
]. (A.14)

Two evolution equations above have to be completed by two additional relations in order
to close the system

ψξ = T [ϕξ], χξ = 1 −H[γξ].
We emphasize the fact that equations (A.13), (A.14) are exact evolution equations for

free surface gravity waves in water of finite depth. No additional assumptions have been
made to derive (A.13), (A.14) from the full Euler equations (A.1) – (A.4).
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Remark 2. The free surface Euler equations possess three classical conserved quantities
(the mass M , horizontal momentum P and the total energy E) which can be expressed in
terms of the free surface quantities only

M = ∫
R

γχξ dξ, P = ∫
R

γϕξ dξ, E = 1
2 ∫R ψφξ dξ + g

2 ∫R γ2 χξ dξ.

These quantities can be used to assess the discretization errors during numerical computa-
tions.

In order to discretize the free surface Euler system (A.13), (A.14) one can use a Fourier-
type pseudospectral method, where all derivatives along with nonlocal pseudo-differential
operators are computed spectrally [11, 59]. Nonlinear products are computed in real space
and antialiased using the 3/2 rule. The overall implementation is very efficient thanks to
the FFT algorithm [30, 31].

Remark 3. The last element we have to specify is the way in which we choose the parameter
h0 which defines the depth of the transformed domain. If we assume that the length of the
periodic ξ-domain is equal to ℓ then h0 is determined by the following expression

h0 = h + 1
ℓ
∫ ℓ

2

− ℓ

2

γ dξ.

A.2. Traveling wave solutions

We restrict our attention to a special class of solutions that move with a constant speed c
and which are generally referred to as traveling waves. In this particular case, all functions
depend only on the variable x − ct

η(x, t) = η(x − ct), φ(x, y, t) = φ(x − ct, y), c = const.
For progressive solutions the dynamic boundary condition (A.14) takes a simpler form

gγ = c
2

2
(1 − 1

J
), (A.15)

where the Jacobian J is defined in equation (A.11). The last equation has to be completed
by an additional relation χξ = 1 −H[γξ] to close the integro-differential system for finding
the free surface excursion γ(ξ, t). Equation (A.15) will be solved iteratively to find traveling
wave solutions using the Petviashvili scheme [53, 39, 61]. To apply this scheme, we have to
separate the linear and nonlinear terms. By multiplying the both sides of equation (A.15)
by J and after some simple algebraic computations, one can derive the following equivalent
form of equation (A.15)

gγ + c2H[γξ] = 2gγH[γξ] + (c2
2
− gγ)(γ2ξ + (H[γξ])2).

The last equation can be rewritten in the operator form for the sake of compactness

L ⋅ γ =N (γ), L ∶= g + c2H[∂ξ], (A.16)
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where N (γ) denotes the right-hand side of equation (A.16). The iteration scheme takes
the following form

γn+1 = SβL−1 ⋅N (γn), S = ⟨γn,L ⋅ γn⟩⟨γn,N (γn)⟩ ,
where S is the so-called stabilizing factor and the exponent β is usually defined as a
function of the degree of nonlinearity p (p = 2 for the Euler equations). The rule of thumb
prescribes the following formula β = p

p−1 [3]. The scalar product is defined in the L2 space.

The inverse operator L−1 can be efficiently computed in the Fourier space. To initialize
the iterative process, one can use the analytical solution to the Serre equations, see for
example the explicit formulas (1.4)). We point out that this method can be very efficiently
implemented using the Fast Fourier Transform [30, 31].
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[55] F. Serre. Contribution à l’étude des écoulements permanents et variables dans les canaux.

La Houille blanche, 8:830–872, 1953.
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