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Abstract 

 The storage of fingerprints is an important issue as this biometric modality is more and more deployed for 

real applications. Considering minutiae templates as sensitive information, a key question concerns the se-

cure and privacy management of this digital identity. Indeed, if an attacker obtains the minutiae template of 

an user, he/she will be able to generate a fingerprint having the same characteristics. Instead of directly stor-

ing the minutiae templates, we propose in this paper a new adaptation of BioHashing to generate a cancela-

ble template in the context of un-ordered set of noisy minutiae features. To the authors knowledge, little 

interest has been paid in the literature to this question until now, since this is an acute problem.   Using the 

FVC2002 benchmark database, we show the effectiveness of the proposed approach in term of privacy 

preservation. We show how the proposed method copes with irreversibility and diversity properties and 

therefore can be efficient in a realistic context. 

Index Terms 

Privacy, secure biometric systems, template protection 

——————————      —————————— 
 

 

I. MOTIVATIONS AND SCOPE 

In reference to information security, biometrics is applied to determine or verify the identity of 

an user. However, an industrial deployment of biometrics remains challenging as far as the security 

of the stored data is concerned. In a strong, world-wide consensus [1], it is admitted that the bio-

metric identifier is personal information which raises serious privacy issues in case of abuse or 

identity theft. Furthermore, unlike passwords or tokens, if compromised, the biometric template 
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cannot be cancelled or revoked. Therefore biometric data is particularly sensitive. However, this 

claim has to be mitigated, since not all biometric deployments bear the same privacy risks.  Fin-

gerprint is considered highly risked since it is a tracing modality. It means that fingerprint data may 

be captured without knowledge nor consent, and hence used for undisclosed purposes.  

Since the pioneering work of Ratha [26], one possible solution relies on a chosen transform ena-

bling fingerprint template protection and thus, privacy protection. 

Two approaches have been developed in the literature: biometric cryptosystems (see [32] for ex-

ample and the references therein) and feature transformation based approaches [1].  In this paper, 

only the latter approach is considered. 

In this article, a particular focus is made on the tokenised pseudo-random multispace transform 

called BioHashing [12]. It consists of a transformation of the biometric template into a compact 

vector code named biocode. The transform is based on an iterative inner product applied between a 

multispace matrix and the feature template. This matrix is generated from a random key K consid-

ered as a seed for a tokenized random number. This method is attractive for its different properties. 

For example, we can mention that, in zero knowledge scenario, BioHashing has been proven to be 

irreversible [10]. The irreversibility has a direct impact on preserving privacy. According to 

ISO/IEC 24745 ‘-Information technology Security techniques- Biometric information protection ’, 

irreversibility prevents the use of biometric data from any other purpose than the originally intend-

ed one. It also guarantees a low or a null leakage of biometric information in the protected tem-

plate. If the reference template is compromised, a direct replacement by a new one is possible by 

just issuing a new pseudo-random token. This renewability property aims to prevent tracking indi-

vidual activities over different applications. This is fundamental for privacy preservation. Hence, 

BioHashing reveals itself as a promising solution to respect many privacy requirements. However, 

at the same time, it brings some research challenges to overcome. Certain properties only hold in 

the ideal case where no intruders is attacking the system. That is why some questions arise in a 
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more realistic context. When an impostor steals the key K, the accuracy is worse than when using 

the biometric alone. For example, in [39], Lumini and Nanni demonstrate that the performance in 

term of false acceptance rate (FAR) moves from 7.3% when no hashing is performed to 10.9% 

when BioHashing is operated under the hypothesis of stolen token. Talking of which, a relevant 

question is how to prevent the deterioration of the recognition accuracy when the genuine token is 

stolen and used by an impostor. A straightforward solution is to use a better feature extractor in 

hamming space (BioHashing requires a template as a fixed length feature vector) which will direct-

ly impact on the recognition performance. In [41], authors use the invariant LBP (Local Binary 

Pattern) texture operator. In their scheme, the fingerprint image is equally divided into sub-regions 

from which the LBP features are extracted. However, in their approach,  authors make alignment 

using minutiae matcher which is not tolerable for protection purpose approaches. In [40], the au-

thor use a spectral fingerprint feature representation based on fourier transform. In stolen token 

scenario, the false acceptance rate is 7.31% on turkish government database. As we remark, the 

problem is that these descriptors are not sufficient. Considering fingerprint, it is well established 

that minutiae map is the moste accurate fingerprint representation. A better solution would be to 

adapt BioHashing to minutiae representation even if this is not obvious. Since the revelation of 

BioHashing in 2003, only few articles got interest on applying BioHashing to minutiae representa-

tion [14][34][35][36]. It is just in 2010 that works using minutiae in the BioHashing appear.  

We show in this article how to adapt BioHashing to minutiae by using local matching. It consists of 

comparing two fingerprints according to the local descriptor of each minutia. Each local descriptor 

will be protected by BioHashing process. In the recent work of Nanni [36], the orientation de-

scriptor of Tico [24] and a greedy matching algoritm were chosen. In parallel, Yang et al. [14] rep-

resents a minutia by a nearest neighbor based structures rather than local descriptor and protect this 

descriptor by BioHashing. In our work, we propose to use a texture descriptor based on the 

fingercode [2] where the matching is based on a neighborhood first search strategy, an enhanced 
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version of the greedy matching. Compared to Yang et al. [14], by using a local descriptor, we bring 

a greater code size which directly impacts on the security of the system. In the next, we show how 

our proposal fulfills diversity and randomness criteria. Compared to other works, we study these 

properties with a special care of the value of the decision threshold. This threshold is never consid-

ered by other works when it must be fixed in practice. The outline of the paper is as follows: Sec-

tion 2 expounds fingerprint template transformation approaches. In Section 3 we present the pro-

posed BioHashing model for minutiae. Sections 4 and 5 are devoted to evaluate the proposed sys-

tem.  

II. RELATED WORKS ON FINGERPRINT TEMPLATE TRANSFORMATION APPROACHES 

Over the last decade, many attempts have been made to address the problem of protecting finger-

print templates. Jain et al. [1] classified the existing algorithms into biometric cryptosystems and 

transformation-based approaches.   

In the first category, instead of directly encrypt the template; error correcting codes were designed 

as an alternative to deal with the variability of the biometric data. The main critical propositions of 

this category are : fuzzy commitment [4], fuzzy vault [3][8], secure sketch [32], biometric harden-

ing password [21], shielding function [22], syndrome-based approach [33]. Multiple works have 

questioned the privacy-enhancing properties of these schemes. This is not our subject, but interest-

ed reader can refer to analyzes made in [37][38].    

      Approaches belonging to the second category make comparison directly in the transformation 

domain. Suppose the biometric X is transformed using a function F into the encoded data T during 

enrolment. For verification, the query biometric Y is encoded into the secret T’ and the authentica-

tion will succeed if T is close to T’ using a certain similarity distance.  

A number of fingerprint transforms are belonging to this category. Cancelable biometrics proposed 

by Ratha et al. [25] applies different geometric transforms to minutiae points. However, in the 

recent work of Nagar et al. [7], linkalibility and irreversibility of these transforms have been really 
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disputed. Kumar et al. [19] propose a symmetric hash functions applied on triplets of neighboring 

minutia while cancelabillity is not considered. Farooq et al. [18] protect minutiae in the form of a 

histogram representation. Each minutiae triplet is represented by a 7 values invariant representation 

and binned in the form of an Histogram. Performance reported by authors is good but the system is 

complex to implement.Boult et al. [30] propose a transformation called biotope that induces a ro-

bust distance measurement. The biometric feature data X is first transformed (applied per feature) 

via scaling and rotation into            while t and s are randomly generated parameters. 

The revocability is assured by the use of different values for t and s. With the biotope, authors can 

achieve a better accuracy than the baseline system. However, the robust revocable transform was 

calculated per user. The fair evaluation would be to transform all probes with the same transform 

and report the accuracies (stolen key scenario).  

In parallel, techniques inspired from password salting are typically dual factor authentication 

where a user-specific key is introduced during the transformation. BioHashing [12] is the most 

representative method of this family. It is based on a linear random projection. Note that, featuring 

biometric data with user specific randomness like a key or a password seems to be the easiest way 

to achieve revocability via direct replacement with a new set of randomness.  

The transformation function in BioHashing combines a user specific key K with the biometric fea-

ture expressed as a fixed-length vector  =( 1,...,  n)/    . For more protection, the key K is con-

sidered as a seed for a tokenized random number (TRN). The BioHashing process is decoupled 

into two steps:  

1) Random projection: It has been shown in [29] that random mapping can preserve the distanc-

es in the sense that the inner product between the mapped vectors closely follows the inner product 

of the initial vectors. The reference [29] proves that the closer to an orthonormal matrix the in-

volved random matrix R is, the better the statistical characteristic of the feature topology are pre-

served. As a consequence, the tokenized random number is used as a seed to generate   random 
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vectors                 and (   ). After orthonormalization by the Gram-Schmidt method, 

these vectors are gathered as the column of a matrix                       . The resulting vector is 

denoted                          . 

2) Quantization: This step is devoted to the transformation in a binary-valued vector of the pre-

vious real-valued vector using a simple thresholding. The goal is to guarantee the irreversibility of 

the process. It requires the specification of a threshold    to compute the final biocode b=(b1,...,bm) 

while                        /       . Thus, by combining the high confidence of the key 

to the biometric data, the inter-class variation increases while the intra-class distance is preserved. 

Hence, zero EER can be achieved even if the feature extractor is low. However, if the key is re-

vealed to an impostor, performances become worse than when using the biometric alone [5]. 

 The sustained works on BioHashing attempt to improve performance in when the user-specific 

TRN is stolen. This case is denoted ‘stolen token scenario’. 

In [11], authors use error correcting codes to resolve the stolen-token problem for PCA face fea-

tures. The performance deterioration can be due to the information lost in binarization. In [9], the 

concept of multi-stage quantization is introduced. The idea is to represent each          of the 

biocode by Ni bits.  The choice of Ni depends on the user-standard deviation of           

where ri are the column vectors of the random matrix. In [6], the improvement is based on fusion 

strategies. The authors exploit the observation that the biocode length impacts the performance in 

the basic approach. However, this length is bounded by the feature vector dimension and cannot be 

increased at will. So, they propose solutions to assign g biocodes per user (g>1) rather than one.  

The use of BioHashing to points set like minutiae features is surprisingly limited even if we are 

certain that these features will give better results.  As it is known, ridge features or other represen-

tation suffers from a lower performance compared to minutiae. However, the problem is that it is 

not obvious how to apply it to the minutiae set. In another hand, Using minutiae as template, we 

have to cope with some difficulties which are: i) Miss-alignment between two minutiae set, ii) Set 
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of minutiae points is not ordered and has variable size, iii) Missing or spurious minutiae.   

Yang et al. [14] have presented a new method for self-alignment and protection of finger-

print templates. Each template is decomposed in a set of N minutiae vicinities. To each of 

these vicinities the BioHashing is applied. At the same time, Nanni et al. [36] protect by 

BioHashing the orientation descriptor of each minutia. In the next, we present our proposal in 

which a minutia is represented by its texture descriptor. The neighboring information is 

used to consolidate the local matching process. We point the relevance of our approach in term 

of irreversibility and diversity compared to existent methods.  

III. APPLYING BIOHASHING TO MINUTIAE TEMPLATE 

We propose in this work, two descriptors: texture-based descriptor, which captures the ridge flow 

patterns around each minutia, and minutiae-based descriptor, which reflects the relationships be-

tween each minutia and its neighborhood. We propose to protect the texture based descriptor by 

BioHashing while keeping the minutiae descriptor in clear.  

Based on the proposed descriptors, a graph matching algorithm similar to [28] is used to establish 

the correspondences between minutiae.  

We use the libcubs library provided by the Unified Biometrics and Sensors center 

(www.cubs.buffalo.edu) for minutiae extraction.   

Our approach is as following: 

Biometric descriptor creation: We propose to create minutia-centered local structures by using 

the texture descriptor presented in [2] around each minutia point m. We call this descriptor, a 

MinuCode. The MinuCode extraction requires enhancing the input image [28], and using a region 

of interest (ROI) determined by a circular tessellation surrounding this central point. This tessella-

tion consists of B concentric bands of b pixels width. Each band is divided into 16 sectors of the 

same angle. The feature vector is calculated after application of a bank of Gabor filters using 8 

http://www.cubs.buffalo.edu/
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orientations. The result is a vector of          elements. Fig.1.a shows the ROI.  

Further, we use small sets of K-neighboring minutiae (K-Plet) as minutiae descriptor to represent 

the local structure between minutiae. We consider the K-Plet (Fig.1.b) as a reinforcement step in 

order to verify if the matching of texture descriptor is consistent at the global level. Hence, a K-

Plet is formed by a central minutia m and its K spatially closest minutiae.  

                                                                                           

 

 

The drawback in such neighbor-based structure is the possibility of exchanging nearest neigh-

bors due to missing or spurious minutiae. To avoid this problem, two K-Plets are matched using a 

string alignement technique. We use the dynamic programming algorithm as proposed in [28]                                          

    Minutiae selection: given the fingerprint image  , we obtain the template minutiae set M such as               with   the number of minutiae in the image  . From the set M, a minutia    is se-

lected only if its surrounding ROI is validated according to this principle: it is in the boundary of 

the image and each sector S represents an alternation of ridges and valleys. We express this alterna-

tion by the energy E of Fourier spectrum so, if E> Tr, then the sector is accepted else it is rejected, 

where Tr  is a global Otsu threshold. It is clear that the final selected minutiae set S will be smaller 

than the initial one. In fact, usually there are 30~60 minutiae in one fingerprint. In our algorithm, 

we only select the minutia with valid ROI (implicitly the central ones), given a template of 10~20 

minutiae, which is considered as sufficient when dealing with local structures [31].Therefore, we 

can adjust the ROI surface according to the minutiae count which in turn depends on the sensor 

attributes.  

      a. ROI around a minutia point                                 b.  6-plet  of the central minutia labeled "1" 

Fig.1.  Biometric descriptor 
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Rotation and translation support: while the translation factor is implicitly solved by using a ref-

erence point, the rotation problem is more critical. We adopt a solution based on the reference ori-

entation correction. For each fingerprint image, we compute the reference orientation      using 

the method of Liu et al. [23] with some modifications. The orientation estimation is operated on 

the binarized image rather than the raw image. To avoid artifacts, we also consider     in the 

range of fundamental orientations as following:                                                                                                                          (1)         expresses the relevant accuracy for orientation angle. One can choose values of 16 or 32 to 

manage shifts of         or         resp. At matching step, the correction is done as following: 

 

 

protection: each minutia              with   the number of selected minutiae in the set M 

is represented by its MinuCode. After, a   K-plets are created containing K MinuCodes for each 

one. To enhance privacy, we decide to protect each MinuCode by the BioHashing process ex-

plained in Fig. 3.  

diff=min(Abs(ref1-ref2), 360- (Abs(ref1-ref2))) 
if(ref1 < ref2)  diff=-diff; 
imrotate(input_image, diff) (counterclockwise rotation)with ref1, ref2 the reference orientations 
of the enrolled and input images resp.   
 

Fig. 2. Rotation correction 
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For each minutia      
1. Let MinuCode the local descriptor of length n. 
2. Normalize the MinuCode vector in the range [-1, 1] (the same range as the Gram-Schmidt result). 
2. Let biocode a vector of length m. 
3. Let K be the seed attributed to the user U. 
4. Generate from K a uniform random matrix Rnxm. 
5. Control that vectors in   are linearly independents else go to 4.   
6. Apply the process of Gram-Schmidt to transform   to an orthonormal set. In this case, we must 
have: nm  . 
7. Make the projection of MinuCode on this matrix: 

8. Binarization of W by thresholding to obtain the biocode vector             such as: 
 

                                                                        
 

    is a binarization threshold. Its choice will be discussed just below.  

9. Delete the MinuCode and store the biocode.  

 

                                                    
                                               

 

The similarity measure between biocodes is based on the Hamming distance 

 

 

Now we discuss the point of the binarization threshold choice. The value of the threshold    is 

generally fixed at zero, owing to the theoretical and expected equal probability for each element 

(after random projection) to be positive or negative. This process is aimed at increasing the ambi-

guity for an attacker who wants to estimate a probable accepted biocode. But, instead of using the 

value 0, we propose to estimate the median over a training dataset A (in practice, the probability of 

a positive or negative element is not equal) and to set the threshold to the obtained value. 

We suggest estimating this median from a fixed set of independent fingerprint images as in Fig.4:  

                                                     

 

 

 

        

 

For each attributed seed S Do 
- For each image in the set A Do 

Compute               the biometric feature vector 
Generate the orthonormal matrix     from the seed S. 
Compute            ) with                   

- Let g be the number of computed W. 
- For i=1:m Do     

Compute Mi the median of the elements              

- The vector             is considered as the threshold vector for the binarisation step.  
                  

Fig. 3. BioHashing process pseudocode 

 

Fig. 4. Median estimation protocol 
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Therefore, we obtain a protected MinuCode noted PMinuCode (PMinuCode       , m the 

biocode length). A protected template    will be represented by the following notation:  

                             
 while    denotes a minutia label. 

   Template matching: we have to develop a fingerprint matching algorithm in the transformation 

space. The algorithm receives as input two protected templates and delivers a matching score that 

expresses the degree of similarity between them. Let PTA be the enrolled template containing N 

minutiae and PTB the input template containing M minutiae obtained after registration of the image 

B relatively to the orientation of the image A as explained in Fig.2. 

We need to identify a set of corresponding minutiae pairs:                                 
with the following minutiae pairing algorithm. Intuitively, two minutiae are paired if they satisfy 

local and global constraints. i). A local constraint is satisfied by the pair         if the Hamming 

distance          between their PMinuCodes  is sufficiently small relative to a certain training 

measure. ii). A global constraint is satisfied if the minutia    is geometrically close to the minutia     (the K-plet structure is used to manage this constraint).  

Now, the matching algorithm is divided into three phases:  

Phase1: it consists of the selection of the best matched pair {root1, root2}, root1 PTA and 

root2 PTB as following: Two minutiae        are likely to be paired if the distance between their 

PMinuCodes          is small. However, because of the possible overlap between ROIs of 

neighboring minutiae,    can also reveal a low distance with another minutia         different 

from   . Thus, to find the most distinguishable minutia pair, we try to minimize the following 

probability as in [25]:                                                                                                    (2) 
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The pair (root1,root2) is validated only if                   . If (root1,root2) is validated, go 

to phase 2. Otherwise, go to phase3. 

Phase2: consider root1, root2 the first nodes to be explored in PTA, PTB resp. Now, we have to 

match the K-plet of root1 with that of root2. Each matched pair will be pushed in a queue and 

marked as visited. This selection scheme will now be recursively repeated until the queue becomes 

empty (each time, we pop the new pair (root1,root2) from the queue head). To avoid the local min-

ima problem, go to phase1 considering just non visited minutiae;  

Phase3 (Matching score computation): In automatic system, the number of pairing minutiae PM 

is converted into a similarity score for normalization.  We find that the following score: 
            is 

more appropriate according to experiences we done. 

IV. EXPERIMENTS 

To comply with the majority of works done on template protection, we use the FVC2002-DB2 [17] 

database. It consists of 100 fingers with 8 impressions per finger obtained using an optical sensor 

of 569 dpi. The size of the images is 560296. We put B=3 (number of bands in the tesselation) 

implying n=384 (MinuCode size) while the length of each biocode is maintained at m=180 bits. 

Biometric Performance evaluation: this first set of experiments is meant to evaluate the registra-

tion process against the orientation deformation. The evaluation will be performed for different 

image types. We set          . 
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As we remark in Fig.5, the correction works quite well. However, the main drawback of this meth-

od is that the estimation depends on the reference point. As a conclusion, we decide to rely on reg-

istration phase, knowing that it works even if it is not the best method.  

Next, we evaluate the biometric performance verification of the approach concerning these three 

scenarios: the use of the sole biometric (SOLE), the protected template in both the Best (BEST) 

case when an impostor never steals the key, and in the worst (WORST) scenario when an impostor 

always steals the key.  

In our experiments, the first impression of each finger is used as the enrolled fingerprint. The re-

maining 7 impressions are used as genuine queries. To compute the false acceptance rate, the first 

sample of each finger is matched against the first sample of the remaining fingers. We use the Half 

Total Error Rate (             ) as a performance measure of the EER. 

The performance of the sole biometric is reported in the form of receiver operating characteristic 

(ROC) curve as shown in Fig.6. The EER re  ported is 4.56%. 

Fig. 5. Qualitative appreciation of the registration process (rotation handling) by image type. For each 
type, we have the enrolled, the input and the corrected images 

 

(a) Arch                                             (b) Left loop                                      (c) Right loop 

                                  (d) Tented arch                                    (e) Whorl                                       (f) Double loop 
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Considering the protected biometric, we show in Fig.7 bellow the distribution of the False Rejec-

tion Rate (FRR) scores against the False Acceptance Rate (FAR) for all possible operating points. 

We plot both the best and worst cases on the same figure to analyze the impact of the decision 

threshold.  The intersection between the FAR and FRR distributions represents the Equal Error 

Rate (EER). 

 

 

Fig.6. ROC curve of the sole biometric 

 

Fig. 7. Impostor vs. genuine distributions in both best and worst cases 
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From Fig.7, we observe that the BioHashing performance in term of EER is 0% in the best case 

and is equal to 6.68% for the worst case. However, if we pay a little attention to the scores distribu-

tion, we find that this assert is unrealistic in practice. In fact, in Fig. 7, we can see that these error 

rates are feasible, but using different decision thresholds:  40 for the best case and 60 for the worst 

one. However, It is inconceivable in a practical system to speak of different threshold values  at the 

same time. A compromise on a single value should be done. If we tune the system at the same deci-

sion threshold, the real performance of BioHashing process will really fluctuate.  If we adjust the 

system to get EER=0% under the assumption that the key is never stolen (as it is always suggest-

ed), the FAR in the worst case will be 22% which is exagerated for a real authentication system. It 

is then more appropriate to put the operating threshold to 60. Here, we find that the real perfor-

mances of the system are: FAR=0 % in the never-stolen key case, FAR=7.16% when the key is 

always stolen and FRR=6.21% in both the scenarios which is normal because the knowledge or not 

of the key does not affect the genuine distribution.   

 

V. SECURITY ANALYSIS 

We make analysis in term of security and privacy vulnerabilities.  

Threat evaluation in term of security: here, we evaluate the possibility of an intrusion success in 

the biometric system. Globally, we think that an impostor can conduct the following attacks:  

Zero-effort attack: in this scenario, the impostor tries to impersonate the genuine user with un-

known key by presenting its biometric. This attack will always fail because the FAR equals to zero.  

Stolen-key attack:  in this scenario, the impostor tries to impersonate the genuine user with avail-

able key but by presenting its proper biometric. This attack depends on the FAR which is 7.16%.  

Brute-force attack: in this scenario, the impostor decides to overcome the feature protection com-

ponent by sending a ready template to the matcher. He will try to estimate an accepted template by 

an exhaustive search. Let k the number of minutiae neighbours. It is sufficient for the impostor to 
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estimate (k+1) MinuCodes (equivalent to one k-plet). The complexity of such estimation is 2mx(k+1). 

It is 8820 bits. 

Attack by template correlation: the Brute-force attack being impossible, the attacker will try to 

predict an accepted template after eavesdropping N templates of the genuine user. We will now 

explore if a prediction of the N+1th template is possible. Because the template is a set of binary 

strings, we can study the correlation by Hamming distance distribution as done by Daugman in 

[20]. For this, we compare the Hamming distance distributions of minutia biocodes of each user 

generated with the same key (genuine distribution) and the same minutiae set but diversified from 

N keys (Pseudo-imposter distribution). We observe in Fig.8 that both distributions are not over-

lapped. The mean of the blue zone is 33%. Let X be the random variable that represents the number 

of no matched bits in the biocode. The pseudo-imposter distribution can then be approximated by a 

binomial distribution where the binary event is the fact that two bits are equal or not and the num-

ber of trials is m, the biocode length. Then the mean of this distribution is     with P the prob-

ability of the binary event. If we consider     , the random variable of the normalized hamming 

distance then P will be equal to the mean 33%. This informs that the probability of predicting a 

correct value by bit is 1-P=67%, ideally we would get 50% for satisfying a total ambiguity. How-

ever, since the distributions of the genuine user and that of the pseudo-impostor are sufficiently 

separated, obtaining 67% is not negative.  
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Threat evaluation in term of privacy: we evaluate privacy in term of possibility of linkage and ir-

reversibility of the protected template. 

Irreversibility: we first assume that an attacker has access to both the random matrix R(n,m) and 

(k+1) PMinuCodes                                    corresponding to one k-plet and 

wants to estimate the original MinuCodes                     . From a mathematical view 

point, the invertibility question can be considered as finding a solution to the following linear 

equations system: 

                                           with        unknowns and        equations,     . In this sys-

tem, we have always more unknowns than independent linear equations. Based on the premise that 

possible solutions are infinite, the random projection is considered as irreversible. However, if an 

attacker knows the linkage among I diversified templates from I different matrices           and 

if Rank          , the problem will be invertible (for n=384, m=180, I needs to be equal to 3). 

Fortunately, this attack remains difficult because finding 3 related diversified templates in our sys-

tem is difficult.  

Unlinkability/Diversity: a common way to evaluate diversity is to match different transformed 

templates obtained from the same biometrics after assigning each user t different keys. We call the 

Fig. 8. Genuine vs. pseudo-impostor distributions by minutiae for N=10 
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percentage of success match the cross matching rate.  For the proposed model, the matching score 

between diversified templates is always 0% for any value of t (we vary t from 2 to 10).  It is com-

pletely independent from any operating threshold.  This is a very interesting property if the same 

algorithm is used for different systems tuned at different operating thresholds.   

 

VI. A COMPARATIVE STUDY 

We intend now to compare in Table I the proposed method with ones dealing with minutiae fea-

tures in order to situate our contribution. The EER is at each time in the worst case. 

 

 

  
 

 

 

 

 

 

 

 

From Table I, we remark that the proposed method is well situated. Comparing to the method of 

Yang et al., it presents better diversity but slightly worst performance. This is due to the nature of 

the descriptor. Indeed, as detailed before, we use minutia texture descriptor where the relation be-

tween minutiae is just expressed by neighborhood. The method proposed by Yang expresses the 

same relation resorting to geometric information (minutiae vicinity). As a perspective, we intend to 

extend the neighborhood with more information and to fuse the texture descriptor with the Tico 

descriptor [25] used by Nanni et al. [42] which seems more discriminative. Effectively Tico report-

 
Methods Database EER Diversity 
Proposed meth-
od 

FVC2002-DB2  6.68% Good and threshold independent 
(good diversity means no match is found between diversified templates) 

Ang et al. [27] NIST (80 images) 16.8% 70% chance of correctly linking diversified templates 
Kumar et al. 
[19] 

FVC2002-DB2 4.98% Not measured 

Farooq et al. 
[18] 

1 enrolled sample, 
1 enrolled test for 
1000 users. 

1.59% Good but threshold dependent 

Lee et al. 
[15,16] 

FVC2004-DB2 10.3% Good but threshold dependent 

Yang et al. [14] FVC2002-DB2 5% Good but threshold dependent 
Boult et al. [30] FVC2002-DB2 Not 

reported 
Not reported 

Ratha et al. [24] 1 enrolled sample, 
1 enrolled test for 
188 users. 

10% 91.5% chance for correctly linking diversified templates.  

Nanni et al. [36] FVC2002-DB2 3.45% Not studied 

 

TABLE I PERFORMANCE COMPARISON BETWEEN EXISTENT MINUTIAE PROTECTION SCHEMES WHEN ALL ALGORITHM PARAME-

TERS ARE KNOWN 
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ed on the FVC2002-DB2 an EER=2.3% for the sole biometric when our descriptor gives 4.56%. 

The strength of our proposal is then in the diversity property where the cross match rate is always 

0%, independently from any decision threshold.  

VII. CONCLUSION 

We discuss in this paper the security and privacy concerns over the use of biometrics. A focus 

has then been made on the dual factor BioHashing transformation for its diversity property com-

paring to other methods. We highlight the importance of using minutiae and propose an adaptation 

of BioHashing to minutiae templates. However, we experimentally demonstrate that the foremost 

claim of having near zero equal error rate when nobody steals the key factor is not exact in practice 

and if this is kept, the system will have a great intrusion risk. The accuracy achieved in the worst 

scenario where all the system parameters are known is 6.68% and 3.10% when no key is revealed, 

it is 4.56% for the sole biometric.  So the trade-off between security and privacy is confirmed but it 

is not so drastic. In term of privacy preservation, we show that diversity is achieved in 100% of 

cases independently of any operating threshold while just a little correlation between diversified 

templates was quantified. We also show the strength of the approach against different scenario 

attacks. We plan to extend this work in several directions especially with the local structure be-

tween minutiae which we intend to enrich with additional geometric information.  
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