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Abstract

This paper introduces optiomal designs in the context of a
regression model when the regression function is assumed to be
generated by a Chebyshev system of functions. The criterion for
optimality is the variance of a Gauss Markov estimator for an
extrapolated value.
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1 Introduction

This paper deals with a natural extension of the Hoel Levine optimal
extrapolation design, as described in [Hoel, 1966]. We recall that this
classical design results as a consequence of the following fact.
A design is defined as a discrete probability measure ξ on a set of

measurements points x0, .., xg−1 which for notational convenience belong
to the observable environmental set [−1, 1] , denoting ni/n := ξ (xi) the
frequency of replications of the experiment to be performed at point xi,
0 ≤ i ≤ g − 1, where the ni’s satisfy n0 + ..+ ng−1 = n. The points xi’s
are the nodes of the design, and ξ (xi) is the so-called frequency of the
design at node xi . Recall that the model writes

Y (x) = f(x) + ε(x)

for x in [−1, 1] , the real valued function f is unknown but belongs
to a specified class of functions, and the random variable ε(x) is cen-
tered, with a finite variance, in the present context. Observations are
performed under the design, with the constraint

n1 + ..+ ng−1 = n
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on the global budget of the design. Replications of the ni measurements
Yj (xi) , 1 ≤ j ≤ ni are independent. Independence also holds from node
to node, which is to assume that all measurements errors due to the r.v.’s
ε(x) are independent. The model is supposed to be homoscedasticity;
hence the variance of ε(x) may not depend on x.
For a given c not in [−1, 1] consider an estimate of f (c) with smallest

variance among all unbiased estimators of f (c) which are linear functions
of the observations Yj (xi) , 1 ≤ j ≤ ni,,0 ≤ i ≤ g − 1, hence under a
given design ξ. An optimal design achieves the minimal variance among
all such designs. This design is achieved by the Hoel Levine design when
the function f is assumed to belong to the class of all polynomials defined
on R with degree less or equal g − 1, hence to the span of the class of
monomials {1, x, .., xg−1} .
The main mathematical argument in order to obtain the Hoel Levine

design lies in the solution of the following basic question: find a poly-
nomial with equioscillations in g + 1 points in [−1, 1] which assumes
maximal absolute values all equal to 1 at those points. Up to a mul-
tiplicative constant such a polynomial results as the best polynomial
approximation of the null function on [−1, 1] by polynomials with de-
gree g− 1. Existence and uniqueness of this polynomial follows from the
Borel-Chebyshev Theorem. We refer to[Dzyadyk and Shevchuk, 2008]
for details and derivation of these results.
The aim is now to provide a larger context for similar questions,

assuming that the function f may belong to some other functional class,
still in a finitely generated set of functions.

Definition 1 The system of functions (ϕ0, ..., ϕg−1) in C (R) is a Cheby-
shev (or Haar) system on [−1, 1] when
1) (ϕ0, ..., ϕg−1) are linearly independent
2) Any equation

a0ϕ0(x) + ...+ ag−1ϕg−1(x) = 0

with (a0, .., ag−1) 6= (0, .., 0) has at most g roots in [−1, 1] .

Denote
V := span {ϕ0, ..., ϕg−1} ⊂ C ([−1, 1])

the linear space generated by the Chebyshev system (ϕ0, ..., ϕg−1) .

Haar Theorem (see [Dzyadyk and Shevchuk, 2008] ) states that the
two following assertions are equivalent:
a) {ϕ0, ..., ϕg−1} is a Chebyshev system in C ([−1, 1])

2



b) for any f in C ([−1, 1]) there exists a unique best uniform approx-
imation in V.

In the sequel we assume that the system {ϕ0, ..., ϕg−1} is a Chebyshev
system in C ([−1, 1]) and in C ([−1, c]) with c > 1. This implies that no
non null linear combination of the ϕi’s may have roots in (1, c] .
We also make use of the following result.The following properties are

equivalent

Proposition 2 1) {ϕ0, ..., ϕg−1} is a Chebyshev system;
2) for any set of g points (x0, ..., xg−1) in [−1, 1] such that xi 6= xj,

and for any (y0, ..., yg−1) in Rg, there exists a unique function g in V
such that g (xk) = yk;
3) for any g points (x0, ..., xg−1) in [−1, 1] such that xi 6= xj, the

determinant

Γ := detG, G :=




ϕ0 (x0) . ϕ0 (xj) . ϕ0 (xg−1)
. . . . .

ϕi (x0) . ϕi (xj) . ϕi (xg−1)
. . .. . .

ϕg−1 (x0) . ϕg−1 (xj) . ϕg−1 (xg−1)



.

does not equal 0.

Proof. Assume 3) holds. With the set of g points (x0, ..., xg−1) in [−1, 1]
such that xi 6= xj, Γ = 0 iff the matrix G is not invertible, which is to
say that the system of equations defined through 0 =

∑g−1
i=0 aigi (xj) , j =

0, ..., g − 1, admits a solution a∗ :=
(
a∗0, ..., a

∗
g−1

)
different from (0, ..., 0)

in Rg. Define g :=
∑g−1

i=0 a
∗
i gi , an element in V which is not the func-

tion x → 0. Since ,
∑g−1

i=0 a
∗
i gi (x) = 0 for x in {x0, ..., xg−1} it follows

that g has g distinct roots in [−1, 1] . It follows that whenever Γ = 0,
{ϕ0, ..., ϕg−1} is not a Chebyshev system. It follows that 3) is equivalent
to 1). Now 2) is equivalent to 3). Indeed when G is invertible then for
any (y0, ..., yg−1) in Rg−1 the system

∑g−1
i=0 aigi (xj) = yj, j = 0, ..., g − 1,

has a unique solution , which means that there is a unique g in V with
g (xj) = yj for all j.

We therefore introduce the basic definition

Definition 3 A regression model

Y (x) = f(x) + ε(x)

is a Chebyshev regression model iff f belongs to V := span {ϕ0, ..., ϕg−1}
where (ϕ0, ..., ϕg−1) is Chebyshev system (or Haar system) of functions
in C ([−1, 1]) .
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The following result stands as a generalization of the Borel Chebyshev
Theorem and improves on the Haar Theorem

Theorem 4 .(Generalization of Chebyshev-Borel Theorem) Let

{ϕ0, ..., ϕg−1}

be a Chebyshev system on [−1, 1] , and g is any function in C ([−1, 1]) .
Then there exists a unique function h in V := span {ϕ0, ..., ϕg−1}
defined on [−1, 1] , which achieves

sup
x∈[−1,1]

|g(x)− h(x)| = inf
f∈V

sup
x∈[−1,1]

|g(x)− f(x)| .

Furthermore h is the only function in V such that p := g − h attains its
unique maximal values in at least g + 1 points in [−1, 1]; the sign of p
on those points alternates.

Proof. See [Achieser, 1992].

Remark 5 The above function h plays a similar role as the function
Tg−1 (Chebyshev polynomial of the first kind) in the polynomial regression
case; see [Broniatowski and Celant, 2014].

The notationMd ([−1, 1]) designates the class of all discrete proba-
bility measures with support in [−1, 1] .
The aim of this paper is to present the contribution of Hoel [Hoel, 1966]

to the construction of optimal designs for the extrapolated value of the
regression function as treated by Kiefer andWolfowitz [Kiefer and Wolfowitz, 1965].
The model and the Gauss Markov estimator are defined in the next Sec-
tion. An orthogonalization procedure allows to express the extrapolated
value as a parameter in an adequate regression model. Finally the sup-
port of the optimal design will be obtained through geometrical argu-
ments; the number of replications of the experiments on the nodes will
then be deduced.

2 The model and Gauss Markov estimator

We consider a Chebyshev system on [−1, 1]

{ϕ0, ..., ϕg−1} .
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For any x ∈ [−1, 1] we assume that we may observe a r.v. y (x), such
that, denoting θ := (θ0, .., θg−1)

′

f (x) := E (Y (x)) =

g−1∑

j=0

θjϕj (x) = (X (x))
′ θ. (1)

We notice that the function

f : R→ R, x 7→ f(x)

is continuous on R. Indeed since the system of the g equations in θ





f (x0) =
∑g−1

j=0 θjϕj (x0)

................................

f (xg−1) =
∑g−1

j=0 θjϕj (xg−1)

has a unique solution whenever (f (x0) , ..., f (xg−1))
′ is known, for

any (x0, ..., xg−1)
′ ∈ [−1, 1]g with −1 ≤ x0 < ... < xg−1 ≤ 1, the

function f can be extended on R; this extension is continuous since so
are the ϕi’s.
Recall that the measurements can be performed only on [−1, 1], and

not for |x| > 1.

2.1 Examples of Chebyshev systems

Here is a short list of classical chebyshev systems. We refer to the classi-
cal treaties of [Karlin and Studden, 1966] for a extensive study of those
systems and their applications in analysis and in statistics.
a) {ϕ0 (x) = 1, ϕ1 (x) = x3} is a Chebyshev system on whole R,
b)
{
ϕ0 (x) = 1;ϕ1 (x) =

1
x3

}
is a Chebyshev system on (0,+∞),

c) {1, cosx, cos 2x, ..., cosnx}is a Chebyshev system on [0, π),
d){1, sin x, cosx, sin 2x, cos 2x..., sinnx, cosnx} is a Chebyshev sys-

tem on R�2π
e) {sin x, sin 2x, ..., sinnx} is a Chebyshev system on [0, π),
f) {ϕ0 (x) = x2 − x, ϕ1 (x) = x2 + x, ϕ2 (x) = x2 + 1}is a Chebyshev

system on R,
g){xa0 , ..., xan , where 0 = a0 < ... < an } is a Chebyshev system on

[0,+∞),
h) {ea0x, ..., eanx, where 0 = a0 < ... < an }is a Chebyshev system on

R,
i) {1, sinh x, cosh x, ..., sinhnx, ..., coshnx} is a Chebyshev system on

R,
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j)
{
(x+ a0)

−1 , ..., (x+ an)
−1 ,where 0 = a0 < ... < an

}
is a Cheby-

shev system on [0,+∞),
k) {1, log x, x, x log x, x2, x2 log x, ..., xn, xn log x}is a Chebyshev sys-

tem on (0,∞), .... .
Finally note that being a Chebyshev system is a linear property;

indeed if (ϕ0, ..., ϕg−1) is a Chebyshev system then any other basis of
span {ϕ0, ..., ϕg−1} is a Chebyshev system.

2.2 Description of the dataset coming from the ex-

periment

Given the set of nodes −1 ≤ x0 < ... < xg−1 ≤ 1, the experiment is
described through the following measurements





Y1 (x0) =
∑g−1

j=0 θjϕj (x0) + ε1 (x0)

....................................

Yn0 (x0) =
∑g−1

j=0 θjϕj (x0) + εn1 (x0)

....................................

Y1 (xi) =
∑g−1

j=0 θjϕj (xi) + ε1 (xi)

....................................

Yni (xi) =
∑g−1

j=0 θjϕj (xi) + εni (xi)

....................................

Y1 (xg−1) =
∑g−1

j=0 θjϕj (xg−1) + ε1 (xg−1)

....................................

Yng−1 (xg−1) =
∑g−1

j=0 θjϕj (xg−1) + εng−1 (xg−1)

or through the more synthetic form, with

Y (xi) :=
(
Y1 (xi) , ..., Ynj (xi)

)′
, X (xi) := (ϕ0 (xi) , ..., ϕg−1 (xi))

′ ,

ε (xi) := (ε1 (xi) , ..., εni (xi))
′ ,

Y (xi) =




ϕ0 (xi) ... ϕg−1 (xi)
... ... ...
ϕ0 (xi) ... ϕg−1 (xi)






θ0
.
θg−1


+ε (xi) , i = 0, ..., g−1.

Denote,

Xi :=




ϕ0 (xi) ... ϕg−1 (xi)
... ... ...
ϕ0 (xi) ... ϕg−1 (xi)


 .

The matrix Xi has ni lines and g columns. All lines of X equal
(X (xi))

′.
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Denote

H := ImX (x) := {X (x) ∈ Rg : x ∈ [−1, 1]} . (2)

The set H is called the regression range.
It may be at time convenient to attribute distinct indices to the same

xj when repeated nj times.
The discrete measure defined through

︷ ︸︸ ︷
x0, ..., x0 (n0 times), ...,

︷ ︸︸ ︷
xj, ..., xj (nj times ), ...,

︷ ︸︸ ︷
xg−1, ..., xg−1 (ng−1 times)

with

n0 + ...+ ng−1 = n

will hence be written as

t1, ..., tn (3)

with t1 = t2 = .. = tn0 = x0, ..., tn0+..+ng−2+1 = tn0+..+ng−2+2 = ... =
tn0+..+ng−2+ng−1 = xg−1; hence t1, ..., tn0 indicates the same point x0 re-
peated n0 times, etc.

The system which describes the n observations writes therefore as

Y = C θ + ε

where

Y :=




Y1
.
Yn


 C :=




ϕ0 (t1) ... ϕg−1 (t1)
.. ... ...
ϕ0 (ti) ... ϕg−1 (ti)
... .. ...
ϕ0 (tn) ... ϕg−1 (tn)



,

θ :=




θ0
.
θg−1


 , ε :=




ε1
.
εn


 ,

E (Y) = C θ, var (ε) = σ2In,

and In is the Identity matrix of order n.
The Gauss Markov estimator of f (x) = E (y (x)) is the solution of

the linear system
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X ′

i Xiθ = X ′

i Y (xi) , i = 0, ..., g − 1.

It holds

X ′

i Xi =




ϕ0 (xi) ... ϕ0 (xi)
... ... ...
ϕg−1 (xi) ... ϕg−1 (xi)






ϕ0 (xi) ... ϕg−1 (xi)
... ... ...
ϕ0 (xi) ... ϕg−1 (xi)


 = niMi

where

Mi :=




(ϕ0 (xi))
2 ... ϕ0 (xi)ϕk (xi) ... ϕ0 (xi)ϕg−1 (xi)

...... .... .... .... .....
ϕh (xi)ϕ0 (xi) .... ϕh (xi)ϕk (xi) .... ϕh (xi)ϕg−1 (xi)
..... .... .... .... ....
ϕg−2 (xi)ϕ0 (xi) ..... ϕg−2 (xi)ϕk (xi) ..... ϕg−2 (xi)ϕg−1 (xi)

ϕg−1 (xi)ϕ0 (xi) ..... ϕg−1 (xi)ϕk (xi) ..... (ϕg−1 (xi))
2



.

We have

Mi = X (xi)X
′ (xi) .

In

X (xi)X
′ (xi) θ = X ′

i Y (xi) , i = 0, ..., g − 1

sum both sides with respect to i to obtain

g−1∑

i=0

XiX
′

i θ =

g−1∑

i=0

X ′

i Y (xi) .

Therefore

n

(
g−1∑

i=0

ni
n
Mi

)
θ =

g−1∑

i=0

X ′

i Y (xi) .

Denote

ξi := ξ (x) :=

{
ni
n
if x = xi

0 if x /∈ {x0, ..., xg−1}
.

The matrix

M (ξ) :=

g−1∑

i=0

ni
n
Mi =

g−1∑

i=0

ξiMi (4)
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is the moment matrix of the measure ξ.
By definition

supp (ξ) = {x0, ..., xg−1} .

Since

Mi = X (xi)X
′ (xi)

we may write

M (ξ) =

g−1∑

i=0

ξiMi =

g−1∑

i=0

ξi X (xi)X
′ (xi) =

∫

[−1,1]

X (x) X ′ (x) dξ (x) .

Specific study of this matrix is needed for the estimation of linear
forms of the coefficients θi’s. This area has been developed by Elfving
see e.g. [Pukelsheim, 1993]), out of the scope of the present paper.

3 An expression of the extrapolated value through

an orthogonalization procedure

We will consider an alternative way, developed by Kiefer and Wolfowitz
[Kiefer and Wolfowitz, 1965] as follows. It has the main advantage that
up to a coefficient γg−1 which depends on the values of f on the x

′
js,

the estimate of f(c) is ϕg−1(c). It follows that only the coefficient γg−1
has to be estimated, a clear advantage. Recall that c does not belong to
[−1, 1] .
It is more convenient, at this stage, to introduce the following no-

tation. It will be assumed that n measurements of Y are performed,
namely

Y (t1), .., Y (tn)

where the t′is belong to [−1, 1] . The points of measurement t1, .., tn might
be distinct or not, as defined in (3). Obviously when defining the optimal
design with nodes x0, .., xg−1, then nj values of the t

′
is coincide on xj for

0 ≤ j ≤ g− 1. In order to define the estimator, and not the design, it is
however more convenient to differentiate between all the measurements
Y (ti), 1 ≤ i ≤ n. This allows to inherit from the classical geometric least
square formalism.

We consider the basis of V defined as follows:
Set for all j between 0 and g − 2

hj(x) := ϕj(x)−
ϕj(c)

ϕg−1(c)
ϕg−1(x) (5)
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and
hg−1(x) := ϕg−1(x).

Clearly (h0, .., hg−1) generate V . Also (h0, .., hg−1) is a Chebyshev system
on [−1, c] .
Denote (γ0, .., γg−1) the coordinates of f on (h0, .., hg−1) , namely

f(x) =

g−1∑

j=0

γjhj(x).

We evaluate the coefficients γj with respect to the θ
′
ks defined in (1). It

holds
γj := θj for j = 0, ..., g − 2

and

γg−1 :=

∑g−1
j=0 θjϕj (c)

ϕg−1 (c)

assuming ϕg−1 (c) 6= 0, and obviously we have

f(x) =

g−1∑

j=0

γjhj (x) =

g−1∑

j=0

θjϕj (x) .

In x = c we get

f (c) :=

g−1∑

j=0

γjhj (c) =

g−1∑

j=0

θjϕj (c) .

By the definition of γg−1 we have

γg−1 :=

∑g−1
j=0 θjϕj (c)

ϕg−1 (c)

and therefore we have proved

Lemma 6

f (c) = γg−1ϕg−1 (c) . (6)

4 The Gauss Markov estimator of the extrapolated

value

It holds

f(c) =

g−1∑

i=1

θiϕi(c)
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where the θi’s are defined through g equations of the form

f(xj) =

g−1∑

i=0

θiϕi(xj)

with −1 ≤ xj ≤ 1 for all 0 ≤ j ≤ g − 1.
Replace f(xj) by its estimate

f̂(xj) :=
1

nj

nj∑

i=1

Yi(xj).

Under the present model, f̂(xj) is an unbiased estimate of f(xj). Deter-

mine θ̂i though the system defined by

f̂(xj) =

g−1∑

i=0

θ̂iϕi(xj).

The resulting θ̂i’s are unbiased and so is

f̂(c) =

g−1∑

i=0

θ̂iϕi(c).

The natural optimality criterion associated to this procedure is the vari-

ance of the estimate f̂(c) which depends on the location of the nodes
and on the weights nj’s.

We now write the above Gauss Markov estimator of f(c) on the new
basis (h0, .., hg−1) . Substituting the function f by its expansion on the
basis (h0, .., hg−1) the model write as





Y (t1) = θ0h0 (t1) + ...+ θg−2hg−2 (t1) + γg−1ϕg−1 (t1) + ε1
...............................................

Y (ti) = θ0h0 (ti) + ...+ θg−2hg−2 (ti) + γg−1ϕg−1 (ti) + εi
.................................................

Y (tn) = θ0h0 (tn) + ...+ θg−2hg−2 (tn) + γg−1ϕg−1 (tn) + εn

.

because of (5),

Y (t) = Tθ + ε

where t := (t1, .., tn)
′

11



T :=




h0 (t1) . . hg−2 (t1) ϕg−1 (t1)
. . . . .

h0 (ti) . . hg−2 (ti) ϕg−1 (ti)
. . . . .

h0 (tn) . . hg−2 (tn)ϕg−1 (tn)



, θ :=




θ0
.

θg−2
γg−1


 , ε :=



ε1
.
εn


 .

Recall that we intend to estimate γg−1. We make a further change
of the basis of V. We introduce a vector Gg−1, which together with
h0, ..., hg−2 will produce a basis (h0, ..., hg−2, Gg−1) for which the vec-
tor Gg−1 is orthogonal to any of the hj, 0 ≤ j ≤ g − 2. The aim of this
construction is to express f(c) as a linear combination of the components
of Gg−1. Since Gg−1 belongs to V = span (h0, .., hg−1) we write

Gg−1 (ti) := hg−1 (ti)−

g−2∑

j=0

δjhj (ti)

for some vector δ := (δ0, .., δg−1)
′ .

We impose the following condition
〈

Gg−1 (t1)

.
Gg−1 (tn)


 ,



hj (t1)
.

hj (tn)



〉
= 0, for all j = 0, ..., g − 2 ,

where the above symbol <,> is the inner product in Rn.The δj’s in R
are to be chosen now.
The linear system

n∑

i=1

G (ti)hj (ti) = 0, for j = 0, ..., g − 2

with g − 1 equations has g − 1 unknown variables δj .
Once obtained the solution δ∗j , j = 0, ..., g − 2 , and since

hg−1 (t) = Gg−1 (t) +

g−2∑

j=0

δjhj (t) ,

we may write f(t) for any t

f(t) =

g−1∑

j=0

γjhj (t) = γ0h0 (t) + ...+ γg−2hg−2 (t)

+ γg−1Gg−1 (t) + γg−1δ0h0 (t) + ...+ γg−1δg−2hg−2 (t)

= (γ0 + γg−1δ0)h0 (t) + ...+ (γg−2 + γg−1δg−2)hg−2 (t) + γg−1Gg−1 (t)

= α0h0 (t) + ...+ αg−2hg−2 (t) + αg−1Gg−1 (t) ,
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where the α′js are defined by

αj :=

{
γj + γg−1δj for j = 0, ..., g − 2

γg−1 for j = g − 1
.

The point is that γg−1 appears as the coefficient of Gg−1 , namely the
last term in the regression of f(t) on the regressors (h0, .., hg−2, Gg−1) .
Furthermore Gg−1 is orthogonal to the other regressors. The system
which describes the data is now written by

Y (t) = T̃ θ̃ + ε

where

T̃ :=




h0 (t1) . . hg−2 (t1) Gg−1 (t1)
. . . . .

h0 (ti) . . hg−2 (ti) Gg−1 (ti)
. . . . .

h0 (tn) . . hg−2 (tn)Gg−1 (tn)



, θ̃ :=




α0
.

αg−2
γg−1


 .

The minimum least square estimation of γg−1 is obtained through
the normal equations imposing

(
Y (t)− T̃

̂̃
θ

)
∈ V ⊥

where
̂̃
θ hence designates the least square estimator of the vector of

coefficients θ̃, and where V ⊥ is the orthogonal linear space of V.
We have, denoting γ̂g−1 the least square estimator of γg−1, and noting

that V = span {h0, ..., hg−2, Gg−1}

〈



Y (t1)−
∑g−2

j=0 αjhj (t1)− γ̂g−1Gg−1 (t1)

.

.

Y (tn)−
∑g−2

j=0 αjhj (tn)− γ̂g−1Gg−1 (tn)




′

,




hj (t1)
.
.

hj (tn)




〉
= 0,

for j = 0, ...g − 2 and

〈



Y (t1)−
∑g−2

j=0 αjhj (t1)− γ̂g−1Gg−1 (t1)

.

.

Y (tn)−
∑g−2

j=0 αjhj (tn)− γ̂g−1Gg−1 (tn)




′

,




Gg−1 (t1)
.
.

Gg−1 (tn)




〉
= 0

Hence

13



∑

i=1,..,n

(
Y (ti)−

g−2∑

j=0

αjhj (ti)− γ̂g−1Gg−1 (ti)

)
Gg−1 (ti) = 0. (7)

Inserting the orthogonality condition

n∑

i=1

G (ti)hj (ti) = 0, for j = 0, ..., g − 2,

in (7) we have

n∑

j=1

Y (tj)Gg−1 (tj)− γ̂g−1

n∑

j=1

G2g−1 (tj) = 0,

and

γ̂g−1 =

∑n

j=1 Y (tj)Gg−1 (tj)∑n

j=1G
2
g−1 (tj)

.

Finally we obtain the explicit form of the estimator of f(c). It holds

Proposition 7 The least square estimator (Gauss Markov) of the ex-
trapolated value f(c) is

f̂ (c) = ϕg−1 (c) γ̂g−1 = ϕg−1 (c)

∑n

j=1 Y (tj)Gg−1 (tj)∑n

j=1G
2
g−1 (tj)

.

5 The Optimal extrapolation design for the Cheby-

shev regression

5.1 The support of the optimal design

We determine the support of the optimal design for the extrapolation of
f at point c.

Recall that a design ξ∗ is optimal if and only if it produces a Gauss
Markov estimator of f(c) with minimal variance among all such estima-
tors built upon other designs.

We note that the variance of f̂ (c) depends on the xj’s since

14



var
(
f̂ (c)

)
= (ϕg−1 (c))

2

∑n

j=1 var (Y (tj))G
2
g−1 (tj)(∑n

j=1G
2
g−1 (tj)

)2

=
(σϕg−1 (c))

2

∑n

j=1G
2
g−1 (tj)

.

The design is defined through a discrete probability measure ξ ∈Md

([−1, 1]) with support (x0, .., xg−1) with ξ(xj) := nj/n and nj equals the
number of the t′is which equal xj, for 0 ≤ j ≤ g − 1.
We now determine the support of the optimal design denoted ξ∗.

ξ∗ := arg min
ξ∈Md([−1,1])

1∑g−1
j=0 njG

2
g−1 (xj)

= arg max
ξ∈M∗

X

g−1∑

i=0

njG
2
g−1 (xj)

= arg max
ξ∈Md([−1,1])

g−1∑

i=0

nj

(
hg−1 (xi)−

g−2∑

j=0

δjhj (xi)

)2
.

The solution can be obtained in a simple way through some analysis
of the objective function. By convenience in order to use simple geo-
metric arguments and to simplify the resulting expressions it is more
convenient to write the derivation of the optimal design in terms of the
t′is.
The function

n∑

i=1

(
hg−1 (ti)−

g−2∑

j=0

δjhj (ti)

)2
=

∥∥∥∥∥∥



hg−1 (t1)−

∑g−2
j=0 δjhj (t1)

.

hg−1 (tn)−
∑g−2

j=0 δjhj (tn)



∥∥∥∥∥∥

2

is the distance from the orthogonal projection of the vector

h :=
(
hg−1 (t1) ... hg−1 (tn)

) ′

on the linear space V generated by the family {h0, ..., hg−2, Gg−1} .
Therefore by the minimal projection property

n∑

i=1

(
hg−1 (ti)−

g−2∑

j=0

δjhj (ti)

)2
= min

ψ∈V
dist (h, ψ) .

Let δ :=
(
δ0 ... δg−2

) ′
.
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The optimal design is obtained through a two steps procedure. Fix
the frequencies n0, .., ng−1 with sum n and determine the discrete mea-

sure ξ on [−1, 1] which minimizes varξ

(
f̂ (c)

)
among all ξ′s with sup-

port x := (x0, .., xg−1) and masses ξ(xj) = nj/n, 0 ≤ j ≤ g − 1. The
optimization is performed upon the x′js.
The optimal design solves therefore the problem

ξ∗ = arg max
ξ∈Md([−1,1])

min
ψ∈V

dist (h, ψ)

= arg max
x∈[−1,1]g

min
δ∈Rg−1

g−1∑

i=0

ni

(
hg−1 (xi)−

g−2∑

j=0

δjhj (xi)

)2

= arg max
ξ∈Md([−1,1])

min
δ∈Rg−1

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ξ (dx) .

The integrand
(
hg−1 (x)−

∑g−2
j=0 δjhj (x)

)2
is always non negative.

Henceforth it is enough to minimize its square root w.r.t. x. This
optimization turns therefore to be independent of the n′js.
Denote δ∗j , j = 0, ..., g−2, the values which minimize dist (h, ψ) w.r.t.

δj. The optimality condition writes

max
x∈[−1,1]

∣∣∣∣∣hg−1 (x)−
g−2∑

j=0

δ∗jhj (x)

∣∣∣∣∣ = min
δ∈Rg−1

max
x∈[−1,1]

∣∣∣∣∣hg−1 (x)−
g−2∑

j=0

δjhj (x)

∣∣∣∣∣
(8)

= min
p∈W

max
x∈[−1,1]

|hg−1 (x)− p (x)|

where
W := span {h0, .., hg−2} . (9)

If we prove that {h0, ..., hg−2} is a Chebyshev system on [−1, 1] , then
clearly the support of the optimal measure ξ∗ consists in the points of
maximal value in [−1, 1] for the function

|hg−1 (x)− p∗ (x)|

where p∗ is the best uniform approximating polynomial of hg−1 inW.
Indeed the support of ξ∗ consists in the set of points where

∣∣∣∣∣hg−1 (x)−
g−2∑

j=0

δjhj (x)

∣∣∣∣∣
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in (8) attains its maximal value for p = p∗ the best uniform approxima-
tion of hg−1 in W.

This is the major argument of the present derivation, which justifies
all of the uniform approximation theory in this context.

Definition 8 The vector δ∗ in Rg−1 is a Chebyshev vector iff it desig-
nates the vector of the coefficients of p∗ , where p∗ is the best uniform
approximating polynomial of hg−1 in W defined in (9). It is defined
through (8).

Now writing

δ∗ :=
(
δ∗0, ..., δ

∗

g−2

) ′

we define the set of all points x̃ in [−1, 1] where the distance between
hg−1 and its best approximation on the hk, 0 ≤ k ≤ g − 2 is minimal.
These points are precisely the support of the optimal design ξ∗. Formally
we define

E := min
δ∈Rg−1

max
x∈[−1,1]

∣∣∣∣∣hg−1 (x)−
g−2∑

j=0

δjhj (x)

∣∣∣∣∣ (10)

and

B (δ∗) :=

{
x̃ ∈ [−1, 1] :

∣∣∣∣∣hg−1 (x̃)−
g−2∑

j=0

δ∗jhj (x̃)

∣∣∣∣∣ = E

}
. (11)

It holds (see Proposition 10 below)

ξ∗ (B (δ∗)) = 1.

We prove that {h0, ..., hg−2} is a Chebyshev system on [−1, 1] .

Proposition 9 (Hoel) The functions h0, ..., hg−2 are a Chebyshev sys-
tem on [−1, 1] .

Proof. For any choice of {x0, ..., xg} in [−1, 1], with x0 < ... < xg−1,
since the family {ϕ0, ..., ϕg−1} is a Chebyshev system on [−1, 1], we have,
by Proposition 2, assuming a positive sign of the determinant, without
loss of generality

17



0 < det




ϕ0 (x0) ϕ0 (x1) . ϕ0 (xg−2) ϕ0 (c)
ϕ1 (x0) ϕ1 (x1) . ϕ1 (xg−2) ϕ1 (c)

. . . . .
ϕg−2 (x0)ϕg−2 (x1) . ϕg−2 (xg−2)ϕg−2 (c)
ϕg−1 (x0)ϕg−1 (x1) . ϕg−1 (xg−2)ϕg−1 (c)



.

For j = 0, ..., g − 1,the operations

ϕj (xi) 7→ ϕj (xi)− ϕj (c)
ϕg (xi)

ϕg (c)

do not change the value of the determinant.
Hence,

0 < det




ϕ0 (x0) ϕ0 (x1) . ϕ0 (xg−2) ϕ0 (c)
ϕ1 (x0) ϕ1 (x1) . ϕ1 (xg−2) ϕ1 (c)

. . . . .
ϕg−2 (x0)ϕg−2 (x1) . ϕg−2 (xg−2)ϕg−2 (c)
ϕg−1 (x0)ϕg−1 (x1) . ϕg−1 (xg−2)ϕg−1 (c)




= det




h0 (x0) h0 (x1) . h0 (xg−2) ϕ0 (c)
h1 (x0) h1 (x1) . h1 (xg−2) ϕ1 (c)

. . . . .
hg−2 (x0)hg−2 (x1) . hg−2 (xg−2)ϕg−2 (c)

0 0 . 0 ϕg−1 (c)



.

By the Laplace Theorem pertainig to determinants, we get

0 < det




h0 (x0) h0 (x1) . h0 (xg−2) ϕ0 (c)
h1 (x0) h1 (x1) . h1 (xg−2) ϕ1 (c)

. . . . .
hg−2 (x0)hg−2 (x1) . hg−2 (xg−2)ϕg−2 (c)

0 0 . 0 ϕg−1 (c)




= ϕg−1 (c) det




h0 (x0) h0 (x1) . h0 (xg−2)
h1 (x0) h1 (x1) . h1 (xg−2)

. . . .
hg−2 (x0)hg−2 (x1) . hg−2 (xg−2)


 := ϕg−1 (c)×∆.

Therefore the two real numbers ϕg−1 (c) and ∆ have same sign.
Since ϕg−1 (c) 6= 0 we deduce that

det




h0 (x0) h0 (x1) . h0 (xg−2)
h1 (x0) h1 (x1) . h1 (xg−2)

. . . .
hg−2 (x0)hg−2 (x1) . hg−2 (xg−2)


 6= 0.
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Hence the family {ϕ0, ..., ϕg−1} is a Chebyshev system in C ([−1, 1]) .
In the same way we can prove that it is a Chebyshev system in [−1, c] .

5.2 The frequencies of the optimal design

Once characterized the points x in supp ξ∗, we characterize the values
of the ξ∗ (x) ’s.The following Proposition produces a sufficient condition
in order that the measure ξ∗ be optimal, which can be phrased as

min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ξ∗ (dx)

≤ min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ξ (dx)

for any ξ inMd ([−1, 1]) . Uniqueness might not hold.

Proposition 10 (Kiefer-Wolfowitz) Let B (δ∗) be defined as in (11). If
δ∗ is Chebyshev vector and ξ (B (δ∗)) = 1 and if

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δ∗jhj (x)

)
hi (x) ξ (dx) = 0, for i = 0, ..., g − 2,

then ξ is optimal.
Proof. Let ξ ∈Md ([−1, 1]) with ξ (B (δ

∗)) = 1. The hypothesis

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δ∗jhj (x)

)
hi (x) ξ (dx) = 0,

for i = 0, ..., g − 2, indicates that

hg−1 (xi)−

g−2∑

j=0

δ∗jhj (xi)

is orthogonal to the linear space W generated by {h0, ..., hg−2} . Thus∑g−2
j=0 δ

∗
jhj is the orthogonal projection of hg−1 on W. The inner product

is

< v,w >:=

∫

[−1,1]

v (x)w (x) ξ (dx) .

By the minimal projection property
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A (ξ) := min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ξ (dx)

=

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δ∗jhj (x)

)2
ξ (dx)

=
∑

x̃∈suppξ

(
hg−1 (x̃)−

g−2∑

j=0

δ∗jhj (x̃)

)2
ξ (x̃)

≥ E2
∑

x̃∈suppξ

ξ (x̃)

= E2 ≥

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δ∗jhj (x)

)2
ν (dx)

≥ min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ν (dx) ,

≥ max
v∈Md([−1,1])

min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ν (dx)

= min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ξ∗ (dx) =: A (ξ∗)

The measure v which appears in lines 5 and followings in the above
displays are arbitrary measures inMd ([−1, 1]) .
Since by definition

ξ∗ := arg max
v∈Md([−1,1])

min
δ∈Rg−2

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δjhj (x)

)2
ν (dx)

(12)
i.e.

A (ξ∗) ≥ A (ξ) .

Hence A (ξ∗) = A (ξ) .

6 Identification of the optimal design

In this Section we provide an explicit solution for the optimal design and
prove its uniqueness.
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By the Borel-Chebyshev Theorem 4 there exist at least g points

x0 < ... < xg−1

in [−1, 1] on which the best uniform approximation of hg−1, namely∑g−2
j=0 δ

∗
jhj, satisfies the following conditions

hg−1 (xi)−

g−2∑

j=0

δ∗jhj (xi) = (−1)
iE.

We now see that there are exactly g points on which the function∣∣∣hg−1 −
∑g−2

j=0 δ
∗
jhj

∣∣∣ equals E.

Since {h0, ..., hg−1} is a Chebyshev system the linear combination

g−1∑

i=0

aihi

cannot have more than g roots in [−1, 1] . Hence the function

∣∣∣∣∣hg−1 −
g−2∑

j=0

δ∗jhj

∣∣∣∣∣

which is the absolute value of a linear combination of the Cheby-
shev system {h0, ..., hg−1} cannot have more than g roots. Therefore∣∣∣hg−1 −

∑g−2
j=0 δ

∗
jhj

∣∣∣ cannot have more than g + 1 maximal values.

As seen previously the support of the optimal measure ξ∗ consists in
the points of maximal value in [−1, 1] for the function

∣∣∣∣∣hg−1 −
g−2∑

j=0

δ∗jhj

∣∣∣∣∣ .

Applying the Borel-Chebyshev Theorem we now determine the sup-
port of ξ∗.
Since E is known the support is the vector

(
x∗1, ..., x

∗
g

)
which solves

the linear system

hg−1 (xi)−

g−2∑

j=0

δ∗jhj (xi) = (−1)
iE, i = 1, ..., g.

We apply the sufficient condition provided by Kiefer and Wolfowitz
above, Proposition 10.
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This condition states that the values ξ∗ (xi) , i = 0, ..., g − 1, satisfy
the system

{∑g−1
i=0

(
hg−1 (xi)−

∑g−2
j=0 δ

∗
jhj (xi)

)
hr (xi) ξ

∗ (xi) = 0

r = 0, ..., g − 2
.

In the xi’s it holds

E =

∣∣∣∣∣hg−1 (xi)−
g−2∑

j=0

δ∗jhj (xi)

∣∣∣∣∣

and

∫

[−1,1]

(
hg−1 (x)−

g−2∑

j=0

δ∗jhj (x)

)
hi (x) ξ

∗ (dx) = 0, for i = 0, ..., g − 2.

Therefore

0 =

g−1∑

i=0

(
hg−1 (xi)−

g−2∑

j=0

δ∗jhj (xi)

)
hr (xi) ξ

∗ (xi)

= E

g−1∑

i=0

(−1)i hr (xi) ξ
∗ (xi) , for r = 0, ..., g − 2.

The optimal extrapolation design {(xi, ξ
∗ (xi)) : i = 0, ...g − 1} thus

solves





hg−1 (x0)−
∑g−2

j=0 δ
∗
jhj (x0) = +E

...............................................

hg−1 (xi)−
∑g−2

j=0 δ
∗
jhj (xi) = (−1)

iE

..............................................

hg−1 (xg−1)−
∑g−2

j=0 δ
∗
jhj (xg−1) = (−1)

g−1E∑g−1
i=0 (−1)

i h0 (xi) ξ
∗ (xi) = 0

.....................................∑g−1
i=0 (−1)

i hr (xi) ξ
∗ (xi) = 0

..................................∑g−1
i=0 (−1)

i hg−2 (xi) ξ
∗ (xi) = 0

In practice we first evaluate δ∗j for 0 ≤ j ≤ g−2 through (8). Note that
E is known by (10). The above system consits in 2g−1 equations in the
2g unknown quantities {(xi, ξ

∗ (xi)) : i = 0, ...g − 1} . Add the constraint

ξ∗ (x0) + ..+ ξ
∗ (xg−1) = 1
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to obtain a linear system with a unique solution.
The first g equations determine the nodes, by Borel Chebyshev The-

orem. The last g−1 ones determine the values of the n′js by the Proposi-
tion of Kiefer and Wolfowitz 10. Hence there is a unique optimal design
solving the minimal variance problem for the extrapolation.
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