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This paper introduces optiomal designs in the context of a regression model when the regression function is assumed to be generated by a Chebyshev system of functions. The criterion for optimality is the variance of a Gauss Markov estimator for an extrapolated value.

Introduction

This paper deals with a natural extension of the Hoel Levine optimal extrapolation design, as described in [START_REF] Hoel | [END_REF]. We recall that this classical design results as a consequence of the following fact.

A design is de…ned as a discrete probability measure on a set of measurements points x 0 ; ::; x g 1 which for notational convenience belong to the observable environmental set [ 1; 1] , denoting n i =n := (x i ) the frequency of replications of the experiment to be performed at point x i ; 0 i g 1, where the n i 's satisfy n 0 + :: + n g 1 = n: The points x i 's are the nodes of the design, and (x i ) is the so-called frequency of the design at node x i : Recall that the model writes

Y (x) = f (x) + (x)
for x in [ 1; 1] , the real valued function f is unknown but belongs to a speci…ed class of functions, and the random variable (x) is centered, with a …nite variance, in the present context. Observations are performed under the design, with the constraint n 1 + :: + n g 1 = n on the global budget of the design. Replications of the n i measurements Y j (x i ) , 1 j n i are independent. Independence also holds from node to node, which is to assume that all measurements errors due to the r.v.'s (x) are independent. The model is supposed to be homoscedasticity; hence the variance of (x) may not depend on x:

For a given c not in [ 1; 1] consider an estimate of f (c) with smallest variance among all unbiased estimators of f (c) which are linear functions of the observations Y j (x i ) , 1 j n i ;,0 i g 1; hence under a given design : An optimal design achieves the minimal variance among all such designs. This design is achieved by the Hoel Levine design when the function f is assumed to belong to the class of all polynomials de…ned on R with degree less or equal g 1, hence to the span of the class of monomials f1; x; ::; x g 1 g :

The main mathematical argument in order to obtain the Hoel Levine design lies in the solution of the following basic question: …nd a polynomial with equioscillations in g + 1 points in [ 1; 1] which assumes maximal absolute values all equal to 1 at those points. Up to a multiplicative constant such a polynomial results as the best polynomial approximation of the null function on [ 1; 1] by polynomials with degree g 1: Existence and uniqueness of this polynomial follows from the Borel-Chebyshev Theorem. We refer to [START_REF] Dzyadyk | [END_REF] for details and derivation of these results.

The aim is now to provide a larger context for similar questions, assuming that the function f may belong to some other functional class, still in a …nitely generated set of functions. De…nition 1 The system of functions (' 0 ; :::; ' g 1 ) in C (R) is a Chebyshev (or Haar) system on [ 1; 1] when 1) (' 0 ; :::; ' g 1 ) are linearly independent 2) Any equation

a 0 ' 0 (x) + ::: + a g 1 ' g 1 (x) = 0
with (a 0 ; ::; a g 1 ) 6 = (0; ::; 0) has at most g roots in [ 1; 1] :

Denote V := span f' 0 ; :::; ' g 1 g C ([ 1; 1])
the linear space generated by the Chebyshev system (' 0 ; :::; ' g 1 ) :

Haar Theorem (see [START_REF] Dzyadyk | [END_REF] ) states that the two following assertions are equivalent: a) f' 0 ; :::

; ' g 1 g is a Chebyshev system in C ([ 1; 1]) b) for any f in C ([ 1; 1]
) there exists a unique best uniform approximation in V:

In the sequel we assume that the system f' 0 ; :::; ' g 1 g is a Chebyshev system in C ([ 1; 1]) and in C ([ 1; c]) with c > 1: This implies that no non null linear combination of the ' i 's may have roots in (1; c] :

We also make use of the following result.The following properties are equivalent Proposition 2 1) f' 0 ; :::; ' g 1 g is a Chebyshev system;

2) for any set of g points (x 0 ; :::; x g 1 ) in [ 1; 1] such that x i 6 = x j , and for any (y 0 ; :::; y g 1 ) in R g , there exists a unique function g in V such that g (x k ) = y k ;

3) for any g points (x 0 ; :::; x g 1 ) in [ 1; 1] such that x i 6 = x j , the determinant

:= det G; G := 0 B B B B @ ' 0 (x 0 ) : ' 0 (x j ) : ' 0 (x g 1 ) : : : : : ' i (x 0 ) : ' i (x j ) : ' i (x g 1 ) : : :: : : ' g 1 (x 0 ) : ' g 1 (x j ) : ' g 1 (x g 1 ) 1 C C C C A :
does not equal 0:

Proof. Assume 3) holds. With the set of g points (x 0 ; :::; x g 1 ) in [ 1; 1] such that x i 6 = x j , = 0 i¤ the matrix G is not invertible, which is to say that the system of equations de…ned through 0 = P g 1 i=0 a i g i (x j ) ; j = 0; :::; g 1; admits a solution a := a 0 ; :::; a g 1 di¤erent from (0; :::; 0) in R g : De…ne g := P g 1 i=0 a i g i , an element in V which is not the function x ! 0: Since , P g 1 i=0 a i g i (x) = 0 for x in fx 0 ; :::; x g 1 g it follows that g has g distinct roots in [ 1; 1] : It follows that whenever = 0; f' 0 ; :::; ' g 1 g is not a Chebyshev system. It follows that 3) is equivalent to 1): Now 2) is equivalent to 3): Indeed when G is invertible then for any (y 0 ; :::; y g 1 ) in R g 1 the system P g 1 i=0 a i g i (x j ) = y j ; j = 0; :::; g 1, has a unique solution , which means that there is a unique g in V with g (x j ) = y j for all j:

We therefore introduce the basic de…nition

De…nition 3 A regression model Y (x) = f (x) + (x)
is a Chebyshev regression model i¤ f belongs to V := span f' 0 ; :::; ' g 1 g where (' 0 ; :::; ' g 1 ) is Chebyshev system (or Haar system) of functions in C ([ 1; 1]) :

The following result stands as a generalization of the Borel Chebyshev Theorem and improves on the Haar Theorem Theorem 4 .(Generalization of Chebyshev-Borel Theorem) Let f' 0 ; :::; ' g 1 g be a Chebyshev system on [ 1; 1] , and g is any function in C ([ 1; 1]) : Then there exists a unique function h in V := span f' 0 ; :::; ' g 1 g de…ned on [ 1; 1] , which achieves

sup x2[ 1;1] jg(x) h(x)j = inf f 2V sup x2[ 1;1] jg(x) f (x)j :
Furthermore h is the only function in V such that p := g h attains its unique maximal values in at least g + 1 points in [ 1; 1]; the sign of p on those points alternates.

Proof. See [Achieser, 1992].

Remark 5

The above function h plays a similar role as the function T g 1 (Chebyshev polynomial of the …rst kind) in the polynomial regression case; see [START_REF] Broniatowski | [END_REF].

The notation M d ([ 1; 1]) designates the class of all discrete probability measures with support in [ 1; 1] :

The aim of this paper is to present the contribution of Hoel [START_REF] Hoel | [END_REF] to the construction of optimal designs for the extrapolated value of the regression function as treated by Kiefer and Wolfowitz [Kiefer and Wolfowitz, 1965]. The model and the Gauss Markov estimator are de…ned in the next Section. An orthogonalization procedure allows to express the extrapolated value as a parameter in an adequate regression model. Finally the support of the optimal design will be obtained through geometrical arguments; the number of replications of the experiments on the nodes will then be deduced.

The model and Gauss Markov estimator

We consider a Chebyshev system on [ 1; 1] f' 0 ; :::; ' g 1 g :

For any x 2 [ 1; 1] we assume that we may observe a r.v. y (x), such that, denoting := ( 0 ; ::

; g 1 ) 0 f (x) := E (Y (x)) = g 1 X j=0 j ' j (x) = (X (x)) 0 :
(1)

We notice that the function

f : R ! R; x 7 ! f (x)
is continuous on R: Indeed since the system of the g equations in 8 < :

f (x 0 ) = P g 1 j=0 j ' j (x 0 ) :::::::::::::::::::::::::::::::: f (x g 1 ) = P g 1 j=0 j ' j (x g 1 ) has a unique solution whenever (f (x 0 ) ; :::; f (x g 1 )) 0 is known, for any (x 0 ; :::; x g 1 ) 0 2 [ 1; 1] g with 1

x 0 < ::: < x g 1 1; the function f can be extended on R; this extension is continuous since so are the ' i 's.

Recall that the measurements can be performed only on [ 1; 1], and not for jxj > 1:

Examples of Chebyshev systems

Here is a short list of classical chebyshev systems. We refer to the classical treaties of [Karlin and Studden, 1966] for a extensive study of those systems and their applications in analysis and in statistics.

a) f' 0 (x) = 1; ' 1 (x) = x 3 g is a Chebyshev system on whole R, b) ' 0 (x) = 1; ' 1 (x) = 1
x 3 is a Chebyshev system on (0; +1), c) f1; cos x; cos 2x; :::; cos nxgis a Chebyshev system on [0; ), d)f1; sin x; cos x; sin 2x; cos 2x:::; sin nx; cos nxg is a Chebyshev system on R 2 e) fsin x; sin 2x; :::; sin nxg is a Chebyshev system on [0; ),

f) f' 0 (x) = x 2 x; ' 1 (x) = x 2 + x; ' 2 (x) = x 2 + 1gis a Chebyshev system on R;
g)fx a 0 ; :::; x an ; where 0 = a 0 < ::: < a n g is a Chebyshev system on [0; +1), h) fe a 0 x ; :::; e anx ; where 0 = a 0 < ::: < a n gis a Chebyshev system on R, i) f1; sinh x; cosh x; :::; sinh nx; :::; cosh nxg is a Chebyshev system on R, j) (x + a 0 ) 1 ; :::; (x + a n ) 1 ; where 0 = a 0 < ::: < a n is a Chebyshev system on [0; +1), k) f1; log x; x; x log x; x 2 ; x 2 log x; :::; x n ; x n log xgis a Chebyshev system on (0; 1), .... . Finally note that being a Chebyshev system is a linear property; indeed if (' 0 ; :::; ' g 1 ) is a Chebyshev system then any other basis of span f' 0 ; :::; ' g 1 g is a Chebyshev system.

Description of the dataset coming from the experiment

Given the set of nodes 1 x 0 < ::: < x g 1 1, the experiment is described through the following measurements

8 > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > :
Y 1 (x 0 ) = P g 1 j=0 j ' j (x 0 ) + " 1 (x 0 ) :::::::::::::::::::::::::::::::::::: Y n 0 (x 0 ) = P g 1 j=0 j ' j (x 0 ) + " n 1 (x 0 ) :::::::::::::::::::::::::::::::::::: Y 1 (x i ) = P g 1 j=0 j ' j (x i ) + " 1 (x i ) :::::::::::::::::::::::::::::::::::: Y n i (x i ) = P g 1 j=0 j ' j (x i ) + " n i (x i ) :::::::::::::::::::::::::::::::::::: Y 1 (x g 1 ) =

P g 1 j=0 j ' j (x g 1 ) + " 1 (x g 1 ) :::::::::::::::::::::::::::::::::::: Y n g 1 (x g 1 ) = P g 1 j=0 j ' j (x g 1 ) + " n g 1 (x g 1 ) or through the more synthetic form, with

Y (x i ) := Y 1 (x i ) ; :::; Y n j (x i ) 0 , X (x i ) := (' 0 (x i ) ; :::; ' g 1 (x i )) 0 , " (x i ) := (" 1 (x i ) ; :::; " n i (x i )) 0 , Y (x i ) = 0 @ ' 0 (x i ) ::: ' g 1 (x i ) ::: ::: ::: ' 0 (x i ) ::: ' g 1 (x i ) 1 A 0 @ 0 : g 1 1 A +" (x i ) , i = 0; :::; g 1.

Denote,

X i := 0 @
' 0 (x i ) ::: ' g 1 (x i ) ::: ::: ::: ' 0 (x i ) ::: ' g 1 (x i ) 1 A :

The matrix X i has n i lines and g columns. All lines of X equal

(X (x i )) 0 . Denote H := Im X (x) := fX (x) 2 R g : x 2 [ 1; 1]g : (2)
The set H is called the regression range.

It may be at time convenient to attribute distinct indices to the same x j when repeated n j times.

The discrete measure de…ned through z }| { x 0 ; :::; x 0 (n 0 times); :::; z }| { x j ; :::; x j (n j times ); :::; z }| { x g 1 ; :::; x g 1 (n g 1 times) with n 0 + ::: + n g 1 = n will hence be written as

t 1 ; :::; t n (3) 
with t 1 = t 2 = :: = t n 0 = x 0 ; :::; t n 0 +::+n g 2 +1 = t n 0 +::+n g 2 +2 = ::: = t n 0 +::+n g 2 +n g 1 = x g 1 ; hence t 1 ; :::; t n 0 indicates the same point x 0 repeated n 0 times, etc.

The system which describes the n observations writes therefore as

Y = C + "
where

Y := 0 @ Y 1 : Y n 1 A C := 0 B B B B @
' 0 (t 1 ) ::: ' g 1 (t 1 ) :: ::: ::: ' 0 (t i ) ::: ' g 1 (t i ) ::: :: :::

' 0 (t n ) ::: ' g 1 (t n ) 1 C C C C A , := 0 @ 0 : g 1 1 A , " := 0 @ " 1 : " n 1 A ; E (Y) = C , var (") = 2 I n ;
and I n is the Identity matrix of order n:

The Gauss Markov estimator of f (x) = E (y (x)) is the solution of the linear system

X 0 i X i = X 0 i Y (x i ) , i = 0; :::; g 1: It holds X 0 i X i = 0 @ ' 0 (x i )
::: ' 0 (x i ) :::

::: :::

' g 1 (x i ) ::: ' g 1 (x i ) 1 A 0 @
' 0 (x i ) ::: ' g 1 (x i ) ::: ::: :::

' 0 (x i ) ::: ' g 1 (x i ) 1 A = n i M i
where

M i := 0 B B B B B B @ (' 0 (x i )) 2 ::: ' 0 (x i ) ' k (x i )
::: ' 0 (x i ) ' g 1 (x i ) :::::: :::: :::: :::: :::::

' h (x i ) ' 0 (x i )
.:::

' h (x i ) ' k (x i )
.::: ' h (x i ) ' g 1 (x i ) :::::

.::: .::: .::: .:::

' g 2 (x i ) ' 0 (x i ) ::::: ' g 2 (x i ) ' k (x i ) ::::: ' g 2 (x i ) ' g 1 (x i ) ' g 1 (x i ) ' 0 (x i ) ::::: ' g 1 (x i ) ' k (x i ) ::::: (' g 1 (x i )) 2 1 C C C C C C A .
We have

M i = X (x i ) X 0 (x i ) : In X (x i ) X 0 (x i ) = X 0 i Y (x i
) , i = 0; :::; g 1 sum both sides with respect to i to obtain

g 1 X i=0 X i X 0 i = g 1 X i=0 X 0 i Y (x i ) : Therefore n g 1 X i=0 n i n M i ! = g 1 X i=0 X 0 i Y (x i ) . Denote i := (x) := n i n if x = x i 0 if x = 2 
fx 0 ; :::; x g 1 g :

The matrix

M ( ) := g 1 X i=0 n i n M i = g 1 X i=0 i M i (4)
is the moment matrix of the measure . By de…nition supp ( ) = fx 0 ; :::; x g 1 g .

Since

M i = X (x i ) X 0 (x i )
we may write

M ( ) = g 1 X i=0 i M i = g 1 X i=0 i X (x i ) X 0 (x i ) = Z [ 1;1] X (x) X 0 (x) d (x) .
Speci…c study of this matrix is needed for the estimation of linear forms of the coe¢cients i 's. This area has been developed by Elfving see e.g. [Pukelsheim, 1993]), out of the scope of the present paper.

3 An expression of the extrapolated value through an orthogonalization procedure

We will consider an alternative way, developed by Kiefer and Wolfowitz [Kiefer and Wolfowitz, 1965] as follows. It has the main advantage that up to a coe¢cient g 1 which depends on the values of f on the x 0 j s, the estimate of f (c) is ' g 1 (c): It follows that only the coe¢cient g 1 has to be estimated, a clear advantage. Recall that c does not belong to [ 1; 1] :

It is more convenient, at this stage, to introduce the following notation. It will be assumed that n measurements of Y are performed, namely Y (t 1 ); ::; Y (t n )

where the t 0 i s belong to [ 1; 1] : The points of measurement t 1 ; ::; t n might be distinct or not, as de…ned in (3). Obviously when de…ning the optimal design with nodes x 0 ; ::; x g 1 , then n j values of the t 0 i s coincide on x j for 0 j g 1: In order to de…ne the estimator, and not the design, it is however more convenient to di¤erentiate between all the measurements Y (t i ); 1 i n: This allows to inherit from the classical geometric least square formalism.

We consider the basis of V de…ned as follows: Set for all j between 0 and g 2

h j (x) := ' j (x) ' j (c) ' g 1 (c) ' g 1 (x) (5) 
and

h g 1 (x) := ' g 1 (x):
Clearly (h 0 ; ::; h g 1 ) generate V . Also (h 0 ; ::; h g 1 ) is a Chebyshev system on [ 1; c] : Denote ( 0 ; ::; g 1 ) the coordinates of f on (h 0 ; ::; h g 1 ) , namely

f (x) = g 1 X j=0 j h j (x):
We evaluate the coe¢cients j with respect to the 0 k s de…ned in (1). It holds j := j for j = 0; :::; g 2 and

g 1 := P g 1 j=0 j ' j (c) ' g 1 (c)
assuming ' g 1 (c) 6 = 0; and obviously we have

f (x) = g 1 X j=0 j h j (x) = g 1 X j=0 j ' j (x) :
In x = c we get

f (c) := g 1 X j=0 j h j (c) = g 1 X j=0 j ' j (c) :
By the de…nition of g 1 we have

g 1 := P g 1 j=0 j ' j (c) ' g 1 (c)
and therefore we have proved

Lemma 6 f (c) = g 1 ' g 1 (c) : (6)
4 The Gauss Markov estimator of the extrapolated value

It holds

f (c) = g 1 X i=1 i ' i (c)
where the i 's are de…ned through g equations of the form

f (x j ) = g 1 X i=0 i ' i (x j )
with 1 x j 1 for all 0 j g 1: Replace f (x j ) by its estimate

[ f (x j ) := 1 n j n j X i=1 Y i (x j ):
Under the present model, [ f (x j ) is an unbiased estimate of f (x j ): Determine b i though the system de…ned by

[ f (x j ) = g 1 X i=0 b i ' i (x j ):
The resulting b i 's are unbiased and so is

d f (c) = g 1 X i=0 b i ' i (c):
The natural optimality criterion associated to this procedure is the variance of the estimate d f (c) which depends on the location of the nodes and on the weights n j 's.

We now write the above Gauss Markov estimator of f (c) on the new basis (h 0 ; ::; h g 1 ) : Substituting the function f by its expansion on the basis (h 0 ; ::; h g 1 ) the model write as

8 > > > > < > > > > :
Y (t 1 ) = 0 h 0 (t 1 ) + ::: + g 2 h g 2 (t 1 ) + g 1 ' g 1 (t 1 ) + " 1 ::::::::::::::::::::::::::::::::::::::::::::::: Y (t i ) = 0 h 0 (t i ) + ::: + g 2 h g 2 (t i ) + g 1 ' g 1 (t i ) + " i :::::::::::::::::::::::::::::::::::::::::::::::::

Y (t n ) = 0 h 0 (t n ) + ::: + g 2 h g 2 (t n ) + g 1 ' g 1 (t n ) + " n : because of (5), Y (t) = T + "
where t := (t 1 ; ::; t n ) 0

T := 0 B B B B @
h 0 (t 1 ) : : h g 2 (t 1 ) ' g 1 (t 1 ) : : : : : h 0 (t i ) : : h g 2 (t i ) ' g 1 (t i )

: : :

: : h 0 (t n ) : : h g 2 (t n ) ' g 1 (t n ) 1 C C C C A ; := 0 B B @ 0 : g 2 g 1 1 C C A ; " := 0 @ " 1 : " n 1 A :
Recall that we intend to estimate g 1 : We make a further change of the basis of V: We introduce a vector G g 1 , which together with h 0 ; :::; h g 2 will produce a basis (h 0 ; :::; h g 2 ; G g 1 ) for which the vector G g 1 is orthogonal to any of the h j , 0 j g 2: The aim of this construction is to express f (c) as a linear combination of the components of G g 1 : Since G g 1 belongs to V = span (h 0 ; ::; h g 1 ) we write

G g 1 (t i ) := h g 1 (t i ) g 2 X j=0 j h j (t i )
for some vector := ( 0 ; ::; g 1 ) 0 :

We impose the following condition * 0

@ G g 1 (t 1 ) : G g 1 (t n ) 1 A ; 0 @ h j (t 1 ) : h j (t n ) 1 A +
= 0; for all j = 0; :::; g 2 ; where the above symbol <; > is the inner product in R n :The j 's in R are to be chosen now.

The linear system n X i=1 G (t i ) h j (t i ) = 0; for j = 0; :::; g 2 with g 1 equations has g 1 unknown variables j .

Once obtained the solution j ; j = 0; :::; g 2 ; and since

h g 1 (t) = G g 1 (t) + g 2 X j=0 j h j (t) ;
we may write f (t) for any t

f (t) = g 1 X j=0 j h j (t) = 0 h 0 (t) + ::: + g 2 h g 2 (t)
+ g 1 G g 1 (t) + g 1 0 h 0 (t) + :::

+ g 1 g 2 h g 2 (t) = ( 0 + g 1 0 ) h 0 (t) + ::: + ( g 2 + g 1 g 2 ) h g 2 (t) + g 1 G g 1 (t) = 0 h 0 (t) + ::: + g 2 h g 2 (t) + g 1 G g 1 (t) ;
where the 0 j s are de…ned by j := j + g 1 j for j = 0; :::; g 2 g 1 for j = g 1

:

The point is that g 1 appears as the coe¢cient of G g 1 , namely the last term in the regression of f (t) on the regressors (h 0 ; ::; h g 2 ; G g 1 ) : Furthermore G g 1 is orthogonal to the other regressors. The system which describes the data is now written by

Y (t) = e T e + "
where

e T := 0 B B B B @ h 0 (t 1 ) : : h g 2 (t 1 ) G g 1 (t 1 ) : : : : : h 0 (t i ) : : h g 2 (t i ) G g 1 (t i ) : : : : : h 0 (t n ) : : h g 2 (t n ) G g 1 (t n ) 1 C C C C A ; e := 0 B B @ 0 : g 2 g 1 1 C C A :
The minimum least square estimation of g 1 is obtained through the normal equations imposing

Y (t) e T b e 2 V ?
where b e hence designates the least square estimator of the vector of coe¢cients e ; and where V ? is the orthogonal linear space of V:

We have, denoting d g 1 the least square estimator of g 1 ; and noting that V = span fh 0 ; :::; h g 2 ; G g 1 g

* 0 B B @ Y (t 1 ) P g 2 j=0 j h j (t 1 ) d g 1 G g 1 (t 1 ) : : Y (t n ) P g 2 j=0 j h j (t n ) d g 1 G g 1 (t n ) 1 C C A 0 ; 0 B B @ h j (t 1 ) : : h j (t n ) 1 C C A + = 0;
for j = 0; :::g 2 and

* 0 B B @ Y (t 1 ) P g 2 j=0 j h j (t 1 ) d g 1 G g 1 (t 1 ) : : Y (t n ) P g 2 j=0 j h j (t n ) d g 1 G g 1 (t n ) 1 C C A 0 ; 0 B B @ G g 1 (t 1 ) : : G g 1 (t n ) 1 C C A + = 0 Hence X i=1;::;n Y (t i ) g 2 X j=0 j h j (t i ) d g 1 G g 1 (t i ) ! G g 1 (t i ) = 0: (7)
Inserting the orthogonality condition n X i=1 G (t i ) h j (t i ) = 0; for j = 0; :::; g 2;

in (7) we have n X j=1 Y (t j ) G g 1 (t j ) d g 1 n X j=1 G 2 g 1 (t j ) = 0;
and

d g 1 = P n j=1 Y (t j ) G g 1 (t j ) P n j=1 G 2 g 1 (t j )
:

Finally we obtain the explicit form of the estimator of f (c): It holds

Proposition 7

The least square estimator (Gauss Markov) of the extrapolated value f (c) is

d f (c) = ' g 1 (c) d g 1 = ' g 1 (c) P n j=1 Y (t j ) G g 1 (t j ) P n j=1 G 2 g 1 (t j ) :
5 The Optimal extrapolation design for the Chebyshev regression

The support of the optimal design

We determine the support of the optimal design for the extrapolation of f at point c:

Recall that a design is optimal if and only if it produces a Gauss Markov estimator of f (c) with minimal variance among all such estimators built upon other designs.

We note that the variance of d f (c) depends on the x j 's since

var d f (c) = (' g 1 (c)) 2 P n j=1 var (Y (t j )) G 2 g 1 (t j ) P n j=1 G 2 g 1 (t j ) 2 = ( ' g 1 (c)) 2 P n j=1 G 2 g 1 (t j ) :
The design is de…ned through a discrete probability measure 2 M d ([ 1; 1]) with support (x 0 ; ::; x g 1 ) with (x j ) := n j =n and n j equals the number of the t 0 i s which equal x j , for 0 j g 1: We now determine the support of the optimal design denoted .

:= arg min 2M d ([ 1;1]) 1 P g 1 j=0 n j G 2 g 1 (x j ) = arg max 2M X g 1 X i=0 n j G 2 g 1 (x j ) = arg max 2M d ([ 1;1]) g 1 X i=0 n j h g 1 (x i ) g 2 X j=0 j h j (x i ) ! 2 :
The solution can be obtained in a simple way through some analysis of the objective function. By convenience in order to use simple geometric arguments and to simplify the resulting expressions it is more convenient to write the derivation of the optimal design in terms of the t 0 i s:

The function

n X i=1 h g 1 (t i ) g 2 X j=0 j h j (t i ) ! 2 = 0 @ h g 1 (t 1 ) P g 2 j=0 j h j (t 1 ) : h g 1 (t n ) P g 2 j=0 j h j (t n ) 1 A 2
is the distance from the orthogonal projection of the vector h := h g 1 (t 1 ) ::: h g 1 (t n ) 0 on the linear space V generated by the family fh 0 ; :::; h g 2 ; G g 1 g : Therefore by the minimal projection property

n X i=1 h g 1 (t i ) g 2 X j=0 j h j (t i ) ! 2 = min 2V dist (h; ) : Let := 0 ::: g 2 0 :
The optimal design is obtained through a two steps procedure. Fix the frequencies n 0 ; ::; n g 1 with sum n and determine the discrete measure on [ 1; 1] which minimizes var d f (c) among all 0 s with support x := (x 0 ; ::; x g 1 ) and masses (x j ) = n j =n; 0 j g 1. The optimization is performed upon the x 0 j s: The optimal design solves therefore the problem

= arg max 2M d ([ 1;1]) min 2V dist (h; ) = arg max x2[ 1;1] g min 2R g 1 g 1 X i=0 n i h g 1 (x i ) g 2 X j=0 j h j (x i ) ! 2 = arg max 2M d ([ 1;1]) min 2R g 1 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2
(dx) :

The integrand h g 1 (x) P g 2 j=0 j h j (x)

2 is always non negative. Henceforth it is enough to minimize its square root w.r.t. x. This optimization turns therefore to be independent of the n 0 j s: Denote j ; j = 0; :::; g 2; the values which minimize dist (h; ) w.r.t. j . The optimality condition writes

max x2[ 1;1] h g 1 (x) g 2 X j=0 j h j (x) = min 2R g 1 max x2[ 1;1] h g 1 (x) g 2 X j=0 j h j (x) (8) = min p2W max x2[ 1;1] jh g 1 (x) p (x)j
where W := span fh 0 ; ::; h g 2 g :

If we prove that fh 0 ; :::; h g 2 g is a Chebyshev system on [ 1; 1] ; then clearly the support of the optimal measure consists in the points of maximal value in [ 1; 1] for the function

jh g 1 (x) p (x)j
where p is the best uniform approximating polynomial of h g 1 in W: Indeed the support of consists in the set of points where

h g 1 (x) g 2 X j=0 j h j (x)
in (8) attains its maximal value for p = p the best uniform approximation of h g 1 in W:

This is the major argument of the present derivation, which justi…es all of the uniform approximation theory in this context.

De…nition 8

The vector in R g 1 is a Chebyshev vector i¤ it designates the vector of the coe¢cients of p , where p is the best uniform approximating polynomial of h g 1 in W de…ned in (9). It is de…ned through (8). Now writing := 0 ; :::; g 2 0 we de…ne the set of all points e

x in [ 1; 1] where the distance between h g 1 and its best approximation on the h k , 0 k g 2 is minimal. These points are precisely the support of the optimal design . Formally we de…ne We prove that fh 0 ; :::; h g 2 g is a Chebyshev system on [ 1; 1] :

E := min 2R g 1 max x2[ 1;1] h g 1 (x) g 2 X j=0 j h j (x) (10 
Proposition 9 (Hoel) The functions h 0 ; :::; h g 2 are a Chebyshev system on [ 1; 1] :

Proof. For any choice of fx 0 ; :::; x g g in [ 1; 1], with x 0 < ::: < x g 1 ; since the family f' 0 ; :::; ' g 1 g is a Chebyshev system on [ 1; 1], we have, by Proposition 2, assuming a positive sign of the determinant, without loss of generality Hence the family f' 0 ; :::; ' g 1 g is a Chebyshev system in C ([ 1; 1]) :

In the same way we can prove that it is a Chebyshev system in [ 1; c] :

The frequencies of the optimal design

Once characterized the points x in supp ; we characterize the values of the (x) 's:The following Proposition produces a su¢cient condition in order that the measure be optimal, which can be phrased as

min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx)
for any in M d ([ 1; 1]) : Uniqueness might not hold.

Proposition 10 (Kiefer-Wolfowitz) Let B ( ) be de…ned as in (11). If is Chebyshev vector and (B ( )) = 1 and if

Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x)
! h i (x) (dx) = 0; for i = 0; :::; g 2;

then is optimal. Proof. Let 2 M d ([ 1; 1]) with (B ( )) = 1: The hypothesis Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! h i (x) (dx) = 0;
for i = 0; :::; g 2; indicates that

h g 1 (x i ) g 2 X j=0 j h j (x i )
is orthogonal to the linear space W generated by fh 0 ; :::; h g 2 g : Thus P g 2 j=0 j h j is the orthogonal projection of h g 1 on W: The inner product is

< v; w >:= Z [ 1;1] v (x) w (x) (dx) :
By the minimal projection property

A ( ) := min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) = Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) = X e x2supp h g 1 (e x) g 2 X j=0 j h j (e x) ! 2 (e x) E 2 X e x2supp (e x) = E 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) ; max v2M d ([ 1;1]) min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) = min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) =: A ( )
The measure v which appears in lines 5 and followings in the above displays are arbitrary measures in M d ([ 1; 1]) :

Since by de…nition

:= arg max v2M d ([ 1;1]) min 2R g 2 Z [ 1;1] h g 1 (x) g 2 X j=0 j h j (x) ! 2 (dx) (12) i.e.
A ( ) A ( ) :

Hence A ( ) = A ( ) :
6 Identi…cation of the optimal design

In this Section we provide an explicit solution for the optimal design and prove its uniqueness.

By the Borel-Chebyshev Theorem 4 there exist at least g points x 0 < ::: < x g 1 in [ 1; 1] on which the best uniform approximation of h g 1 ; namely P g 2 j=0 j h j ; satis…es the following conditions

h g 1 (x i ) g 2 X j=0 j h j (x i ) = ( 1) i E:
We now see that there are exactly g points on which the function h g 1 P g 2 j=0 j h j equals E:

Since fh 0 ; :::; h g 1 g is a Chebyshev system the linear combination which is the absolute value of a linear combination of the Chebyshev system fh 0 ; :::; h g 1 g cannot have more than g roots. Therefore h g 1 P g 2 j=0 j h j cannot have more than g + 1 maximal values.

As seen previously the support of the optimal measure consists in the points of maximal value in [ 1; 1] for the function

h g 1 g 2 X j=0 j h j :
Applying the Borel-Chebyshev Theorem we now determine the support of :

Since E is known the support is the vector x 1 ; :::; x g which solves the linear system h g 1 (x i ) g 2 X j=0 j h j (x i ) = ( 1) i E; i = 1; :::; g:

We apply the su¢cient condition provided by Kiefer and Wolfowitz above, Proposition 10. This condition states that the values (x i ) ; i = 0; :::; g 1; satisfy the system ( P g 1 i=0 h g 1 (x i ) P g 2 j=0 j h j (x i ) h r (x i ) (x i ) = 0 r = 0; :::; g 2 :

In the x i 's it holds

E = h g 1 (x i ) g 2 X j=0 j h j (x i )
and

Z [ 1;1] h g 1 (x)
g 2 X j=0 j h j (x) ! h i (x) (dx) = 0; for i = 0; :::; g 2:

Therefore 0 = g 1 X i=0 h g 1 (x i ) g 2 X j=0 j h j (x i ) ! h r (x i ) (x i ) = E g 1 X i=0
( 1) i h r (x i ) (x i ) , for r = 0; :::; g 2:

The optimal extrapolation design f(x i ; (x i )) : i = 0; :::g 1g thus solves 8 > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > :

h g 1 (x 0 ) P g 2 j=0 j h j (x 0 ) = +E ::::::::::::::::::::::::::::::::::::::::::::::: h g 1 (x i ) P g 2 j=0 j h j (x i ) = ( 1) i E :::::::::::::::::::::::::::::::::::::::::::::: h g 1 (x g 1 ) P g 2 j=0 j h j (x g 1 ) = ( 1) g 1 E P g 1 i=0 ( 1) i h 0 (x i ) (x i ) = 0 ::::::::::::::::::::::::::::::::::::: P g 1 i=0 ( 1) i h r (x i ) (x i ) = 0 :::::::::::::::::::::::::::::::::: P g 1 i=0 ( 1) i h g 2 (x i ) (x i ) = 0 In practice we …rst evaluate j for 0 j g 2 through (8). Note that E is known by (10). The above system consits in 2g 1 equations in the 2g unknown quantities f(x i ; (x i )) : i = 0; :::g 1g : Add the constraint (x 0 ) + :: + (x g 1 ) = 1 to obtain a linear system with a unique solution.

The …rst g equations determine the nodes, by Borel Chebyshev Theorem. The last g 1 ones determine the values of the n 0 j s by the Proposition of Kiefer and Wolfowitz 10. Hence there is a unique optimal design solving the minimal variance problem for the extrapolation.

' 0 (x 0 ) ' 0 (x 1 ) : ' 0 (x g 2 ) ' 0 (c) ' 1 (x 0 ) ' 1 (x 1 ) : ' 1 (x g 2 ) ' 1 (c) : : : : :

For j = 0; :::; g 1;the operations

do not change the value of the determinant. Hence,

By the Laplace Theorem pertainig to determinants, we get

Therefore the two real numbers ' g 1 (c) and have same sign. Since ' g 1 (c) 6 = 0 we deduce that det 0 B B @ h 0 (x 0 ) h 0 (x 1 ) : h 0 (x g 2 ) h 1 (x 0 ) h 1 (x 1 ) : h 1 (x g 2 ) : : : : h g 2 (x 0 ) h g 2 (x 1 ) : h g 2 (x g 2 ) 1 C C A 6 = 0: