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Nonlinear vibrations of thin hyperelastic plates
Ivan Breslavsky, Marco Amabili*, Mathias Legrand

Abstract

Static deflection as well as free and forced nonlinear vibration of thin square plates made of hyperelastic materials are investigated. Two

types of materials, namely rubber and soft biological tissues, are considered. The involved physical nonlinearities are described through the

Neo-Hookean, Mooney-Rivlin, and Ogden hyperelastic laws; geometrical nonlinearities are modeled by the Novozhilov nonlinear shell theory.

Dynamic local models are first built in the vicinity of a static configuration of interest that has been previously calculated. This gives rise to the

approximation of the plate’s behavior in the form of a system of ordinary differential equations with quadratic and cubic nonlinear terms in

displacement. Numerical results are compared and validated in the static case via a commercial finite element software package: they are found

to be accurate for deflections reaching 100 times the thickness of the plate. The frequency shift between low- and large-amplitude vibrations

weakens with an increased initial deflection.
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1. Introduction

Thin-walled structures made of hyperelastic materials, such as

rubbers and biomaterials, are common in mechanical and biome-

chanical engineering applications. Such structures are frequently

subjected to significant static and dynamic loadings potentially

yielding large deflections and deformations. Associated previ-

ous works reported in the literature employ, in a vast majority,

a simplifying assumption that considers as a priori known the

shape of the deformed structure; for instance, a cylindrical shell

remains cylindrical after deformation. A general review on these

works is available in [1]. The present investigation discards this

limitation.

One possible way to account for complicated deformed shapes

is to use the finite element (FE) approach. For instance, Ein-

stein [2] developed a finite element strategy to analyze the dy-

namic behavior of hyperelastic and viscoelastic membranes with

amplitudes of the order of their thickness. With the proposed

method, the dynamic response of a hemisphere made of a Mooney-

Rivlin material under impact pressure load is studied. A relatively

similar problem concerning the dynamic inflation of a Mooney-

Rivlin spherical membrane is explored in [3] also through the FE

method.

Another technique lies in the approximation of the deformed

configuration as a truncated series of continuous functions satisfy-

ing the essential geometric boundary conditions. This approach is

implemented for circular membranes in [4, 5]. The sensitivity of

the respective vibratory behavior to the pre-stretch configuration

of the membranes is carried out in these scientific contributions.

The incompressible hyperelastic material is either described by a

Neo-Hookean model [5] or by Mooney-Rivlin, Yeoh, Ogden, and

Arruda-Boyce models in [4]. In this latter work, the frequency–

amplitude relationships for various hyperelastic models are found

to be analogous. The authors come to the conclusion that the

higher the stretch, the closer the nonlinear forced response to its

linear counterpart.

In [1], the static deflection and vibration around a deformed

configuration of a rectangular Neo-Hookean plate are investi-

gated accounting for both geometrical (the nonlinearity of strain-

displacements relations) and physical nonlinearities (the material

nonlinearity of stress-strain relations). Is proposed a method

which systematically builds approximate local models (LMM)

in the form of polynomial expansions of the non-polynomial

strain energy densities: this greatly simplifies the description of

the plate’s dynamic behavior. The present paper extends this

investigation to various hyperelastic laws by using a more sophis-

ticated nonlinear plate theory. The two targeted types of material

(rubber and biomaterial) are described through (i) Neo-Hookean,

(ii) Mooney-Rivlin, and (iii) Ogden hyperelastic laws as well as

(iv) a physically linear material law. The comparison of static

force-deflection curves and frequency responses obtained with

these models is carried out and the contribution of in-plane non-

linearities in the sought displacement is estimated. The numerical

solutions are verified through direct comparison with results from

a commercial FE software package.

2. Kinematics and energy equations

The geometrical nonlinearity in the kinematics of the investi-

gated flexible plate is described with the help of the Novozhilov

nonlinear plate theory [6], which stands as a limit case of the

Novozhilov nonlinear shell theory. It is governed by the following

strain-displacement relationships:
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2
.w2

x C Œu2
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x �/ � zwxx

"2 D vy C
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2
.w2

y C Œu2
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"12 D uy C vx C wxwy C Œuxuy C vxvy � � 2zwxy

(1)

where "1, "2, and "12 are the components of the Green-Lagrange

strain tensor for thin plates. The Novozhilov nonlinear plate

theory, commonly recognized as the finest classical plate theory,

reduces to the well-known von Kármán nonlinear plate theory [6]

when the in-plane terms in square brackets in (1) are neglected.

Although it neglects shear deformations and rotary inertia, it is

accurate for thin plates. Also, it is known that in-plane non-

linearities play a major role in large deflections, and they are

accordingly retained in the present work to improve accuracy.

Lagrange equations are utilized to derive the dynamics of the

plate, that is:

d

dt

� @L

@ Pqn

�

C
@L

@qn

D Qn; n D 1; : : : ; N (2)
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Nomenclature

Roman symbols

I identity tensor

n outer normal to the plate’s middle surface boundary

I1; I2; J invariants of C

knij` “cubic” stiffness coefficients

knij “quadratic” stiffness coefficients

kni “linear” stiffness coefficients

L Lagrange’s functional

M bending moment per unit length

N total number of degrees of freedom

NU ; NV ; NW degrees of freedom for u; v; w displacements

P pressure

qi ; ui;j ; vi;j ; wi;j generalized coordinates (no differentiation)

Qn generalized forces

S plate’s middle plane surface

T kinetic energy

u; v; w displacement functions in the x; y; z directions

V volume of the plate

W strain energy density

Wi ; Ui ; Vi kinematically homogeneous admissible functions

a; b; h plate’s length, width, thickness

C right Cauchy-Green strain tensor

E Green-Lagrange strain tensor

E Young’s modulus

Greek symbols

˛i ; �i material parameters

� tangent to the plate’s middle surface boundary

�1; �2; �3 normal Green-Lagrange strains

�12 shear Green-Lagrange strain

�1; �2; �3 principal stretches

� vibration frequency normalized with respect to �1

�n natural frequency of mode n

… elastic deformation energy

� mass density

� damping ratio

Abbreviations

DOF degree of freedom

LMM local models method

SED strain energy density

where L D T � … is Lagrange’s functional, T is the kinetic

energy of the plate, … is the potential elastic deformation energy,

and Qn are the generalized forces. The potential and kinetic

energies are expressed as follows [6]:

… D

•

V

W dV (3)

T D
�h

2

“

S

. Pu2 C Pv2 C Pw2/ dS (4)

where W is the strain energy density (SED), V is the volume

of the plate, S is the surface of the middle plane of the plate, �

is the mass-density of the plate material, h is the thickness of

the plate, and u; v; w are the displacements along the axes of

the rectangular coordinate system x; y; z, respectively. The dot

stands for differentiation with respect to time.

The displacements are expanded into corresponding truncated

series involving the appropriate generalized coordinates qn:

w.x; y; t/ D

NW
X

iD1

qi .t/Wi .x; y/

u.x; y; t/ D

NU
X

iD1

qiCNW
.t/Ui .x; y/

v.x; y; t/ D

NV
X

iD1

qiCNU CNW
.t/Vi .x; y/

(5)

In Eq. (5), quantities Wi ; Ui ; Vi are the admissible functions that

satisfy the homogeneous boundary conditions (i.e. the geomet-

ric constraints) of the problem. The linear modes of vibration,

which form a complete set properly capturing the dynamics of

a structure, are eligible admissible functions and are selected in

the present work. The total number of degrees of freedom is

N D NW C NU C NV .

3. Hyperelastic relations

3.1 Strain energy density

Usually, nonlinear elasticity of rubbers and soft biomaterials is

described by hyperelastic laws and in most cases, such materials

are assumed to be incompressible [7, 8]. Three hyperelastic laws

together with their associated SED W are considered:

� Neo-Hookean:

W D
E

6
.I1 � 3/ (6)

� Mooney-Rivlin:

W D
�1

2
.I1 � 3/ C

�2

2
.I2 � 3/ (7)

� Ogden:

W D

NT
X

iD1

�i

˛i

.�
˛i

1 C �
˛i

2 C �
˛i

3 � 3/ (8)

Also, the strain energy density for a linear material reads:

W D
E

6

�

4."2
1 C "2

2 C "1"2/ C "2
12

�

(9)

The following notation is used: I1 is the first invariant of the right

Cauchy-Green deformation tensor C; E is Young’s modulus of

the plate’s material; I2 stands for the second invariant of the right

Cauchy-Green deformation tensor; �1; �2; �3 are the principal

stretches of the plate; �i ; ˛i denote the material parameters.

Since SED (9) is polynomial in strains, spatial and temporal

components of the solution can be uncoupled and the Lagrange

equations reduce to simple ordinary differential equations with

quadratic and cubic nonlinearities [6]:

Rqn C 2�n�n Pqn C

N
X

iD1

kni qi C

N
X

i;j D1

knij qi qj

C

N
X

i;j;`D1

knij`qi qj q` D Qn; n D 1; : : : ; N

(10)

where �n is the natural frequency of mode n and �n is the corre-

sponding damping ratio; kni ; knij ; knij` are known coefficients

that result from integration in space.

2



3.2 Cauchy-Green tensor invariants and principal stretches

In order to derive the expressions of the invariants of the right

Cauchy-Green strain tensor C in terms of displacements, the

Green-Lagrange strain tensor:

E D
1

2

0

@

2"1 "12 0

"12 2"2 0

0 0 2"3

1

A (11)

is used, where the expressions of "1, "2, and "12 (but not "3) are

given in (1). The right Cauchy-Green deformation tensor C is

then defined as [8]:

C D 2E C I D

0

@

2"1 C 1 "12 0

"12 2"2 C 1 0

0 0 2"3 C 1

1

A (12)

and its three invariants are:

I1 D tr C D 2."1 C "2 C "3/ C 3 (13)

I2 D
1

2
.tr C2 � tr.C2//

D 4."1 C "2 C "3 C "1"2 C "1"3 C "2"3/ � "2
12 C 3 (14)

J 2 D jCj D .2"3 C 1/
�

.2"1 C 1/.2"2 C 1/ � "2
12

�

(15)

The third invariant J is used to reflect the incompressibility condi-

tion through J D 1 [7] and the principal stretches are the square

roots of the eigenvalues of C [8]:

�1;2 D

r

1 C "1 C "2 ˙

q

."1 � "2/2 C "2
12 (16)

�3 D
p

1 C 2"3 (17)

3.3 Transverse normal strain

The transverse normal strain "3 expressed in terms of u, v, and

w shall be inserted into expressions (13) to (17) and the incom-

pressibility condition (15) is enforced to retrieve the expression

of "3:

"3 D
1

2
�

.2"1 C 1/.2"2 C 1/ � "2
12

� �
1

2
(18)

Expression (18) is then introduced in (13)-(15), (17) as well as

in SEDs (6)-(8).

4. Strain energy density local expansion

Expressions (6)-(8) together with "3 from (18) are not polyno-

mials in strains, which essentially complicates the investigation

of the plate’s behavior. The analysis is thus simplified by in-

troducing a transformation of SEDs (6)-(8) in order to derive

approximate governing equations in the form of ordinary differ-

ential equations with nonlinearities of order not higher than three.

The corresponding local model is reliable only in the vicinity of

a configuration of interest around which the SED is expanded

into a series in the generalized coordinates truncated at order 4.

To reach highly deformed configurations, successive local mod-

els have to be constructed. Further details on the local models

method (LMM) can be found in [1].

5. Exact low-dimensional models with both material
and geometric nonlinearities

A distinct additional approach is implemented to measure the

accuracy of the LMM. It involves the numerical solution of Equa-

tion (2) in its static version, that is:

•

V

@W

@qn

dV D Qn; n D 1; : : : ; N (19)

with SEDs (6)-(8) and expression (18) previously substituted

into it. Since the latter is a smooth function in the generalized

coordinates, integration and differentiation operators commute,

that is:

@

@qn

•

V

W dV D

•

V

@W

@qn

dV (20)

System (19) of nonlinear algebraic equations can be solved nu-

merically through the Newton-Raphson iterative technique; this

approach is named the “exact solution” hereinafter.

6. Numerical example: static and dynamic bending of

a rubber plate

6.1 Hyperelastic models parameter identification

Experimental data for 8% sulfur rubber obtained by Treloar [9]

for uniaxial and equibiaxial tensions, as well as for pure shear,

are exploited. This common rubber is chosen because exper-

imental data for uniaxial and multiaxial loads is available in

the literature: a good approximation for the strain energy den-

sity is then possible for this material. Corresponding details on

the approximation of the experimental data are provided in Ap-

pendix A. From the given experimental data, Young’s modulus is

E D 1 247 060:2 Pa, which is in almost perfect agreement with

Ogden’s one, E D 1 242 992:9 Pa [7]. Other relevant parameters

are listed in Table 1.

Model Parameters

Neo-Hookean E D 1 247 060:2 Pa

Mooney-Rivlin �1 D 416 185:5 Pa

�2 D �498:8 Pa

Ogden �1 D 161:2 Pa

�2 D �1831 Pa

�3 D 781 111 Pa

˛1 D 7:295

˛2 D �2:729

˛3 D 1:056

Table 1. Hyperelastic law parameters for rubber

Figures 1, 2, and 3 display the strain-stress relationships

for the three hyperelastic laws together with the experimental

points. The nominal stress S1 versus engineering strain " is

shown—see Appendix A for details. It is worthy to note that the

Neo-Hookean and Mooney-Rivlin laws are very close and both

laws satisfactorily approximate the rubber behavior at strains not

higher than 30% (that is 0:3 in Figures 1 to 3). However, the

approximation of the rubber behavior offered by the Ogden law

is much more accurate on the full range of experimental strains.

6.2 Problem description

A simply supported square rubber plate illustrated in Fig. 4 is

considered. It is defined on the following domain:

V D
˚

x 2 Œ0; a�; y 2 Œ0; b�; z 2 Œ�h=2; h=2�
	

(21)

with a D 0:1 m, b D 0:1 m, h D 0:0005 m. The material

characteristics are listed in Table 1 and the rubber mass density

is � D 1100 kg m�3.
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Figure 1. Rubber uniaxial tension: strain-stress curves for vari-

ous material laws and corresponding experimental points [ ]. Neo-

Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]
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Figure 2. Rubber equibiaxial tension: strain-stress curves for vari-

ous material laws and corresponding experimental points [ ]. Neo-

Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]
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Figure 3. Rubber pure shear: strain-stress curves for various material

laws and corresponding experimental points [ ]. Neo-Hookean [ ];

Mooney-Rivlin [ ]; Ogden [ ]

The plate is simply supported with immovable edges yielding

the following boundary conditions [6]:

wj@S D M j@S D uj@S D vj@S D 0 (22)

where @S denotes the boundary of the plate’s middle surface. The

bending moment per unit length M [6] reads:

M D �D
�@2w

@n2
C �

@2w

@�
2

�

(23)

and quantities n and � are the outer normal and tangent directions
to @S , respectively, as shown in Fig. 4. Static and dynamic
deflections under a uniformly distributed pressure are targeted

a

b
h

�

�

n

n

x

y

z

Figure 4. Rectangular plate and coordinate system

in this study; accordingly, due to straightforward considerations
on the symmetry of the plate’s geometry, on the external applied
forces, and on the boundary conditions, it is legitimate to expand
the displacements in series of sine functions [6, 10]:

w.x; y; t/D
X

n;m2N

w2nC1;2mC1.t/sin
.2n C 1/�x

a
sin

.2m C 1/�y

b
(24)

u.x; y; t/D
X

n;m2N

u2n;2mC1.t/ sin
2n�x

a
sin

.2m C 1/�y

b
(25)

v.x; y; t/D
X

n;m2N

v2nC1;2m.t/ sin
.2n C 1/�x

a
sin

2m�y

b
(26)

The problem is made non-dimensional by introducing a non-

dimensional time � D �1t , where �1 is the circular frequency

of the first natural mode of the deformed (pressure loaded) plate.

Also, a change of notation has been introduced; the two-subscript

generalized coordinates (time functions) w2nC1;2mC1, u2n;2mC1,

and v2nC1;2m are divided by the plate thickness h and replaced

by the single-subscript generalized coordinates qi with corre-

sponding increasing numbering.

6.3 Static analysis

First, the problem of static plate bending under uniform pressure

is explored. As illustrated in Figure 5, a quick convergence

analysis shows that a 12 degree-of-freedom (DOF) model stands

as a convincing compromise between prediction capabilities and

computational cost for the force-deflection curve of the Neo-

Hookean plate.

0 20 40 60 80 100

0
0

:5
1

12 DOF

3 DOF

27 DOF

w.a=2; b=2/ [h]

P
re

ss
u

re
P

[1
0

4
P

a]

Figure 5. Neo-Hookean plate pressure-deflection response. Deflection

measured at the center of the plate and normalized with respect to the

plate thickness h

The generalized coordinates plugged into the expansion of

the displacements are given in Table 2. Responses are calculated

with the LMM, starting from the configuration with w1;1 D 20h
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captured by the less sophisticated model involving geometrical

nonlinearity only. Accordingly, the curves start at a central de-

formation of 20h in Figure 5. The maximal discrepancy between

the 12 DOF and 27 DOF models in the deflection range Œ0; 100h�

is 2.3%. Similar results are found for other material models.

Size Participating eigenmodes

3 DOF w1;1, u2;1, v1;2

12 DOF wi;j i; j D 1; 3

ui;j , vj;i i D 2; 4, j D 1; 3

27 DOF wi;j i; j D 1; 3; 5

ui;j , vj;i i D 2; 4; 6, j D 1; 3; 5

Table 2. Generalized coordinates utilized in the models

Force-deflection relationships for different materials with 12

DOF are depicted in Figure 6. The displacement sensitivity to

physical nonlinearities is highlighted by plotting the solution for

linear elastic material and geometric nonlinearities only. Neo-

Hookean and Mooney-Rivlin results almost coincide, while the

Ogden curve slightly deviates for large deflections. Also, it is

worthy to note that the LMM results agree very well with the

exact solution.

Material nonlinearity for deflections smaller than 20h can

be neglected as shown in Figure 6. For deflections up to 20h

the model with only geometrical nonlinearity is a very good

approximation. As a consequence, the configuration computed

with the linear elastic material is used as an initial guess for LMM

numerical iterations for hyperelastic materials [1].
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0
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:5
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w.a=2; b=2/ Œh�

P
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ss
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re
P

[1
0

4
P

a]

Figure 6. Pressure-displacement response. Local models as lines

and exact results as symbols: Neo-Hookean [ , ]; Mooney-Rivlin

[ , ]; Ogden [ , ]. Linear elastic material [ ]

An additional validation of the results is carried out. The

static deflection of the hyperelastic plate is also explored with

the commercial finite element solution ANSYS [11] for the Neo-

Hookean and Ogden materials. The central deflection with re-

spect to the applied external force is displayed in Figure 7: FEA

and LMM predictions are in good agreement.

The contribution of the in-plane nonlinearities in expres-

sions (1) is now estimated. As an illustrative example, the

pressure-deflection curves for the Neo-Hookean law with and

without in-plane nonlinearities are shown in Figure 8. The maxi-

mal difference is 2%. Other materials feature discrepancies of the

same order. Despite of their relatively small influence, in-plane

nonlinearities are incorporated in all numerical investigations

except in Figure 8.

0 20 40 60 80 100

0
0

:5
1

w.a=2; b=2/ Œh�

P
re

ss
u

re
P

[1
0

4
P

a]

Figure 7. Comparison between ANSYS and exact solutions. Exact

Neo-Hookean [ ]; exact Ogden [ ]; ANSYS with Neo-Hookean

model [ ]; ANSYS with Ogden model [ ]
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Figure 8. Pressure-deflection response for the Neo-Hookean material:

with [ ] and without [ ] in-plane nonlinearities

6.4 Nonlinear vibration analysis

At small strains, the effect of physical nonlinearities is negligi-

ble (Figure 6), and the vibrations of the initially flat plate can

be explored by only retaining geometrical nonlinearities in the

model [6]. Here, we focus on the investigation of a more chal-

lenging configuration where both nonlinearities are participating,

i.e. the vibrations around a pre-loaded state. The deflection

with principal generalized coordinate w1;1 D 80h is chosen as

an initial deformed configuration. Comparison with the exact

static solution shows that the local model around this deformed

configuration is accurate for deflections up to 10h, which there-

fore stands as an upper limit in the dynamic analysis. From

previous analysis (Figure 5), it follows that the 12-DOF model

is sufficiently accurate and can be selected in order to reduce

computation costs.

The harmonic balance method [12] is implemented to find

the sought periodic solutions to system (10) through a Fourier

expansion of the generalized coordinates in time:

qn D An0 C

Nh
X

j D1

Anj cos.j ��/; n D 1; : : : ; N (27)

where � is the non-dimensional frequency, normalized with re-

spect to �1. Expression (27) considers cosine terms only since

the external force and damping in (10) are ignored in the free

vibration analysis. Coefficients Anj are determined from the sys-

tem of nonlinear algebraic equations resulting from balancing the

coefficients associated to the same harmonics in equations (10)

where expression (27) has been previously substituted. A conver-
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Figure 10. Plate’s free vibration backbone curves in the vicinity of various initially deformed configurations; Neo-Hookean model

gence analysis shows that Nh D 4 in (27) stands as an acceptable

approximation of the solution. The first eigenfrequencies of

Model Natural Frequency

Neo-Hookean 951.81 rad/s

Mooney-Rivlin 951.78 rad/s

Ogden 884.62 rad/s

Table 3. First eigenfrequency of the deformed rubber plate. Initial

deformation w1;1 D 80h

the deformed plate are given in Table 3 for an initial deflection

w1;1 D 80h. Figure 9 displays the backbone curves of the plate’s

free vibrations, with frequencies close to the first eigenfrequency

of the pre-loaded plate and normalized with respect to the natural

frequency �1 of the corresponding deflected plate. Comparison

with the exact static solution shows that the Neo-Hookean and

Mooney-Rivlin local models are accurate for deflections up to

10h, while the Ogden model can be considered for deflections

not higher than 8h only. Again, the Neo-Hookean and Mooney-

Rivlin models yield identical results. This is true for both the

eigenfrequency of the deformed plate and the backbone curve.

The Ogden backbone curve exhibits a slightly weaker nonlinear-

ity.

For all materials, the nonlinear nature of the deformed plate,

as opposed to its flat counterpart [6], is very weak: the frequency

of large-amplitude vibrations is almost identical to the natural

frequency. In order to show the sensitivity of the backbone curves

to the initial deflection, they are constructed around various initial

configurations in Figure 10. The Neo-Hookean material is se-

lected since other materials exhibit similar features. Two effects

are observed: the first one consists of an increased range of vibra-
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Figure 9. Rubber plate’s free vibration dimensionless backbone curves

around deformed configuration w1;1 D 80h for various material laws:

Neo-Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]

tory amplitudes where the backbone curve displays a softening

behavior. This effect is well-known and might be attributed to

the contribution of the quadratic terms in expression (10) with

respect to the initial deflection amplitude [6]. The second effect

is the attenuation of the nonlinear nature of the model with an in-

creased initial deflection. A similar behavior has been previously

reported for bended plates [1] and stretched membranes [7] and

is related to the large in-plane stretching associated to the initial

deflection of the loaded plate.

The forced vibrations are also explored with the AUTO pack-

age [13]. External forcing derives from a time-dependent periodic

pressure having an harmonic component Pd D 4:53 Pa and a

constant mean-value corresponding to the deformed configura-

tion w1;1 D 80h, around which the local model is built. A modal
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Figure 11. Rubber plate’s forced frequency response around deformed

configuration w1;1 D 80h; Pd D 4:53 Pa, � D 0:001. Stable [ ]

and unstable [ ] solutions; [thick] Ogden and [thin] Neo-Hookean

damping ratio �n D � D 0:001 is adopted. The frequency re-

sponse for the principal bending coordinate w1;1 is shown in

Figure 11. The vibratory response around a highly deformed con-

figuration is almost identical to the linear response, in contrast

to the response around a moderately deflected plate for which a

significant softening behavior turning to hardening for vibration

amplitude around 5h is found as shown in Figure 12.
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Figure 12. Rubber plate’s forced frequency response around deformed

configuration w1;1 D 5h; Pd D 0:063 Pa, � D 0:001. Stable [ ]

and unstable [ ] solutions

7. Static and dynamic plate bending for biological-

type material

7.1 Hyperelastic models parameters

The experimental data for uniaxial tension available in [14] are

exploited. The present study is intended to model only one key

feature of biological materials, i.e. a sharp increase in stiffness

after a given strain threshold is reached. To this end, the exper-

imental data corresponding to the tunica adventitia of a human

aorta in [14] are selected. The procedure described in Appendix A

is implemented with the difference that only the uniaxial test data

are available. Corresponding material parameters are listed in

Table 4. The associated stress-strain relationships are shown in

Figures 13 to 15. The difference between the Neo-Hookean and

Mooney-Rivlin laws is clearly distinguishable for this type of

material. However, both laws are in agreement with the exper-

imental points for strains less than 8% and both are unable to

reproduce the increase in stiffness, as opposed to the Ogden law.

Model Parameters

Neo-Hookean E D 59 383:2 Pa

Mooney-Rivlin �1 D 25 829:8 Pa

�2 D �6035:4 Pa

Ogden �1 D 466 515 161:8 Pa

�2 D 2:49 � 10�9 Pa

�3 D �1 115 907 998:2 Pa

�4 D 649 412 722:6 Pa

˛1 D 7:385

˛2 D 84:402

˛3 D 7:365

˛4 D 7:35

Table 4. Hyperelastic law parameters for biomaterial
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Figure 13. Biomaterial uniaxial tension: strain-stress curves for var-

ious material laws and corresponding experimental points Œ �. Neo-

Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]
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Figure 14. Biomaterial equibiaxial tension: strain-stress curves for

various material laws. Neo-Hookean [ ]; Mooney-Rivlin [ ];

Ogden [ ]

7.2 Static analysis

The problem detailed in subsection 6.2 is solved for the hyper-
elastic materials listed in Table 4. Attention is paid to the static
bending of the plate (Figure 4) with the help of the 12 DOF model
(Table 2). The exact pressure-deflection response is depicted in
Figure 16. The Neo-Hookean and Mooney-Rivlin results are
almost identical, while the Ogden model starts to depart from
these curves for amplitudes about 80h, as displayed in Figure 16,
where it becomes much stiffer. Strains at the point where the
Ogden and the Neo-Hookean curves cross each other in Figure 16
are also analyzed through the strain intensity, given by [15]:

"INT D

r

2

3

r

."1 � "2/2 C ."1 � "3/2 C ."2 � "3/2 C
3

2
"12 (28)
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Figure 15. Biomaterial pure shear: strain-stress curves for various mate-

rial laws. Neo-Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]
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Figure 16. Pressure load-central deflection response for various bio-

material laws, 12 DOF. Neo-Hookean [ ]; Mooney-Rivlin [ ];

Ogden [ ]

At the crossing point in the center of the plate, the strain intensity

is "INT D 42:5% (Figure 16) near the values of the crossing

points in the stress-strain curves: 40% for uniaxial test and 39.6%

for equibiaxial test (Figures 13 and 14).

7.3 Vibration analysis

We investigate the free nonlinear vibrations around the deformed

response with principal generalized coordinate w1;1 D 70h. The

comparison with the exact static solution shows that the Neo-

Hookean and Mooney-Rivlin local models are accurate for de-

flections up to 10h whereas the Ogden model is limited to deflec-

tions not larger 3h only. The corresponding backbone curves are

obtained through the harmonic balance method (27) and are de-

picted in Figure 17 for vibrations around the first eigenfrequency

of the pre-loaded plate. The first eigenfrequency of the deformed

Model Natural Frequency

Neo-Hookean 183 rad/s

Mooney-Rivlin 177.88 rad/s

Ogden 181.96 rad/s

Table 5. First eigenfrequency of the deformed biomaterial plate. Initial

deformation w1;1 D 70h

plate is listed in Table 5 for the three hyperelastic laws. The mass

density is � D 1380 kg m�3, which is the density of Polyethylene

terephthalate, frequently used for artificial arteries [16]. We no-

tice that the Neo-Hookean and Mooney-Rivlin results are again

in good agreement for the full investigated range of deflections.

The Ogden plate’s eigenfrequencies are also similar for central

deflections up to 80h but then become higher.

Similarly to the rubber plate example, the behavior of a de-

formed plate made of biomaterial is weakly nonlinear for all

materials and the nonlinearity is of softening type. However, cer-

tain features differ. Although static results for the Neo-Hookean

and Mooney-Rivlin models are almost identical, the Mooney-

Rivlin backbone curve shows a softer behavior. Still, the Ogden

curve is the softest one and is presented for vibration amplitude

up to 3h in Figure 17.
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Figure 17. Biomaterial plate’s free vibration backbone curves around

deformed configuration w1;1 D 70h for various material laws: Neo-

Hookean [ ]; Mooney-Rivlin [ ]; Ogden [ ]

8. Conclusions

Vibration of plates made of rubber and biological materials are

explored with a dedicated local models method. Local models

allow for the analysis of static bending as well as physically and

geometrically large-amplitude nonlinear vibrations of an initially

distorted plate. Static results are validated through a systematic

comparison with available exact solutions as well as against

commercial finite element software results. It is found that the

local models method provides accurate predictions for a wide

range of deflections. However, the sharp increase in stiffness

peculiar to biological materials limits the range of achievable

vibration amplitudes.

In most cases, it is found that the Mooney-Rivlin and Neo-

Hookean materials exhibit similar static and vibratory behaviors.

Corresponding constitutive laws properly capture the behavior

of the actual material at moderate strains (30% for rubber and

8% for biomaterial). The best approximation is provided by the

Ogden model. The latter correctly reproduces the behavior at

high strains, including the well-known sharp increase in stiffness.

However, the Ogden model has significant drawbacks. Due to

the complicated form of the strain energy density and its formu-

lation in terms of principal strains (unlike the Neo-Hookean and

Mooney-Rivlin models which allow for a formulation in terms

of strain invariants), it is computationally much more expensive.

It is also shown that the pre-loaded plate exhibits very weak dy-

namic nonlinearity, i.e. the frequencies of the oscillations around

the deformed configuration are almost identical to the associated

eigenfrequencies.

The sensitivity of the free vibration backbone curves to the

initial deflection is also discussed. It is shown that the higher

the initial static deflection, the higher the range of amplitudes

at which the backbone curve displays a softening behavior. The

nonlinear nature of the system of interest (the frequency shift

between low- and large-amplitude vibrations) weakens with an

increased initial deflection.
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A. Hyperelastic material parameter identification

The following nominal stress expressions for the Neo-Hookean

law are used in order to fit the experimental data (uniaxial, equib-

iaxial tensions and pure shear, respectively) [7, 8]:

S1 D
E

3

�

." C 1/ � ." C 1/�2
�

(29)

S1 D
E

3

�

." C 1/ � ." C 1/�5
�

(30)

S1 D
E

3

�

." C 1/ � ." C 1/�3
�

(31)

For the Mooney-Rivlin law, these expressions become [7, 8]:

S1 D�1

�

." C 1/ � ." C 1/�2
�

C �2

�

1 � ." C 1/�3
�

(32)

S1 D�1

�

."C1/�."C1/�5
�

C �2

�

."C1/3 � ."C1/�3
�

(33)

S1 D.�1 C �2/
�

." C 1/ � ." C 1/�3
�

(34)

while for the Ogden law, they are [7]:

S1 D

NT
X

iD1

�i

�

." C 1/˛i �1 C ." C 1/�˛i =2�1
�

(35)

S1 D

NT
X

iD1

�i

�

." C 1/˛i �1 C ." C 1/�2˛i �1
�

(36)

S1 D

NT
X

iD1

�i

�

." C 1/˛i �1 C ." C 1/�˛i �1
�

(37)

The procedure for the determination of the material parameters

is as follows. First, Young’s modulus is determined using the

expressions for the Neo-Hookean law. For this purpose, the mate-

rial is assumed to be Neo-Hookean and E is determined through

a least squares technique by using only one point (corresponding

to the smallest stress) for each stress-strain test. For the sake

of consistency, the Young’s modulus is assumed to be identical

for all the hyperelastic laws. This yields 3.�1 C �2/ D E for

the Mooney-Rivlin law and 3
2

PNT

iD1 �i ˛i D E for the Ogden

law [7, 8]. Once E is known, the Neo-Hookean strain energy

density is completely defined. The Mooney-Rivlin law contains

one unknown parameter and the Ogden law involves 2NT � 1

unknowns. These parameters are determined by the least squares

fitting of expressions (32) to (37) to the experimental data.
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