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THE VANDERMONDE DETERMINANT IDENTITY IN HIGHER DIMENSION

ITAÏ BEN YAACOV

ABSTRACT. We generalise the Vandermonde determinant identity to one which tests whether a family of hypersur-
faces in Pn has an unexpected intersection point.

The intended application is an asymptotic estimate of the volume of certain spaces of homogeneous polynomials
on an embedded projective variety.
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INTRODUCTION

The Vandermonde determinant identity tests by a single determinant whether a family of points on the
line are distinct. We generalise this to dimension n, testing by a single determinant whether some n + 1 hy-
perplanes among a large family intersect. This is further generalised for a family of hypersurfaces, up to an
asymptotically negligible error.

1. APPETISER: A LINEAR VANDERMONDE IDENTITY

The classical Vandermonde determinant identity asserts that in any commutative unital ring A,

det











1 a0 . . . am
0

1 a1 . . . am
1

...
...

...
1 am . . . am

m











= ∏
i<j≤m

(aj − ai). (1)

This instance of the identity is in degree m, and since each row depends on a single unknown, it is in (affine)
dimension one. Homogenising (and transposing) we get the projective dimension one version, namely

det











am
0 am

1 . . . am
m

am−1
0 b0 am−1

1 b1 . . . am−1
m bm

...
...

...
bm

0 bm
1 . . . bm

m











= ∏
i<j≤m

(aibj − ajbi) = ∏
i<j≤m

det
(

ai aj

bi bj

)

. (2)

The matrix on the left hand side is obtained from the family of points (ai, bi) via the Veronese map, namely
the map sending the coordinates of a point x to the family of values of monomials of degree m at x, which can
be viewed as the coordinates of the evaluation functional at x on homogeneous polynomials of degree m.
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Notation 1.1. Let A be a commutative ring, n, m, ℓ ∈ N. The set of multi-exponents of total degree m in n + 1
unknowns will be denoted ε(n, m) = {α ∈ Nn+1 : ∑ α = m}, which we equip with inverse lexicographic
ordering (namely, the exponent of Xn is most significant), giving an ordering on the monomials. We define
νm : An+1 → AN , where N = (n+m

n ) is the number of monomials, as the corresponding Veronese embedding,
that is, νm,i(x) is the ith monomial applied to x. We extend νm to a map M(n+1)×ℓ(A) → MN×ℓ(A) by applying
νm to each column. Notice that n is determined by the argument so we shall use the same notation for different
values of n.

In projective dimension n = 1, letting ai = (ai,0, ai,1) (viewed as a column vector), the Vandermonde identity
(2) becomes:

det
(

νm(a0, . . . , am)
)

= ∏
i<j≤m

det(ai, aj). (3)

The right hand side tests whether all points are distinct in a given family in P1. In higher dimension, we
may ask whether a family of points Pn is in general position, namely, no n + 1 lie in a single hyperplane.
Alternatively, since points in P1 are also hyperplanes, we may also ask the dual question, whether a family of
hyperplanes in Pn is in general position, namely, no n + 1 of them intersect.

The correct generalisation turns out to be the second one, and it suggests how the left hand side should be
generalised as well. Indeed, the Veronese map acts on points, and if we consider the unknowns to represent a
family of hyperplanes in Pn, then in order to get points we still need to intersect sub-families of size n.

Algebraically, a hyperplane is given as a linear form. A family of hyperplanes is then given as a matrix
Λ ∈ M(n+1)×m(A), and intersections of sub-families are represented by minors of this matrix.

Notation 1.2. Let A be a commutative ring, n, m ∈ N.
(i) We define µ : M(n+1)×m(A) → M(n+1)×(m

n)
(A) by sending a matrix Λ to the matrix of minors of Λ of

order n. Minors are ordered by lexicographic ordering on the sequences of rows/columns which are
chosen.

(ii) We define δ : M(n+1)×m(A) → A by sending a matrix Λ to the product of minors of Λ of order n + 1.

Again, n and m are determined by the arguments.

In projective dimension one we have µΛ = Λ and (2) asserts that det(νmΛ) = det(νmµΛ) = δΛ. This
generalises to higher projective dimension.

Lemma 1.3. Let A be a commutative ring, n ≤ m ∈ N, and let Λ ∈ M(n+1)×m(A). Then

(i) Adding one row of Λ, times a scalar, to another, does not change either det(νm−nµΛ) or δΛ.

(ii) Multiplying a row of Λ by a scalar α multiplies det(νm−nµΛ) by αn( m
n+1) and δΛ by α(

m
n+1).

(iii) Multiplying a column of Λ by a scalar α multiplies det(νm−nµΛ) by αn(m−1
n ) and δΛ by α(

m−1
n ).

Proof. All three assertions are clear for δΛ, and we verify them for det(νm−nµΛ).
For the first assertion, adding a multiple of a row in Λ to another amounts to a similar operation on µΛ

and to a sequence of several such operations on νm−nµΛ. For the second assertion, multiplying a row of Λ

by α amounts to multiplying n rows of µΛ by α. The sum of total degrees of all monomials is (m − n)(m
n) =

(n + 1)( m
n+1), so the sum of degrees in n out of n + 1 unknowns is n( m

n+1). For the third assertion, multiplying

a column of Λ by α amounts to multiplying (m−1
n−1) columns of µΛ by α, and the same columns of νm−nµΛ by

αm−n, for a total degree of (m − n)(m−1
n−1) = n(m−1

n ) �

Theorem 1.4. Let A be a commutative ring, n ≤ m ∈ N, and let Λ ∈ M(n+1)×m(A). Then νm−nµΛ is a square matrix

of order (m
n), and the Vandermonde identity of order m in dimension n holds:

det(νm−nµΛ) = (δΛ)n. (4)

Proof. We proceed by induction on (n, m − n). When n = 0 or n = m, both sides of (4) are equal to one. When
n, m − n > 0, it will suffice to prove (4) in the case where A is a polynomial ring, and in particular, an integral
domain.

If the first column of Λ vanishes then so do both sides of (4) and we are done. Otherwise, by Lemma 1.3 we
may assume that the first column is of the form (1, 0, . . . , 0). Let Λ0 be Λ without this column and let Λ1 be
Λ with both first row and column dropped. Then δΛ = (δΛ0)(δΛ1), and by the the induction hypothesis for
(n, m − n − 1) and (n − 1, m − n) we have

det(νm−n−1µΛ0) = (δΛ0)
n, det(νm−nµΛ1) = (δΛ1)

n−1.
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Now,

µΛ =





µΛ1
µΛ0

0



 , νm−nµΛ =





νm−nµΛ1
νm−nµΛ0

0



 =

(

νm−nµΛ1 ?
0 C

)

.

The matrix νm−nµΛ1 is square of order (m−1
n−1), and C is the lower square part of νm−nµΛ0, of order (m

n) −

(m−1
n−1) = (m−1

n ). The rows of C correspond to monomials in which the last unknown appears. Factoring
this common unknown out, and letting (. . . , bj, . . .) denote the last row of µΛ0, we see that C is obtained by
multiplying each column of νm−n−1µΛ0 by the corresponding bj. Notice that the bj are simply the minors of
order n of Λ1, so

det(νm−nµΛ) = det(νm−nµΛ1) det(νm−n−1µΛ0)∏ bj = (δΛ1)
n−1(δΛ0)

n(δΛ1) = (δΛ)n,

as desired. �

Corollary 1.5. Let A be a commutative ring, n ≤ m ∈ N, and let Λ = (λi,j) ∈ M(n+1)×m(A). Identify the jth column

of Λ with a linear form λj = ∑i≤n λi,jXi. For a subset ξ ⊆ m of size n, define ϕξ as the product of λj for j /∈ ξ, a
homogeneous polynomial of degree m − n. Ordering monomials as earlier we may identify ϕξ with the column vector of
coefficients. Ordering the subsets ξ lexicographically we obtain a matrix denoted πΛ.

Then πΛ is a square matrix of order (m
n), and the dual Vandermonde identity of order m in dimension n holds:

det(πΛ) = ±δΛ. (5)

Proof. Let ξ and ζ denote subsets of m of size n. Let µ′Λ be obtained by permuting rows of µΛ and multiplying
some rows by −1. Then νm−nµ′Λ is also obtained from νm−nµΛ by a permutation and sign changes to the rows.
Let pζ ∈ An+1 be the column of µ′Λ corresponding to ζ: with an adequate choice of µ′Λ (i.e., of permutation
and signs), it is the intersection point of the kernels of (λi)i∈ξ (we may assume that Λ consists of formal
unknowns, so the kernels intersect at a single line, i.e., single projective point). By definition of the Veronese
map, the dot product of the columns of πΛ and νm−nµ′Λ corresponding to ξ and ζ, respectively, is ϕξ(pζ),
viewed as a polynomial evaluated at a point. If ξ 6= ζ, then ϕξ(pζ) = 0, and ϕξ(pξ) is equal, up to sign, to the
product of minors of order n + 1 of Λ corresponding to the n columns in ξ plus one more. Thus each minor of
order n + 1 of Λ is a factor of n + 1 expressions ϕξ(pξ). We conclude that

det(πΛ) det(νm−nµ′Λ) = ∏
ξ

ϕξ(pξ) = ±(δΛ)n+1.

Since det(νm−nµ′Λ) = ±det(νm−nµΛ) = ±(δΛ)n, and since we may assume A is an integral domain, our
assertion follows. �

Somewhat informally we may restate (5) as saying that for a family Λ of m linear forms in affine dimension
n + 1:

det
(

∏ λ : λ ∈

(

Λ

m − n

))

= ± ∏
λ∈( Λ

n+1)

det(λ). (6)

2. A BRIEF AND ELEMENTARY INTRODUCTION TO CHOW FORMS AND RESULTANTS

In dimension one, a hypersurface is a hyperplane is a point, but in higher dimension one may ask if the
Vandermonde identity can be extended to intersections of hypersurfaces, rather than hyperplanes. Intersec-
tions of hypersurfaces are calculated, algebraically, by resultants, generalising intersections of hyperplanes via
determinants. Given the manner in which we use resultants here and in some intended applications, we prefer
to give a presentation which diverges slightly from what we found in the literature, e.g., [GKZ94].

2.1. General preliminaries. Before starting, let us give a few reminders regarding integral dependence in
rings (see for example [AM69]). We recall that if A ⊆ B are rings, then b ∈ B is integral over A if it satisfies a
monic polynomial over A. We are only going to consider integral domains, in which case we have a convenient
characterisation.

Fact 2.1. Let L be a field, A ⊆ L a sub-ring. Then b ∈ L is integral over A if and only if, for every valuation w of L, if
Ow ⊇ A then b ∈ Ow as well.
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If A ⊆ B are rings, then the integral closure of A in B consists of all b ∈ B integral over A. When A is an
integral domain and K = Frac(A), the integral closure A is its integral closure in K, and its absolute integral
closure is its integral closure in the algebraic closure Ka. The integral closure of A (in B) is integrally closed (in
B), i.e., equal to its own integral closure.

Unique factorisation domains are integrally closed (in their fraction fields), and a polynomial ring over an
integrally closed ring is integrally closed. Moreover, we have the following characterisation of the absolute
integral closure of a unique factorisation domain, which will be used in Section 3.

Fact 2.2. Let A be a unique factorisation domain, K = Frac(A) and L = Ka the algebraic closure. Then a necessary
and sufficient condition for a ∈ L to be integral over A is that for every prime p ∈ A and valuation w of L extending the
p-adic valuation vp we have w(a) ≥ 0.

XXX CHECK LITERATURE XXX. The condition is clearly necessary. Conversely, if it holds for a it also holds
for all its conjugates over K, so the monic irreducible polynomial of a over K is in fact over A. �

When K is a field, we define for any f = ∑ αsXs ∈ K[X]:

v( f ) = min
s

v(αs).

This is multiplicative on K[X] and therefore defines a valuation on K(X).

2.2. Splitting polynomials. Throughout, n is a fixed projective dimension. A point [x] ∈ Pn will be called
geometric, and a representative x will be called an algebraic point.

We fix unknowns X = (X0, . . . , Xn), and let A[X]m denote the module of homogeneous polynomials of
degree m over a ring A. The unknowns X form a basis for the module of linear forms E = A[X]1, and we let
X∗ = (X∗

0 , . . . , X∗
n) ⊆ E∗ be the dual basis. We may identify E∗ with the pre-dual of E, namely with the space

of algebraic points, identifying ∑ xiX
∗
i ∈ E∗ with x = (x0, . . . , xn). Alternatively, we may view X∗ as a new

system of “dual unknowns”, in which case E∗ = A[X∗]1, and A[X∗] is the ring of polynomial functions on the
space E of linear forms.

Convention 2.3. Let A be an integral domain, D ∈ N, and g ∈ A[X∗]D. When we say that g splits, we mean
that it splits over some field L ⊇ Frac(A) as α ∏i<D xi, where α ∈ L and each xi is a non-zero linear form in
X∗, namely, an algebraic point.

A non-zero splitting polynomial g = α ∏i<D xi codes the finite multi-set (namely, set with multiplicities) of
geometric points [g] =

{

[xi] : i < D
}

. As a polynomial function, g vanishes at λ if and only if λ vanishes at
some xi. Several special cases deserve particular attention:

(i) Since we want everything to commute well with specialisations, we must allow the zero polynomial
0 ∈ A[X∗]D. It always splits as 0 · ∏i<D xi, where xi are arbitrary (and does not code any set).

(ii) When D = 0, every α ∈ A[X∗]0 = A splits in a unique fashion, and (except when α = 0) codes the
empty set.

Before turning to Chow forms and resultants, which are very special examples of such splitting polynomials,
let us consider the general case.

Lemma 2.4. Let A be an integral domain, and let f ∈ A[X0, . . . , XD−1] be homogeneous of degree d in each Xj =
(Xj,0, . . . , Xj,n), and assume that g ∈ A[X∗]D splits over some field L ⊇ Frac(A), say as α ∏i<D xi.

(i) The field L can always be taken to be an algebraic extension of Frac(A).
(ii) If w is any valuation of L such that Ow ⊇ A, then g splits in Ow[X∗].

(iii) Any ring epimorphism ϕ : A ։ A, with A an integral domain can be extended to ψ : B ։ B ⊇ A, where
A ⊆ B ⊆ L and g splits in B[X∗]. In other words, any specialisation of g can be extended to a specialisation of
its linear factors.

(iv) The value β = αd f (x0, . . . , xD−1) ∈ L depends only on the order of the geometric points [x0], . . . , [xD−1], and
is integral over A.

Proof. Items (i) and (ii) are easy. Item (iii) is merely the fact that for any prime ideal P of A there exists a
valuation w on L such that P = A ∩mw, so take B = Ow and B the residue field. The first part of (iv) is easy. It
follows that if w is any valuation on L such that Ow ⊇ A, then β ∈ Ow, so β is integral over A. �

Definition 2.5. Let A be an integral domain. Let f ∈ A[X]d and g ∈ A[X∗]D, and assume that g splits as
α ∏i<D xi. Then we define

f ∧ g = αd ∏ f (xi),

following the convention that 00 = 1.
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In particular, if D = 0 then f ∧ g = gd, and if d = 0 then f ∧ g = f D. When d = D = 0 we have f ∧ g = 1.
With our convention that 00 = 1 this includes the case where f and/or g (of degree zero) vanish.

Question 2.6. Assume A is a unique factorisation domain and both f and g are irreducible in A[X] and in
A[X∗], respectively. Is f ∧ g irreducible in A (or at least a unit times a power of an irreducible)?

Lemma 2.7. Let A be an integrally closed integral domain. Let f ∈ A[X]d and g ∈ A[X∗]D be as in Definition 2.5.
Then

(i) When defined, we have

( f1 f2) ∧ g = ( f1 ∧ g)( f2 ∧ g), f ∧ (g1g2) = ( f ∧ g1)( f ∧ g2).

(ii) If f and h are of the same degree, g splits as α ∏ xi, and h(xi) = 0 for all i, then

( f + h) ∧ g = f ∧ g.

(iii) The value f ∧ g is well defined and belongs to A.
(iv) Assume that A = B[Y], and that f and g are homogeneous in Y, say of degrees ℓ and k, respectively. Then

f ∧ g is homogeneous in Y of degree ℓD + kd.

(v) The wedge operation commutes with specialisation. In other words, if A is another integral domain and · : A →
A is a ring homomorphism, which extends in the obvious way to polynomial rings over A, then

f ∧ g = f ∧ g ∈ A.

Proof. Items (i) and (ii) are clear. For (iii), let K = Frac(A) and L = Ka, so f ∧ g ∈ L.
Assume first (in positive characteristic) that A = K is separably closed. Applying an invertible linear

transformation to X∗ (and its inverse to X), we may assume that the coefficient of (X∗
n)

D in g does not vanish.
We may therefore assume that it is one, and in fact that the coefficient of X∗

n is one in each xi. We may also
assume that g is irreducible in K[X∗]. Let M = K(X∗

0 , . . . , X0
n−1). Then g is also an irreducible unital polynomial

in M[X∗
n], with roots X∗

n − xi in ML ⊆ Ma. Since L/K is purely inseparable algebraic extension, any ϕ ∈

Aut(Ma/M) must be the identity on ML. It follows that all the xi are equal and g is of the form xpt
, from

which one calculates that f ∧ g ∈ K.
In the general case, f ∧ g is separable over K by the previous argument. Since f ∧ g is fixed by the Galois

group, it belongs to K. Since f ∧ g is integral over A by Lemma 2.4(iv), it belongs to A.
Item (iv) is easy.
Item (v) follows directly from Lemma 2.4(iii). �

2.3. Chow forms and resultants. Let us recall the notion of a Chow form, and more generally, of a resultant
form. The fundamental notion is that of a resultant form for a projective variety (here a variety is always
irreducible). While it is standard to extend the definition to the (unique) resultant form of a positive projective
cycle, for our purposes it will be preferable to define a (non-unique) resultant form associated with an algebraic
set. We even allow zero as a resultant form, associated with any algebraic set whose dimension is too big (this
excludes zero as a resultant form in dimension n, since there are no sets of dimension n + 1, but this borderline
case will not bother us).

Notation 2.8. Throughout we let D = N r {0}.

Definition 2.9. Let ℓ ≤ n and d ∈ Dℓ+1. For i ≤ ℓ let T∗
i = (T∗

i,α : |α| = di) be unknowns representing the
coefficients of a homogeneous polynomial of degree di. Let K be an algebraically closed field.

(i) Let W ⊆ Pn be a non-empty algebraic set defined over K. We say that a polynomial R ∈ K[T∗
0 , . . . , T∗

ℓ
]

is a resultant form associated with W in dimension ℓ and degrees d if for every family of polynomials
f ∈ K[X]ℓ+1, where fi ∈ K[X]di

, we have

R( f ) = 0 ⇐⇒ W ∩ V( f ) 6= ∅. (7)

Notice that this determines the family of prime factors of R, up to multiplicity.
(ii) Let W ⊆ Pn be a variety of dimension ℓ, defined over K. An irreducible resultant form in dimension ℓ

and degrees d associated with W, which is unique up to a scalar factor, is called the resultant form of W
in degrees d, denoted RW,d.

(iii) When d = (1, 1, . . . , 1) we write C(X∗
0 , . . . , X∗

ℓ
) instead of R(T∗

0 , . . . , T∗
ℓ
), calling the Chow form rather

than resultant form.

Fact 2.10. Let W ⊆ Pn be an algebraic set of dimension ℓ. Let p ∈ Pn, and for i ≤ ℓ let fi be homogeneous polynomials
whose coefficients are generic modulo the constraint that p ∈ V( f ). Then W ∩ V( f ) ⊆ {p}.
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Proof. For i ≤ ℓ and irreducible component U of Wi = W ∩ V( f0, . . . , fi−1), if U 6= {p}, then there exists a
polynomial vanishing at p and not at a generic point of U. Therefore fi is such. It follows by induction that
dim Wℓ = 0 and so Wℓ+1 ⊆ {p}. �

Fact 2.11. Let ℓ ≤ n and d ∈ Dℓ+1.

(i) The resultant form in degrees d exists for any variety W ⊆ Pn of dimension ℓ.
(ii) More generally, let W ⊆ Pn be an algebraic set defined over K and R ∈ K[T∗

0 , . . . , T∗
ℓ
]. Then R is a resultant

form in dimension ℓ and degrees d, associated with W, if and only if
• either dim W > ℓ and R = 0,
• or W is of pure dimension ℓ, and

R = ∏
k

R
mk
Uk ,d,

where (Uk) are the irreducible components of W and mk ≥ 1. In this case R determines W.
(In the latter case, one may also say that R is the resultant form of the positive projective cycle ∑ mkUk.)

(iii) A resultant form R(T∗
0 , . . . , T∗

ℓ
) is homogeneous in each T∗

i .
(iv) If d0 = d1 then R(T∗

0 , T∗
1 , . . .) = ±R(T∗

1 , T∗
0 , . . .), and similarly for any other pair of arguments with di = dj.

This is in particular true of the Chow form, where all degrees are equal.

Proof. For (i), say that W is defined over K. Let L ⊇ K be some very rich field, and let [x̂] ∈ W(L) be a generic
point of W with x̂i = 1 for some i, so trdegK K(x̂) = ℓ. For i ≤ ℓ choose f̂i = ∑ ri,αXα ∈ L[X]di

with coefficient
which are generic over K(x̂) modulo the constraint that f̂i(x̂) = 0. Let N = ∑i≤ℓ (

di+n
n ) denote the total number

of coefficients ri,α. By Fact 2.10, x̂ is algebraic over K(r), so

trdegK K(r) = trdegK K(x̂, r) = trdegK K(x̂) + trdegK(x̂) K(x̂, r) = ℓ+ ∑
i≤ℓ

((

di + n

n

)

− 1
)

= N − 1.

Therefore the r are related by a single irreducible polynomial R(T∗
0 , . . . , T∗

ℓ
).

Now let f be any polynomials of the appropriate degrees. Assume that R( f ) = 0, so f is a specialisation
over K of f̂ . Letting x be the corresponding specialisation of x̂ we have [x] ∈ W ∩ V( f ). Conversely, assume
that [x] ∈ W ∩V( f ), so x specialises x̂ over K. Then x, f specialises x̂, g over K for some family g of polynomials,
such that we still have x̂ ∈ V(g). But then g is a specialisation of f̂ over K(x̂). Composing, f specialises f̂ and
so R( f ) = 0. Therefore, R satisfies (7) and is the desired resultant form.

For (ii), right to left is evident. Assume therefore that R is a resultant form associated with W. If R = 0 then
dim W > ℓ, by Fact 2.10, so assume that R 6= 0. Let R′ be a prime factor of R (over an algebraically closed
field) and let f = ( f0, . . . , fℓ) be a generic root of R′. This implies, first, that for any ℓ′ < ℓ there exists a proper
sub-family of f whose coefficients are entirely free over K, and second, that R( f ) = 0, so Uk ∩ V( f ) 6= ∅ for
some k. If dim Uk < ℓ then every sub-family of f of size dim Uk must satisfy the corresponding resultant form
of Uk, contradicting the above. Therefore dim Uk = ℓ, and consequently R′ = RUk ,d (up to some scalar factor).
We conclude that R has the stated form, where Uk varies over the irreducible components of dimension ℓ. By
Fact 2.10, W can have no additional irreducible components.

Homogeneity follows from (7).
For (iv) we may assume that R = RW,d for some variety W. Exchanging any two arguments corresponding

to the polynomials of the same degree yields another resultant form for W, so it multiplies RW,d by some α 6= 0.
Doing this a second time we find RW,d again, so α = ±1. �

It follows that for a Chow form C, the degree degX∗
i
C does not depend on i, and will simply be denoted

degC. If W ⊆ Pn is a variety, then deg W = degCW is the degree of W as embedded in Pn.

Example 2.12. The Chow form of Pn is det (X∗
i,j)i,j≤n (i.e., the volume form X∗

0 ∧ . . . ∧ X∗
n), and the Chow form

of a single point [x] is x (both of degree 1). The resultant RP1( f , g) of two polynomials in P1 can be expressed
in the familiar determinant form.

Lemma 2.13. Let C ∈ K[X∗
0 , . . . , X∗

ℓ
] be a Chow form in dimension ℓ associated with an algebraic set W, and let λ be a

family of ℓ linear forms over K. Then C(λ, X∗) is a Chow form in dimension 0, associated with W ∩ V(λ). In particular,
C(λ, X∗) splits, and

• either C(λ, X∗) vanishes, and dim
(

W ∩ V(λ)
)

> 0,

• or C(λ, X∗) = ∏k<D xk, and W ∩ V(λ) =
{

[xk] : k < D
}

(possibly with repetitions).

If L = K(X∗
0 , . . . , X∗

ℓ−1), then C ∈ L[X∗
ℓ
] splits over La.
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Proof. We know that C(λ, µ) = 0 if and only if W ∩ V(λ, µ) 6= ∅, which means exactly that C(λ, X∗) is a Chow
form in dimension 0 associated with W ∩ V(λ). The dichotomy is the just a special case of Fact 2.11(ii).

In particular, C = C(λ̂, X∗
ℓ
) where λ̂i = ∑ X∗

i,jXj, so C splits as a special case of the above. �

Definition 2.14. Let C(X∗
0 , . . . , X∗

ℓ
) be a Chow form. As above, let L = K(X∗

0 , . . . , X∗
ℓ−1) and identify X∗

ℓ
with

X∗, so C ∈ L[X∗] splits over La. Let also f ∈ K[X]m, where m > 0. Then, in accordance with Definition 2.5, we
define

f ∧ C = ∏
k<D

f (xk), where C = ∏
k<D

xk.

In particular we have f ∧ 0 = 0 ∧ C = 0. As we shall see promptly, f ∧ C ∈ K[X∗
0 , . . . , X∗

ℓ−1] is again a Chow
form (in dimension ℓ− 1), so we may iterate the operation and define, for f = ( fi : i < k):

f ∧ C = f0 ∧
(

f1 ∧ . . . ( fk−1 ∧ C) . . .
)

.

Proposition 2.15. Let A be an integrally closed integral domain. Let C ∈ A[X∗
0 , . . . , X∗

ℓ
] be a Chow form in dimension

ℓ, associated with an algebraic set W.

(i) Let also k ≤ ℓ + 1 and f = ( f0, . . . , fk−1) be homogeneous polynomials over A. Then the iterated wedge
operation f ∧ C ∈ A[X∗

0 , . . . , X∗
ℓ−k] is well defined (i.e., all intermediate steps yield Chow forms), and is a

Chow form in dimension ℓ− k associated with W ∩ V( f ).
(ii) Fix degrees d ∈ Dk and for i < k let

f̂i = ∑ T∗
i,αXα

be a polynomial of degree di with formal unknown coefficients. Then

f̂ ∧ C ∈ A[X∗
0 , . . . , X∗

ℓ−k, T∗
0 , . . . , T∗

k−1]

is a resultant form in dimension ℓ associated with W, related with f ∧ C of the previous item by

( f̂ ∧ C)(λ, f ) = ( f ∧ C)(λ). (8)

If C = CW is the Chow form of a variety W of dimension ℓ, then f̂ ∧ C = RW,(1,...,1,d) is the resultant form (in

the appropriate degrees) of W.
(iii) If g is a permutation of f then f ∧ C = ±g ∧ C.

Proof. For (i) we only need to consider the case k = 1. Since A in integrally closed, so is A[X∗
0 , . . . , X∗

ℓ−1], so
f ∧ C ∈ A[X∗

0 , . . . , X∗
ℓ−1] by Lemma 2.7. Let λ be a family of ℓ linear forms. Both C and C(λ, X∗) are Chow

forms (in dimensions ℓ and 0, respectively), and since the wedge operation commutes with specialisation, we
have ( f ∧ C)(λ) = f ∧ C(λ, X∗). By Lemma 2.13, we have f ∧ C(λ, X∗) = 0 if and only W ∩ V(λ, f ) 6= ∅. Thus
f ∧ C is a Chow form associated with W ∩ V( f ).

For (ii), observe first that (8) is merely the fact that wedge commutes with specialisation. This, together with
(i), implies that f̂ ∧ C is indeed a resultant associated with W. Assume now that C = CW for a variety W. By
adding to f̂ formal linear forms ∑ X∗

i,jXj for i ≤ ℓ− k, we may assume that k = ℓ. Thus f̂ ∧ CW is a resultant

form associated with W, so f̂ ∧ CW = Rm
W,d for some m. Consider formal linear forms λi,s = ∑ X∗

i,s,jXj for i ≤ ℓ

and s < di, and let gi = ∏ λi,s. On the one hand, we have

( f̂ ∧ CW)(g) = g ∧ CW = ∏
{

CW(λ0,s0 , . . . , λℓ,sℓ) : si < di

}

.

On the other hand, For any choice of si we have

CW(λ0,s0 , . . . , λℓ,sℓ) | RW,d(g).

Thus necessarily m = 1.
For (iii) we may assume that C = CW is the Chow form of some variety, and that f = f̂ are polynomials

with formal unknown coefficients. Since the resultant form is unique up to a scalar factor, it follows from
f̂ ∧ C = RW,d that f ∧ C = α · g ∧ C for some α ∈ K×. In order to obtain α = ±1, specialise f̂ to appropriate
powers of linear forms with formal unknown coefficients. �

Notice that Proposition 2.15(iii) remains valid if some of the polynomials in f are constant. Indeed, if di = 0,
then f ∧ C = f D

i , where D = degC∏j 6=i dj, and this is invariant under permutations. In particular, if di = dj =
0 for i 6= j then f ∧ C = 1.
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Notation 2.16. When C = CPn , we allow ourselves to omit it from the notation:

f0 ∧ . . . ∧ fk−1 = f0 ∧ . . . ∧ fk−1 ∧ CPn .

For a family of polynomials F = ( fi)i<k we shall also write

F∧ = f0 ∧ . . . ∧ fk−1.

We observe that either dim V(F) = n − k and F∧ is a Chow form for V(F), or dim V(F) > n − k and
F∧ = 0. Also, any permutation of F can, at most, change the sign of F∧. When all the fi are linear, applying
a permutation σ multiplies F∧ by sgn(σ). So, considering the special case where each fi is a product of linear
forms, we conclude that applying a permutation σ to F multiplies F∧ by sgn(σ)∏ deg f i = sgndeg F∧

.

Proposition 2.17. Let K be algebraically closed, W ⊆ Pn a variety of dimension ℓ. Let d ∈ Dℓ and D = deg W ∏ di.
Finally, let R(T∗

0 , . . . , T∗
ℓ−1, X∗) = R(T∗, X∗) be the resultant of W in degrees (d, 1), and let L = K(T∗). Then

R ∈ L[X∗] splits over La as ∏k<D xk, and the geometric points [xk] are all distinct and conjugate over L. Moreover,
none of the coordinates of xk vanishes, and for any i < j ≤ n the ratio xk,i/xk,j is distinct for the different xk.

Proof. Notice that we may assume that K is infinite, and that if we apply any linear change of coordinates with
coefficients in K leaves us with the same situation (namely, a resultant applied to polynomials with algebra-
ically independent coefficients), so (∗) anything which would hold after some change of coordinates already
holds.

It follows from Proposition 2.15 that R = f̂ ∧ CW (for ℓ polynomials f̂ with unknown coefficients) splits,
and degX∗ R = D by Lemma 2.7(iv). By (∗), none of the coordinates of the points xk can vanish. Let Y = X∗

n,
so YD occurs in R with a non-zero coefficient α ∈ L. Let M = L(X∗

0 , . . . , X∗
n−1), so C ∈ M[Y] can be written

as αYD + . . . = α ∏k<D(Y − βk), with βk ∈ Ma. Then, up to a permutation, we have [xk] = [Y − βk], i.e.,
βk = ∑i<n

−xi
xn

X∗
i . Since C is irreducible over K, it is also irreducible over M, so all the βk are conjugate over M,

and therefore the geometric points [xk] are conjugate over L.
In order to show that the points are distinct, assume first that d = (1, . . . , 1), so R = CW . If some [xk]

appears with multiplicity then necessarily K has positive characteristic p and, up to a permutation, CW =
α ∏k< D

p
(Y − βk)

p. It follows that X∗
0 , . . . , X∗

n occur in CW as powers of p, and therefore all the unknowns do, so

CW is reducible, a contradiction.
For the general case, for each j < ℓ and m < dj let λj,m = ∑i X∗

j,m,iXi be a linear form, and let ĝj =

∏m<d j
λj,m. Then R(ĝ, X∗) = ĝ ∧R = ∏m0,...,mℓ−1

CW(X∗
0,m0

, . . . , X∗
ℓ−1,mℓ−1

, X∗), and each of the factors, viewed
as a polynomial in X∗, splits as deg W distinct points. Since the coefficients are generic, we obtain deg W · ∏ dj

distinct points. Since this is a specialisation of R, it, too, must split as distinct points.
One last application of (∗) shows that all the ratios must be distinct. �

Lemma 2.18. Let K be a field and W ⊆ Pn a projective variety defined over K, of dimension ℓ. Let d ∈ Dℓ+1, and
for i ≤ ℓ, let also fi = ∑ T∗

i,αXα ∈ K(T∗)[X]di
be a formal homogeneous polynomial of degree di. Let C = CW and

R = RW,d = f ∧ C ∈ K[T∗]. Let D = ∏ di and let w be any extension of the R-adic valuation from K(T∗) to
L = K(T∗)a.

For i ≤ n let Di = Di, let Ki = K(T∗
0 , . . . , T∗

i−1, T∗
i+1, . . . , T∗

n ) and let Li = Ka
i , so ( f 6=i) ∧ C ∈ Ki[X

∗] factors in

Li[X
∗] as αi ∏k<Di

xi,k, with αi ∈ Ki and xi,k = (. . . , 1).
(i) We have Li ⊆ Ow, and there exists ki ≤ Di such that

w
(

fi(xi,k)
)

=

{

1 k = ki

0 k 6= ki.

(ii) We have w(xi,ki
− xj,k j

) ≥ 1 for all i, j ≤ n.

Proof. The restriction of w to Ki, and therefore to Li, is trivial, so Li ⊆ Ow. The polynomial P = fi(xi,0) ∈ Li[T
∗
i ]

is irreducible, and the P-adic valuation on Li(T∗
i ) restricts to the R-adic valuation on K(T∗). It follows that, up

to an automorphism of L/K(T∗), the valuation w extends the P-adic valuation on Ki(T∗
i ). The first assertion

follows.
It follows that x0,k0 = . . . = xn,kn

is the unique common zero of the fi, where · is the residue map.
Let δ = x0,k0,0 − x1,k1,0, so w(δ) > 0. Then δ is algebraic over Ki(T∗

i ), and if δ′ 6= δ is some conjugate, then it is
of the form x0,k0,0 − x1,k′,0 for k′ 6= k1. By the moreover part of Proposition 2.17 we have w(x1,k1,0 − x1,k′,0) = 0,
so w(δ′) = 0 as well. If ∆ = N

(

δ/Ki(T∗
i )
)

, then w(∆) = w(δ) > 0, so necessarily w(∆) ≥ 1 (since we observed
that the value group of w↾Ki(T∗

i )
is Z). We conclude that w(δ) ≥ 1, and by the same reasoning, w(xi,ki

− xj,k j
) ≥ 1

for all i, j ≤ n. �
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3. AN ASYMPTOTIC VANDERMONDE DETERMINANT RELATION FOR HYPERSURFACES

Our aim here is to extend Theorem 1.4 (and Corollary 1.5) to intersections of hypersurfaces. Given a family
of homogeneous polynomials F = ( fi : i < k), there is little question as to the analogue of the right hand side,
namely, some power of the product of all resultants G∧ where G ∈ ( F

n+1). The main obstacle is that we are
missing points for a the large square matrix of the left hand side. More precisely, if m = deg F = ∑ deg fi, then
the cardinal of the set up all intersection points

⋃

G∈(F
n)
[G∧] will be smaller than (m

n) (unless all fi are linear).

Our solution is to add new “parasitical” points in a somewhat canonical manner. We choose an algebraically
generic direction for formal derivation (which is canonical), and use it to obtain the missing points. We then
need to make some arbitrary choices, namely, partition these new points into n! smaller groups which can be
used to complete the intersection points into good families of size (m

n).
In order to see how to get all necessary points (intersection and parasitical), let us consider first how we

would get them when all polynomials are linear, so let Λ = (λi : i < m) be a family of linear forms and
f = ∏ Λ = ∏i λi. In characteristic zero, ξ ∈ Pn is an intersection point of k forms in the family if and only if
f and all its derivatives (in some generic direction), up to order k − 1, vanish at ξ. In positive characteristic,
the usual notion of formal derivative can be a little problematic, and is better replaced with the following finer
one.

Definition 3.1. Consider a polynomial in several unknowns f ∈ A[X]. Add a new set of unknowns (of the
same number) dX, and decompose

f (X + dX) = ∑
k

∂k f ,

where ∂k f is homogeneous in dX of degree k. We may specialise dX to any tuple in A, obtaining a family of
operations ∂k : A[X] → A[X], or, if we wish to keep dX generic, ∂k : A[X, dX] → A[X, dX], which are called
formal Hasse derivatives.

When A is a field of characteristic zero, we also have

∂k =
dk

k!
.

The Hasse derivatives satisfy

∂k( f + g) = ∂k f + ∂kg, ∂k( f g) = ∑
0≤ℓ≤k

(∂ℓ f )(∂k−ℓg), ∂k∂ℓ =

(

k + ℓ

k

)

∂k+ℓ,

∂0 = id, ∂1Xi = dXi, k > deg f =⇒ ∂k f = 0,

and are moreover determined by these axioms (the axiom for ∂k∂ℓ is superfluous in our context).

Convention 3.2. Throughout, A denotes some integrally closed integral domain, and dX a tuple of new un-
knowns, so the Hasse derivatives are operations A[X, dX] → A[X, dX] (we notice that A[dX] is again an
integrally closed integral domain).

We let K = Frac
(

A[dX]
)

and L = Ka be the algebraic closure, so essentially everything will happen in L.
We also let B denote the integral closure of A[dX] inside L, i.e., the absolute integral closure of A[dX]. We shall
use the notation a � b to denote divisibility in B (i.e., both a and b/a are integral over A[dX]).

All polynomials are homogeneous.

Notation 3.3. For a single polynomial f and k ≤ n + 1 we define

f ∂k = f ∧ ∂1 f ∧ . . . ∧ ∂k−1 f .

In particular, for f ∈ A[X]d with d ≥ n we have f ∂n ∈ A[dX, X∗] and f ∂n+1 ∈ A[dX].

Notice that there can be no ambiguity of sign for f ∂k: if k ≤ 1 then there is no question of order, and for
k ≥ 2 the total degree is even.

Remark 3.4. Let f ∈ A[X]d. If k = d + 1 then f ∂k is a scalar:

f ∂d+1 = f ∂d ∧ ∂d f = (∂d f )deg f ∂d
= (∂d f )d!.

When k > d + 1, our definition of f ∂k may seem nonsensical, since ∂ℓ f is “homogeneous of negative degree”
for ℓ > d. Still, one may still consider ∂d+1 f ∧ . . . ∧ ∂k−1 f to be of degree (−1)k−d−1(k − d − 1)!, so

f ∂k = (∂d f )d! deg(∂d+1 f∧...∧∂k−1 f ) = (∂d f )(−1)k−d−1(k−d−1)!d!.
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Lemma 3.5. If f ∂k 6= 0 for any 2 ≤ k ≤ min(n + 1, deg f ) then f factors over any field extension as a product of
distinct irreducible factors.

Proof. If f = g2h then g | ∂1 f and so f ∂k = 0. �

Lemma 3.6. For any two polynomials and k ≤ n + 1:

(gh)∂k = ± ∏
0≤ℓ≤k

(

g∂ℓ ∧ h∂k−ℓ
)(k

ℓ
).

Proof. For k = 0 there is nothing to prove (CPn = CPn). We now proceed by induction:

(gh)∂k+1 = (gh)∂k ∧ ∂k(gh)

=

(

± ∏
0≤ℓ≤k

(

g∂ℓ ∧ h∂k−ℓ
)(k

ℓ
)

)

∧

(

∑
0≤j≤k

(∂jg)(∂k−jh)

)

= ± ∏
0≤ℓ≤k

(

(

g∂ℓ ∧ h∂k−ℓ
)(k

ℓ
)
∧

(

∑
0≤j≤k

(∂jg)(∂k−jh)

))

= ± ∏
0≤ℓ≤k

(

(

g∂ℓ ∧ h∂k−ℓ
)(k

ℓ
)
∧
(

(∂ℓg)(∂k−ℓh)
)

)

= ± ∏
0≤ℓ≤k

(

(

g∂ℓ+1 ∧ h∂k−ℓ
)(k

ℓ
)(

g∂ℓ ∧ h∂k+1−ℓ
)(k

ℓ
)
)

= ± ∏
0≤ℓ≤k+1

(

g∂ℓ ∧ h∂k+1−ℓ
)(k+1

ℓ
).

Following Remark 3.4, this remains valid even for terms of the form g∂ℓ where ℓ > deg g, or h∂k−ℓ where
k − ℓ > deg h. �

Question 3.7. One cannot fail to notice the similarity between Lemma 3.6 and the binomial formula. Can the
former be made an instance of the latter, in a ring (R,⊕,⊙), where ⊕ is multiplication, and ⊙ is some operation
based on ∧? In particular, we should only want to identify two polynomials f and g if f = ±g, and for f with
distinct irreducible factors, we should want its kth ⊙-power to be f ∂k.

Notation 3.8. It will be convenient to extend Notation 3.3 (and other notations later on) to a family F = ( fi :
i < m) of polynomials:

F∂k =

(

∏
i<m

fi

)∂k

.

Lemma 3.9. For a family F = ( fi : i < m) and Ω = (ωi : i < m) such that ∑ Ω ≤ n + 1, we have

F∂k = ± ∏
∑ Ω=k

(

∧

i

f
∂ωi
i

)( k
Ω)

,

where
(

k

Ω

)

=
k!
Ω!

=
k!

∏ ωi!
.

Proof. Follows directly from Lemma 3.6. Notice that following Remark 3.4, this remains valid even if k > deg fi

for some i. Also, if ωi > deg fi for more than one i, then
∧

i f ∂ωi = 1. �

Definition 3.10. Let f ∈ A[X]m, where m > n, be such that f ∂n+1 6= 0. We know that in this case f ∂n ∈
A[dX, X∗] splits (as a polynomial in X∗), coding a multi-set [ f ∂n] of cardinal m!

(m−n)! = n!N, where N = (m
n).

For a subset ψ =
{

[xi] : i < N
}

⊆ [ f ∂n], define

M f ,ψ =

(

νm−n(xi)

∂n f (xi)
: i < N

)

,
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namely the matrix whose ith column is νm−n(xi)
∂n f (xi)

. This is a square N × N matrix which does not depend on the
choice of representatives, and whose determinant only depends on the order of points for sign. We say that ψ

is a good subset of [ f ∂n] if M f ,ψ is invertible, and in this case we define

Φ f ,ψ = M−1
f ,ψ.

For ξ ∈ Ψ we define ϕ f ,ψ,ξ ∈ K[X]m−n to be the unique polynomial such that for all [x] ∈ ψ:

ϕ f ,ψ,ξ(x) =

{

∂n f (x) [x] = ξ,
0 [x] 6= ξ.

In other words, ϕ f ,ψ,ξ is the row of Φ f ,ψ corresponding to ξ.
By a partition of [ f ∂n] we mean a multi-set Ψ of subsets, such that each point belongs to as many ψ ∈ Ψ as

its multiplicity in [ f ∂n]. A partition into n! good subsets will be called good. If Ψ is a good partition, we define
(up to an undetermined sign) the “small” and the “large” associated determinants:

d f ,Ψ = ± ∏
ψ∈Ψ

det Φ f ,ψ, D f ,Ψ = f ∂n+1/d f ,Ψ = ± f ∂n+1 ∏
ψ∈Ψ

det M f ,ψ.

We say that f of degree m > n is good if f ∂n+1 6= 0 and a good partition exists.
We extend the definition to the case m = n, with one caveat, namely, that even if f ∂n+1 = (∂n f )n! 6= 0, it

may still happen that f ∂n = 0. Regardless of f ∂n, we consider that there exists a unique good partition Ψ (this
is indeed the case when f ∂n 6= 0), observing that in any case nothing depends on it:

M f ,ψ = (∂n f )−1, d f ,Ψ = (∂n f )−n!, D f ,Ψ = 1.

If F = ( fi : i < m) is a family of polynomials and f = ∏ fi, we have already agreed to use the notation
F∂k = f ∂k. Extending this convention, we shall say that F is good if f is good, write MF,ψ = M f ,ψ, DF,Ψ = D f ,Ψ,
and so on.

In particular, D f ,Ψd f ,Ψ = f ∂n+1.

Lemma 3.11. Let f ∈ A[X]m, with m ≥ n.

(i) If f splits and f ∂n+1 6= 0, then f is good.

(ii) If Ψ is a partition of [ f ∂n], and one can specialise f , Ψ into f , Ψ which are good, then f and Ψ are good.

(iii) If f specialises to a good polynomial f , then f is good. Moreover, for any good partition Ψ of [ f
∂n
], there exists

a good partition Ψ of [ f ∂n] such that f , Ψ specialise into f , Ψ.

Proof. Assume that f = ∏i<m λi and f ∂n+1 6= 0. If m = n, then f is good, so we may assume that m > n.
Then f ∂n 6= 0, and [ f ∂n] consists of N distinct points (ξ j : j < N) (all possible intersections of n among the λi),
each repeated n! times. By Theorem 1.4, ψ = (ξ j : j < N) is a good set, so Ψ = {ψ, ψ, . . .} (n! times) is a good
partition.

The second item is clear.
For the third, again we may assume that m > n, and consider a specialisation ϕ : A → A such that f = ϕ( f )

is good, with good partition Ψ. Extend ϕ to A[dX] → A[dX] as the identity on dX, and by Lemma 2.4(iii) we
can extend it further to a specialisation C → C such that f ∂n splits over C. Since factors of f ∂n are sent to factors

of f
∂n

, there is a partition Ψ of [ f ∂n] which gets sent to Ψ. �

Convention 3.12. When Ψ is a good partition we shall always enumerate ψ ∈ Ψ as {ξψ,i : i < N}. We may
choose representatives xψ,i for ξψ,i as convenient.

Lemma 3.13. Assume that Ψ is a good partition of [ f ∂n]. Then for every Ψ0 ⊆ Ψ and choice of points ξψ ∈ ψ for
ψ ∈ Ψ0:

D f ,Ψ ∏
ψ∈Ψ0

ϕ f ,ψ,ξψ
∈ B[X].

In particular, we have

D f ,Ψ ∈ B, D f ,Ψ ∏
ψ∈Ψ

ϕ f ,ψ,ξψ
∈ B[X].
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Proof. Let us consider a valuation w of L such that Ow ⊇ A[dX]. We choose representatives ξψ,i = [xψ,i] such
that f ∂n = ∏ψ,i xψ,i and w(xψ,i) ≥ 0 for all ψ, i. Therefore, all entries of the matrix Mψ =

(

νm−n(xψ,i) : i < N
)

are in Ow, and the same holds for the co-factor matrix det Mψ · M−1
ψ . The ith row of the latter is

det Mψ

∂n f (xψ,i)
ϕ f ,ψ,ξψ,i

.

It follows, in particular, that det Mψ ϕ f ,ψ,ξψ,i
∈ B[X]. Since det Mψ ∈ B as well, we have

D f ,Ψ ∏
ψ∈Ψ0

ϕ f ,ψ,ξψ
= ∏

ψ∈ΨrΨ0

det Mψ ∏
ψ∈Ψ0

(

det Mψ ϕ f ,ψ,ξψ

)

∈ B[X].

The rest consists of the two extreme cases Ψ0 = ∅ and Ψ0 = Ψ. �

Lemma 3.14. Let f ∈ A[X]d with d ≥ n and g ∈ A[X]m−d. Assume that f g is good, and let Ψ be a good partition.

For ψ ∈ Ψ let ψ f = ψ ∩ [ f ∂n], and let Ψ f = {ψ f : ψ ∈ Ψ} (again, a multi-set).

(i) We have f ∂n | ( f g)∂n, and each point of ( f g)∂n is either a point of f ∂n or is a zero of g (but not both). Moreover,

|ψ f | = (d
n) for all ψ ∈ Ψ.

(ii) The polynomial f is good, and Ψ f is a good partition of [ f ∂n].
(iii) Recall that � denotes divisibility in B, B, the absolute integral closure of A[dX]. Then

D f ,Ψ f
� D f g,Ψ.

(iv) For every ψ ∈ Ψ and ξ ∈ ψ f we have

ϕ f g,ψ,ξ = gϕ f ,ψ f ,ξ .

Therefore, for every choice of points ξψ ∈ ψ f :

D f ,Ψ f ∏
ψ∈Ψ

ϕ f g,ψ,ξψ
∈ B[X].

Proof. From Lemma 3.6 we have f ∂n | ( f g)∂n. Recall that ∂k( f g) = ∑ℓ≤k ∂ℓ f ∂k−ℓg, and let x | ( f g)∂n. If
g(x) = 0 then, since ∂n( f g)(x) 6= 0, we must have ∂k f (x) 6= 0 for some k < n, so [x] /∈ [ f ∂n]. If, on the other
hand, g(x) 6= 0, then by induction on k < n, one sees that ∂k( f g)(x) = g(x)∂k f (x) = 0, so ∂k f (x) = 0, and
thus [x] ∈ [ f ∂n]. This proves the main assertion of (i). If g(x) = 0 then νm−n(x), viewed as a linear function on
K[X]m−n, factors through dim K[X]m−n/(g). Therefore |ψ| ∩ V(g) ≤ dim K[X]m−n/(g) = N − (d

n), whence the
moreover part.

Let w be a valuation of L such that Ow ⊇ A[dX]. We may choose representatives [xψ,i] = ξψ,i with

w(xψ,i) ≥ 0,

f ∂n = ∏
ψ∈Ψ

∏
[xψ,i]∈ψ f

xψ,i,

( f g)∂n/ f ∂n = ∏
ψ∈Ψ

∏
[xψ,i]∈ψ∩V(g)

xψ,i.

Writing g = ∑ αsXs, we let w(g) = mins w(αs), and let s0 be lexicographically least such that w(αs0) = w(g).
Order the monomials of order degree m− n such that the first (d

n) are those of the form Xs+s0 , where |s| = d− n.
Order the points of ψ such that those of ψ f come first. Let M be the matrix whose first (d

n) rows are the
coefficient vectors of Xsg/αs0 for |s| = d − n, and the remaining rows are the same as in the identity matrix.
Then w(det M) = 0, and for ψ ∈ Ψ:

M
(

νm−n(xψ,i) : i < N
)

=

((

g(xψ,i)νd−n(xψ,i)/αs0 : i < (d
n)
)

0

? Mψ

)

,
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where Mψ is polynomial in
(

xψ,i : i ≥ (d
n)
)

, so w(det Mψ) ≥ 0. It follows that

w
(

D f g,Ψ

)

= ∑
ψ

w
(

det M
(

νm−n(xψ,i) : i < N
))

≥ ∑
ψ

w

(

det
(

g(xψ,i)νm−n(xψ,i)/αs0 : i <

(

d

n

)))

≥ ∑
ψ

w

(

det
(

νm−n(xψ,i) : i <

(

d

n

)))

= w
(

D f ,Ψ f

)

.

This tells us first that Ψ f is indeed a good partition, so f is good as well, whence (ii). Since w was arbitrary
such that Ow ⊇ A[dX], this proves (iii).

For ξ = [x] ∈ ψ f ∈ Ψ f we have f (x) = . . . = ∂n−1 f (x) = 0, so ∂n( f g)(x) = g(x)∂n f (x). Thus, for [y] ∈ ψ
we have

g(y)ϕ f ,ψ f ,ξ(y) =











g(y)∂n f (y) = ∂n( f g)(y) ξ = [y],
g(y) · 0 = 0 ξ 6= [y] ∈ ψ f ,
0 · ϕ f ,ψ f ,ξ(y) = 0 [y] /∈ ψ f .

This proves the first assertion of (iv), and the second follows from Lemma 3.13. �

In what follows, we shall consider a family of (non constant) polynomials F = ( fi : i < m), such that m ≥ n.
We are going to associate to it two “error terms”, again a “small” and a “large” one.

eF,Ψ = ∏
G∈(F

n)

D
(deg G

n )
G,ΨG

,

EF,Ψ = ∏
G∈(F

n)

(

D
(deg G

n )
G,ΨG

G∂n+1
)

= eF,Ψ ∏
G∈(F

n)

G∂n+1.

We observe that in either one, the number of terms grows as mn.

Lemma 3.15. Let F = ( fi : i < m) be a family of polynomials in A[X], where m ≥ n, and let ΨF be a good partition for
F. Then

eF,ΨF
dF,ΨF

∈ B.

If g ∈ A[X] is an additional polynomial, and Ψ is a good partition for the augmented family Fg, then

eF,ΨF
dF,ΨF

� eFg,ΨdFg,Ψ.

Proof. Let w be such that Ow ⊇ A[dX]. Choose some enumeration {Gi : i < N} = (F
n), and enumerate each

ψF as
{

[xψ,j] : j
}

, first putting all points of ψG0 , then all those of ψG1 r ψG0 , and so on, noting that this indeed

exhausts ψF. Notice that ψG ∩ ψG′ = ψG∩G′ is of cardinal (deg G∩G′

n ) (or empty if deg G ∩ G′ < n), and similarly
for intersections of more than two Gi’s. In other words, for each j we have some ij such that [xψ,j] ∈ ψGij

for all

ψ. By Lemma 3.14(iv), for each j:

∑
ψ

w(ϕF,ψF,[xψ,j]
) + w(DGij

,ΨGij

) ≥ 0.

Finally, for each Gi there can be at most (deg Gi
n ) many values of j such that i = ij. Therefore

w(eF,ΨF
dF,ΨF

) = ∑
ψ

w
(

det ΦF,ψF

)

+ ∑
G∈(F

n)

(

deg G

n

)

w(DG,ΨG
) ≥ 0.

This proves our first assertion.
For the second, start in the same fashion, this time for the augmented family Fg, putting all G ∈ (F

n) before
any G ∈ (Fg

n )r (F
n). In particular, the first (deg F

n ) points of any ψ are those of ψF. The matrix ΦFg,ψ takes the
form

ΦFg,ψ =

(

ΦF,ψF
W

V

)

=

(

ΦF,ψF

I

)(

W
V

)

,
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where W is the matrix of the operation A[X]deg F−n → A[Xdeg Fg−n] of multiplication by g, and the rows of V

are of the form ϕFg,ψ,[xy,j]
where Gi j

can be written as G′
i j

g, where G′
i j
∈ ( F

n−1). By the same reasoning as before:

∑
ψ

w
(

det ΦFg,ψ
)

+ ∑
G∈( F

n−1)

(

deg Gg

n

)

w(DGg,ΨGg
) ≥ ∑

ψ

w
(

det ΦF,ψF

)

,

i.e.,

w(eFg,ΨdFg,Ψ) = ∑
ψ

w
(

det ΦFg,ψ
)

+ ∑
G∈(Fg

n )

(

deg G

n

)

w(DG,ΨG
)

≥ ∑
ψ

w
(

det ΦF,ψF

)

+ ∑
G∈(F

n)

(

deg G

n

)

w(DG,ΨG
)

= w(eF,ΨF
dF,ΨF

).

This concludes the proof. �

By a generic family of polynomials we mean a family F = ( fi : i < m) of polynomials with formal unknown
coefficients: fi = ∑s T∗

i,sXs ∈ A[X], where A = Z[T∗]. By Lemma 3.11, every generic family is good. For any

H ∈ ( F
n+1) we have H∧ ∈ Z[T∗]. By Proposition 2.15, H∧ is the resultant form for Pn(Qa) in the appropriate

degrees, so it is irreducible in Q[T∗]. On the other hand, reducing modulo any prime p sends H∧ to the
resultant form for Pn(Fa

p). It follows that H∧ is irreducible in Z[T∗].

Theorem 3.16. Let F = ( fi : i < k) be a family of polynomials in A[X], where k ≥ n, and let Ψ be a good partition for
F. Then

1 � DF,Ψ ∏
H∈( F

n+1)

(H∧)−n!n � EF,Ψ, (9)

1 � eF,ΨdF,Ψ ∏
H∈( F

n+1)

(H∧)−n! � EF,Ψ. (10)

Proof. We may assume that F is a generic family, and A = Z[T∗] (since any family is a specialisation of a generic
one). Let H ∈ ( F

n+1), and let w be any extension to L of the H∧-adic valuation on A[dX]. Fix representatives
such that w(xψ,i) ≥ 0 and F∂n = ∏ψ,i xψ,i. For every G ∈ (H

n ) we have (G∧)n! | f ∂n, so ψ ∈ Ψ contains [G∧]. By
Lemma 2.18:

w
(

D f ,Ψ

)

= ∑
ψ

w
(

det
(

νm−n(xψ,i) : i < N
))

≥ n!n.

With Fact 2.2, this proves the first relation of (9).
Let (αi : i < ℓ) be all K-conjugates of DF,Ψ, so w(αi) ≥ n!n for all i. If we had w(αj) > n!n for some j,

then w
(

∏ αi

)

> ℓn!n, i.e, (H∧)ℓn!n+1 | ∏ αi. We can specialise the whole situation to the case where all the
polynomials are products of generic linear forms, in which case the latter divisibility relation is impossible.
Therefore w(α) = n!n for every conjugate of DF,Ψ. On the other hand, we have dF,ΨDF,Ψ = F∂n+1, and
w(F∂n+1) = (n+ 1)!, so w(dF,Ψ) = n!. For G ∈ (F

n), the valuation w is trivial on Z[G, dX] (the sub-ring of A[dX]
generated by dX and the coefficients of G), so w(eF,ΨdF,Ψ) = n!. With Lemma 3.15, the first relation of (10)
follows.

Finally, by Lemma 3.9 we have

eF,ΨdF,ΨDF,Ψ = eF,ΨF∂n+1 � EF,Ψ ∏
H∈( F

n+1)

(H∧)(n+1)!,

i.e.,


DF,Ψ ∏
H∈( F

n+1)

(H∧)−n!n







eF,ΨdF,Ψ ∏
H∈( F

n+1)

(H∧)−n!



 � EF,Ψ.

The remaining relations follows. �



THE VANDERMONDE DETERMINANT IDENTITY IN HIGHER DIMENSION 15

We consider Theorem 3.16 to be the analogue for hypersurfaces of the Vandermonde identity Theorem 1.4.
Indeed, consider first the case where all the fi are linear. Then ∏H∈( F

n+1)
(H∧)n!n is just the n! power of the right

hand side of the Vandermonde identity (4), while DΨ, f is in fact in A[dX], and is the n! power of the left hand
side, multiplied by some power of the scalars ∂1 fi = fi(dX). In addition, the error terms e f ,Ψ and E f ,Ψ are
scalars (again, powers of fi(dX)). Thus Theorem 1.4 is a special case of (9). Similarly, d f ,Ψ is the n! power of
the left hand side of the dual Vandermonde identity (5), so Corollary 1.5 is a special case of (10).

In the general case, ∏H∈( F
n+1)

(H∧)n!n analogous to the right hand side of (4), telling us whether n + 1 poly-

nomials of our family have a common zero, while DΨ, f is analogous to the determinant of the left hand side.
Thus (9) tells us that they are asymptotically the same: one is a factor of the others, with the degree of the
quotient having a strictly smaller rate of growth (mn, compared with mn+1), and similarly for (10).

We obtain, using the same ideas, a version relative to a hypersurface defined by a polynomial g. The “right
hand side”, telling us whether n polynomials have a common zero on the hypersurface, is ∏H∈(F

n)
(g ∧ H∧)n!n,

and the theorem tells us that it divides the “relative determinant” D f g,Ψ/D f ,Ψ, and asymptotically equal to
it, again with the degree of the quotient having a strictly smaller rate of growth (mn−1, compared with mn).
Indeed, for the rather of growth of the error terms, observe that:

eFg,Ψ

eF,ΨF

= ∏
G∈( F

n−1)

D
(deg Gg

n )
Gg,ΨGg

,
EFg,Ψ

EF,ΨF

=
eFg,Ψ

eF,ΨF

∏
G∈( F

n−1)

(Gg)∂n+1.

Corollary 3.17. Let F = ( fi : i < k) be a family of polynomials in A[X], where k ≥ n − 1, let g ∈ A[X] be one
additional polynomial, and let Ψ be a good partition for Fg. Then

1 �
DFg,Ψ

DF,ΨF

∏
H∈(F

n)

(g ∧ H∧)−n!n �
EFg,Ψ

EF,ΨF

, (11)

1 �
eFg,ΨdFg,Ψ

eF,ΨF
dF,ΨF

∏
H∈(F

n)

(g ∧ H∧)−n! �
EFg,Ψ

EF,ΨF

. (12)

Proof. As in the proof of Theorem 3.16, we may assume that Fg forms a generic family. We know from
Lemma 3.14(iii) that DFg,Ψ/DF,ΨF

∈ B. If H ∈ (F
n) and w extends the (g ∧ H∧)-adic valuation, then

w(DFg,Ψ) = n!n while w(DF,ΨF
) = 0. The first relation of (11) follows. The first relation of (12) follows by

the same kind of reasoning, using Lemma 3.15. As in the proof of Theorem 3.16, the product of the two middle
terms divides the common right term, concluding the proof. �
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