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A HIGHER-DIMENSIONAL VERSION OF THE VANDERMONDE DETERMINANT

IDENTITY

ITAÏ BEN YAACOV

Abstract. We generalise the (projective) Vandermonde determinant identity to projective dimension
higher than one.

The Vandermonde determinant identity asserts that in any commutative ring A,

det











1 x0 . . . xd
0

1 x1 . . . xd
1

...
...

...
1 xd . . . xd

d











=
∏

i<j≤d

(xj − xi).(1)

We may state it equivalently by replacing each xi with a formal unknown Xi and work in Z[X ]. We shall
say that this instance of the identity is in degree d, and since each row depends on a single unknown, it is
in (affine) dimension one. Homogenising we get the projective dimension one version, namely
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=
∏

i<j≤d

(XiYj −XjYi) =
∏

i<j≤d

det

(

Xi Yi

Xj Yj

)

.(2)

What about a version of (2) in higher projective dimension? In dimension n one may seek an identity of
the form

det(A) =
∏

i0<...<in

det







Xi0,0 . . . Xi0,n

...
...

Xin,0 . . . Xin,n






,(3)

where the columns of A should correspond to monomials of degree d in n+ 1 variables.

Notation 1. Let R be a commutative ring, n,m, d ∈ N. Order monomials of total degree d in n+1 variables

lexicographically, and define νd : Rn+1 → R(n+d

n ) as the corresponding Veronese embedding, that is, νi(x) is
the ith monomial applied to x. We extend νd to a map Mm×(n+1)(R) → M

m×(n+d

n
)(R) by applying νd to

each row. Notice that n is determined by the argument so we shall use the same notation for different values
of n. When d is clear from the context we just write ν.

Thus one may expect A in (3) to be νX where X is a matrix of size
(

n+d

n

)

× (n+ 1) (and the right hand
side is the product of minors of X of order n + 1). This, however, seems to be irremediably false. The
obstacle is that in the dimension one case, the matrix X is invariant under an operation which therefore
passes unnoticed, although it plays a crucial role for n > 1.

Notation 2. Let R be a commutative ring, n,m, d ∈ N.
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(i) We define µ : Mm×(n+1)(R) → M(mn)×(n+1)(R) by sending a matrix X to the matrix of minors of X

of order n. Minors are ordered by the lexicographic ordering on the sequences rows/columns which
are taken.

(ii) We define µ′ : Mm×(n+1)(R) → R by sending a matrix X to the product of minors of X of order
n+ 1.

Again, n is determined by the arguments.

In dimension one we have

X =







X0 Y0

...
...

Xd Yd






= µX,

and (2) asserts that det(νX) = det(νµX) = µ′X . In higher dimension we have the following.

Theorem 3. Let R be a commutative ring, n, d ∈ N, and let X ∈ M(n+d)×(n+1)(R). Then νµX is a square

matrix of order
(

n+d

n

)

, and the Vandermonde identity of degree d and dimension n holds:

det(νµX) = (µ′X)n.(4)

Definition 4. Let P ∈ C[X ] be a polynomials in k unknowns. Say that a ∈ C
k is a root of order n of P if

P as well as all its differentials up to order n− 1 vanish at a, but its differential of order n does not. A root
of order one is simple.

Fact 5. Let P,Q ∈ C[X ] be polynomials in k unknowns such that Q is irreducible, and every root a ∈ C
k of

Q is also a root of P of order at least n. Then Qn divides P .

Proof. When n = 1, we know by Hilbert’s Nullstellensatz that Q divides P ℓ for some ℓ. Since Q is irreducible
and C[X ] is a unique factorisation domain, Q divides P . Our assertion follows by induction, applying the
case n = 1 to P , P/Q, P/Q2 and so on. �

Lemma 6. Let B ∈ Mn+1(R). Then there exist matrices B′ ∈ Mn+1(R) and B′′ ∈ M(n+d

n )(R) such that for

all X ∈ Mm×(n+1)(R) we have µ(XB) = (µX)B′ and ν(XB) = (νX)B′′, and if B is invertible then so are

B′ and B′′.

Proof. When B is an elementary matrix (i.e., corresponding to an elementary column operation) this is easy,
and the general case follows. �

Proof of Theorem 3. It will be enough to prove this in the case where X = (Xi,j)i<n+d, j≤n are formal
unknowns and R = C[X ] is the polynomial ring in these unknowns.

Consider a matrix A = (ai,j) ∈ M(n+d)×(n+1)(C) such that ai,0 = 0 for i ≤ n:

A = X(A) =





















0 ∗ . . . ∗

...
...

...
0 ∗ . . . ∗

∗ ∗ . . . ∗

...
...

...
∗ ∗ . . . ∗





















,(5)

with the zeros in the first n+ 1 rows. Next,

µX(A) = µA =





















0 . . . 0 ∗

...
...

...
0 . . . 0 ∗

∗ . . . ∗ ∗

...
...

...
∗ . . . ∗ ∗





















, νµX(A) = νµA =





















0 . . . 0 ∗

...
...

...
0 . . . 0 ∗

∗ . . . ∗ ∗

...
...

...
∗ . . . ∗ ∗





















,
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again with the zeros in the first n+1 rows (the two matrices have a different number of columns). Since the
derivative of a determinant is the sum of determinants with each row derived, the polynomial det(νµX), as
well as its derivatives up to order n− 1, vanish at A.

Consider now an arbitrary A whose first n + 1 rows are linearly dependent. Then there is an invertible
matrix B such that A′ = AB is as in (5). It follows by Lemma 6 that νµA′ = (νµA)B′, where B′ is again
invertible. It follows that det(νµX) = c det(νµXB), where c ∈ C

×, and has a zero of order n at A. Let
P = det(Xi,j)i,j≤n denote the first minor of order n + 1. By Fact 5, Pn divides det(νµX). By symmetry,
(µ′X)n divides det(νµX) and a quick calculation reveals the have the same degrees, so they only differ by
a constant factor c.

We are left with proving that c = 1. We do this by induction on (n, d). When n = 1, we have already
seen that (4) is a special case of the usual Vandermonde identity. When d = 1, (4) is just the fact that for a
square matrix A of order n+ 1, the determinant of the cofactor matrix of A is detAn.

When n, d > 1, let us substitute (1, 0, . . . , 0) for the first row of X . Let Y be X without this row and

let Z be X with both first row and column dropped. Let also ν′ = νd−1 : Rn+1 → R(n+d−1

n ). Then by the
(n, d− 1) and (n− 1, d) cases, respectively,

det(νµY ) = (µ′Y )n, det(νµZ) = (µ′Z)n−1.

Now,

µX =



















0

µZ
...
0

µY



















, νµX =



















0 . . . 0

νµZ
...

...
0 . . . 0

νµY



















,

where zeros appear in
(

n+d−1
n−1

)

rows, and in νµY in all columns corresponding to monomials in which the last

unknown appears. The matrices νµZ and νµY have dimensions
(

n+d−1
n−1

)

×
(

n+d−1
n−1

)

and
(

n+d−1
n

)

×
(

n+d−1
n−1

)

,

respectively, and the right block of νµY consists of ν′µY with the ith row multiplied by (µY )i,n. Thus

det(νµX) = det(νµZ) det(ν′µY )
∏

i

(µY )i,n = (µ′Y )n(µ′Z)n−1(µ′Z) = (µ′X)n.

Since the right hand side does not vanish even in this special case, the coefficient is indeed 1 and we are
done. �
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