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ABSTRACT

Multicomponent signals, i.e. superpositions of modulated

waves, arise in many physical or biological systems. Ex-

ploiting the particular structure of these signals, denoising

methods based on time-frequency distributions often outper-

form standard techniques such as those based on diagonal

estimation or sparsity approaches. Recently, a simple de-

noising technique based on local integration in scale of the

wavelet transform was proposed. In spite of its behaviour be-

ing better compared to classical techniques for medium noise

levels, it does not perform so well in other cases. We propose

here a method to improve denoising behaviour based on a

more accurate mode reconstruction technique. The method

is detailed for time-frequency representation given by short-

time Fourier and continuous wavelet transforms, with the

emphasis placed on their differences.

Index Terms— Time-frequency, ridge, synchrosqueez-

ing, denoising, multicomponent signals

1. INTRODUCTION

Many signals from the physical world can be modeled as

a sum of amplitude- and frequency-modulated (AM–FM)

waves, called multicomponent signals, which have been the

focus of much interest in the past few decades. As a result

of their simplicity and efficiency, linear time-frequency (TF)

transforms such as short-time Fourier transform (STFT) and

continuous wavelet transform (CWT) have received particu-

lar attention. The STFT and CWT of multicomponent signals

draw so-called ridges in the TF plane which, once detected,

allow for the reconstruction of the different components by

considering the transform on the ridges [1]. More recently, it

was shown in [2, 3] that local frequency integration improved

the robustness to noise of the reconstruction.

Yet, these methods do not perform very well when the

frequency modulation is strong, i.e. when the modes locally

behave like linear chirps. We propose here to adapt the size

of the integration domain to frequency modulation and noise

level.

Section 2 introduces the notation, and recalls the usual

first-order approximation of the CWT and STFT of multicom-

ponent signals. Then, section 3 extends these approximations

to strong frequency modulations, while section 4 shows how

to reconstruct the components in a noisy context. Finally nu-

merical results are given in section 5, demonstrating the effi-

ciency of the method on the one hand, and putting the empha-

sis on the differences between STFT and CWT on the other.

2. DEFINITIONS

2.1. Short-Time Fourier Transform

In the following, we denote by L1(R) and L2(R) the space

of real integrable and square-integrable functions. Given a

signal s ∈ L1(R), its Fourier transform is defined by:

ŝ(η) :=

∫

R

s(t) e−2iπηt dt. (1)

Taking a window g ∈ S(R), the (modified) Short-Time

Fourier Transform (STFT) of a signal s is defined by

Vs(η, t) :=

∫

R

s(τ)g(τ − t)e−2iπη(τ−t) dτ. (2)

The STFT admits the following synthesis formula:

s(t) =
1

g(0)

∫

R

Vs(η, t) dη, (3)

provided that η 7→ Vs(η, t) is integrable, which will always

be the case in this paper.

2.2. Continuous Wavelet Transform

Taking an admissible wavelet ψ ∈ L2(R) (i.e. CΨ :=
∫∞
0

|ψ̂(ξ)|2
ξ dξ < ∞) and letting ψa,t(τ) := 1

aψ
(

τ−t
a

)

, we

define the CWT of the signal s by:

Ws(a, t) = 〈s, ψa,t〉

=
1

a

∫

R

s(τ)ψ

(

τ − t

a

)

dτ, (4)



where z̄ denotes the complex conjugate of z. We suppose that

ψ is analytic, i.e. Supp(ψ̂) ⊂ [0,∞[, so that the WT Ws

of a real signal s is the half of the WT of its analytic signal

san = s + iH(s), where H stands for the Hilbert transform

(see [4] for details). We recall the Morlet formula (obtained

by taking a Dirac for synthesis, see [4] for instance):

san(t) =
1

C ′
ψ

∫ ∞

0

Ws(a, t)
da

a
, (5)

where C ′
ψ =

∫∞
0
ψ̂(ξ)dξξ . The real signal is easily obtained

by s = 1
2Re(san).

2.3. Multicomponent signals and ridges

A general modulated wave writes h(t) = a(t)e2iπφ(t), with

a(t) > 0 and φ′(t) > 0. When a and φ′ are slow-varying

functions, both the CWT and STFT of such signals have been

studied for decades, and can be well approximated in the

vicinity of time t by considering the pure wave

h̃1(t+ τ) = a(t)e2iπ[φ(t)+φ
′(t)τ ]. (6)

We then get

Vh(η, t) ≈ h(t) ĝ(η − φ′(t))

Wh(a, t) ≈ h(t) ψ̂(aφ′(t)),
(7)

The frequency center of ψ being assumed to be one with-

out any loss of generality. Dealing with multicomponent sig-

nals, i.e. superpositions of modes, is no more complicated as

soon as the different components are separated in frequency,

which means their TF distribution do not overlap. Let s(t) =
∑K
k=1 ak(t)e

2iπφk(t) be a multicomponent signal, we recall

the separation condition for both STFT and CWT:

Proposition 2.1. The signal s is separated for STFT if

|φ′k(t)− φ′l(t)| > Supp ĝ, k 6= l, (8)

and for CWT if

|φ′k(t)− φ′l(t)|
|φ′k(t) + φ′l(t)|

>
1

2
Supp ψ̂, k 6= l, (9)

where Supp ĝ (resp. ψ̂) denotes the size of the frequency

bandwidth of g (resp. ψ). The difference arises here because

of the logarithmic frequency description used by CWT. Also,

studying separated multicomponent signals amounts to study-

ing single components, which we will do in the sequel.

2.4. Gaussian window and wavelet

Due to its optimal TF resolution, the Gaussian function is of-

ten used as window g. Let us define the Gaussian window

and its corresponding complex Gaussian (also called Morlet)

wavelet:

g(t) = σ−1/2e−π
t2

σ2 , (10)

ψ(t) = σ−1/2e−π
t2

σ2 e2iπt. (11)

The parameter σ enables the choice of the size of the win-

dow/wavelet in accordance with (8) and (9). The next section

shows how to use these particular functions to extend approx-

imations (7) to the case of strong frequency modulations.

3. RECONSTRUCTING STRONG

FREQUENCY-MODULATED SIGNALS

Let us now assume that φ′′(t) is no longer negligible, then

first order approximations (7) no longer hold, and more in-

volved techniques are needed. For that purpose, an asymp-

totic method in time domain, the stationary phase approxima-

tion, has been used successfully in [1]; a different technique

introduced in [5] is to expand the phase up to the second order.

The next section derives the corresponding approximation of

the STFT and CWT magnitude, on which our denoising tech-

nique is based.

3.1. Exact formulae for a Gaussian window/wavelet

We now aim to extend formulae (7) when the frequency mod-

ulation is not negligible. The simplest way to proceed is to

approximate the mode h in the vicinity of t by its second-

order Taylor expansion:

h̃2(t+ τ) = a(t)e2iπ[φ(t)+φ
′(t)τ+ 1

2φ
′′(t)τ2]. (12)

To study the STFT of such chirps, we need to compute the

Fourier transform of a Gaussian modulated linear chirp.

Proposition 3.1. Consider the function u(t) = e−πzt
2

, where

z = reiθ with cos θ > 0, so that the function is integrable.

Then its Fourier transform is

û(ξ) = r−
1
2 e−i

θ
2 e−

π

reiθ
ξ2 . (13)

Proof. One can proceed as in the case when z is real: it suf-

fices to differentiate u and consider the Fourier transform of

the obtained differential equation (see Appendix A of [6] for

instance).

Theorem 3.1. For a Gaussian window or its associated Mor-

let wavelet, the magnitude of the STFT and CWT transform of

h̃2 admits the following closed-form expressions:

|Vh̃2
(η, t)| = |h(t)|σ 1

2 (1 + σ4φ′′(t)2)−
1
4 e

−πσ2(η−φ′(t))2

1+σ4φ′′(t)2

|Wh̃2
(a, t)| = |h(t)|σ 1

2 (1 + σ4a4φ′′(t)2)−
1
4 e

−πσ2(1−aφ′(t))2

1+σ4a4φ′′(t)2 .



Proof. For a fixed time t, equation (12) and Proposition 3.1

give

Vh̃2
(η, t) = h(t)σ− 1

2 r−
1
2 e−i

θ
2 e−

π
r
e−iθ(η−φ′(t))2 ,(14)

with r = ( 1
σ4 +φ′′(t)2)

1
2 and θ = arctan(−φ′′(t)σ2). Using

the identity cos arctanx = 1√
1+x2

, one finally obtains Vh̃2
,

and Wh̃2
in the same manner.

This shows that the magnitude of the STFT of a linear

chirp is also a Gaussian function centered in η = φ′(t). The

difference with equations (7) lies in the magnitude and the

width of this Gaussian. The formula for the CWT is very

similar, except that σ is replaced by aσ.

3.2. Stationary phase approximation

We have explicit formulae for the STFT and the CWT of a

linear chirp, when both g and ψ are Gaussian. However, in a

more general context such formulae are no longer available,

but the transforms can still be well approximated by the sta-

tionary phase approximation [7]. Let us suppose that φ′(t) is

strictly monotonic, then for any (η, t) there exists at most one

time tc such that φ′k(tc) = η. If tc exists, then the stationary

phase approximation gives

|Vh(η, t)| ≈ |h(tc)|
g(tc − t)
√

|φ′′(tc)|
. (15)

We can conduct the same reasoning with the CWT, where η
is replaced by 1/a, which gives

|Wh(a, t)| ≈ |h(tc)|
∣

∣ψ
(

tc−t
a

)
∣

∣

a
√

|φ′′(tc)|
. (16)

The method presented here can be adapted to any general win-

dow, using these formulae.

4. DENOISING MULTICOMPONENT SIGNALS

The previous section gave details about how the information

is localised around the ridges. We aim here at using this in-

formation for denoising ; so we consider a multicomponent

signal corrupted by a white Gaussian noise. To denoise the

signal we propose the following method, also used in [3]:

• Estimate the ridge at time t, φ′(t).

• Compute the integration domains I(t), so that for η ∈
I(t), |Vh(η, t)| is higher than the noise level.

• Integrate the STFT or CWT of the noisy signal on the

domain, to get an estimate of h(t).

• Iterate the process for all times t and all components.

This process is illustrated in Figure 1, where the STFT and

CWT of an AM–FM mode are displayed along with a slice

of both transforms for a fixed time, showing the integration

domain. The following sections will explain how to choose

the frequency integration domains I(t), considering either the

first- or second-order approximation.
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Fig. 1. Illustration of STFT- or CWT-based denoising. (a)

STFT of a noisy AM–FM wave. (b) a slice of the STFT at

time t = 1
2 , along with the mean noise level and the integrated

part. (c) and (d): idem for CWT, scales being displayed on a

logarithmic scale.

4.1. Noise distribution in the transformed domain

Let us start by quantifying the noise distribution on STFT and

CWT. We consider a noisy realisation s(t) = h(t) + n(t),
where n is a Gaussian process with 0 mean and variance σ2

n.

For a fixed frequency η or scale a, a simple calculation leads

to
Var(|Vn(η, t)|) = σ2

n

Var(|Wn(a, t)|) = 1
aσ

2
n.

(17)

4.2. Integration domain, first order

According to equation (7), η 7→ |Vh(η, t)| almost reaches a
maximum at φ′(t), and is symmetric with respect to φ′(t).
Thus, we aim at computing ∆1,V such that |Vh(φ′(t) ±
∆1,V , t)| = σn. Using equation (17) and remarking that√
σ|h(t)| = |Vh(φ′(t), t)| = Vmax(t), we get

∆1,V =
1

σ
√

π

√

− log
σn

Vmax(t)
. (18)

To compute the analogue for the CWT leads to integrate on

[
1−∆1,W

φ′(t) ,
1−∆1,W

φ′(t) ], with

∆1,W =
1

σ
√

π

√

− log

(

σn

Wmax(t)
√

a

)

, (19)

where a =
1±∆1,W

φ′(t) is the corresponding scale. An easy way

to remove a from the right-hand side is to approximate a by

φ′(t).



4.3. Second order model

A similar computation for the second-order model gives

∆2,V =

√
1+σ4φ′′(t)2

σ
√
π

√

− log σn

Vmax(t)
,

∆2,W =

√
1+a4σ4φ′′(t)2

σ
√
π

√

− log
(

σn

Wmax(t)
√
a

)

,
(20)

where we can still use the approximation a ≈ φ′(t).

5. NUMERICAL RESULTS

This section shows the efficiency of the denoising method

on synthetic signals. Methods will be denoted by STFT1,

STFT2, CWT1 or CWT2, depending on the transform and

the approximation order. We will compare them with a

general TF denoising technique: Block-Thresholding [8],

denoted by BT hereafter. Ridges are estimated using a sim-

ple heuristic search like in [5], whereas φ′′k(t) is estimated

by ridge differentiation after a regularizing spline-fitting

step. The code implementing the method can be down-

loaded from http://www-ljk.imag.fr/membres/

Thomas.Oberlin/Eusipco13.tar.gz, together with

Matlab scripts that plot all the figures of this paper.

5.1. A first example

Let us first assess the efficiency of first-order methods. Figure

2 (a) and (b) show the STFT and CWT of a low-modulated 3-

component signal. Denoising results for this signal are de-

picted on Figure 2 (c); they show that STFT1 and CWT1

clearly outperform BT for any input SNR. Note however that

the method does not work for very high noise levels (SNR <
−5dB), since the ridges are no longer correctly estimated.
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Fig. 2. Denoising performances on a synthetic 3-components

signal. (a) STFT with window σ = 0.05. (b) CWT with

σ = 7. (c) comparison between 3 methods.

5.2. STFT vs CWT, and window’s size

Let us here stress the differences between STFT and CWT.

First, note that the denoising performance depends on the

ability of the transform to sparsely represent the signal. If the

signal is made of monochromatic waves, taking a large win-

dow will ensure a quasi-perfect TF representation (i.e., made

of three thin lines). But if the components are frequency mod-

ulated, a very large window will cause strong time diffusion,

which hampers the quality of the representation. Thus, one

has to choose σ so as to achieve a trade-off between time and

frequency localization.

The main difference between STFT and CWT lies in how

they handle frequency modulation: STFT performs well pro-

vided φ′′ is low, whereas CWT needs φ′′/φ′ to be low (see

the discussion in [4] section 4.5 for more details). The other

difference concerns mode separation condition (equations (8)

and (9)), which must be linear for STFT and logarithmic for

CWT. This is illustrated here through the study of two dif-

ferent 3-component signals: one is composed of polynomial

chirps and is well adapted to STFT, whereas the other contains

exponential chirps that can be well processed by CWT. The

STFT and CWT of both signals are displayed in Figure 3, to-

gether with their respective denoising performances using the

second-order approximation. Figure 3 (c) shows that meth-

ods based on STFT representation are well adapted to poly-

nomial chirps, whereas a poor separation in the time-scale

plane hampers CWT2. However, according to Figures 3 (d)

and (f), STFT-based methods do not manage to denoise the

signal properly because of heavy time diffusion effects. Note

parameters σ are chosen carefully for each method to get the

best possible results, i. e. they must ensure that (8) and (9)

are satisfied. .

5.3. Contribution of the second-order model

This section illustrates how to take into account second-order

terms enables better signal denoising in case of strong fre-

quency modulation. For this purpose, the two signals of Fig-

ure 3 are denoised using either the first or second order meth-

ods, and the results are displayed in Figure 4. This shows

that the second-order approximation offers little improvement

when the noise level is high, but is of great interest for low

noise.

6. CONCLUSION

This paper analysed the magnitude of the STFT and CWT

of strongly modulated multicomponent signals for signal de-

noising. A component reconstruction method by local inte-

gration was proposed which took into account local frequency

modulation and noise level. Numerical experiments demon-

strated the effectiveness of the approach for the denoising

of multicomponent signals with polynomial or exponential

phase, respectively from their STFT or CWT.
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Fig. 3. Analysis of signals with strong frequency modulations. (a): STFT of a superposition of polynomial chirps; (b): CWT

of the same signal; (c): corresponding denoising results for STFT2 and CWT2. (d), (e) and (f): STFT, CWT and corresponding

denoising performance for a superposition of exponential chirps. The parameters are σ = 0.08 for STFT and σ = 5 for CWT.
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Fig. 4. Importance of second-order terms for strong fre-

quency modulation. (a): denoising performance for STFT1

and STFT2 applied to the signal of Figure 3 (a) and (b), with

σ = 0.08. (b): denoising performance for CWT1 and CWT2

applied to the signal of Figure 3 (d) and (e), with σ = 5.

Future works should include a broader comparison with

other denoising methods, based for instance on the Wigner-

Ville transform [9], wavelet packet dictionaries [10] or the

Empirical Mode Decomposition [11].
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