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Abstract: In this paper, I construct the Darboux transformations for the non-commutative Toda solutions at

n = 1 with the help of linear systems whose compatibility condition yields zero curvature representation of

associated systems of non-linear differential equations. I also derive the quasideterminant solutions of the non-

commutative Painlevé II equation by taking the Toda solutions at n = 1 as a seed solution in its Darboux

transformations. Further by iteration, I generalize the Darboux transformations of the seed solutions to the N-th

form. At the end I describe the zero curvature representation of quantum Painlevé II equation that involves

Planck constant h̄ explicitly and system reduces to the classical Painlevé II when h̄ → 0.
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1. Introduction

The Painlevé equations were discovered by Painlevé and his colleagues when they have classified

the nonlinear second-order ordinary differential equations with respect to their solutions [1].The

study of Painlevé equations is important from mathematical point of view because of their frequent

appearance in the various areas of physical sciences including plasma physics, fiber optics, quantum

gravity and field theory, statistical mechanics, general relativity and nonlinear optics. The classical

Painlevé equations are regarded as completely integrable equations and obeyed the Painlevé test

[2,3,4]. These equations admit some properties such as linear representations, hierarchies, they pos-

sess Darboux transformations(DTs) and Hamiltonian structure. These equations also arise as ordi-

nay differential equations (ODEs) reduction of some integrable systems, i.e, the ODE reduction of

the KdV equation is Painlevé II (PII) equation[5,6].

The noncommutative(NC) and quantum extension of Painlevé equations is quite interesting in

order to explore the properties which they possess with respect to usual Painlevé systems on ordi-

nary spaces. NC spaces are characterized by the noncommutativity of the spatial co-ordinates. For

example, if xµ are the space co-ordinates then the noncommutativity is defined by [xµ
,xν ]⋆ = iθ µν

where parameter θ µν is anti-symmetric tensor and Lorentz invariant and [xµ
,xν ]⋆ is commutator

∗



under the star product. NC field theories on flat spaces are given by the replacement of ordinary

products with the Moyal-products and realized as deformed theories from the commutative ones.

Moyal product for ordinary fields f (x) and g(x) is explicitly defined by

f (x)⋆g(x) = exp(
i

2
θ µν ∂

∂x
′µ

∂

∂x
′′ν
) f (x

′
)g(x

′′
)x=x

′
=x

′′

= f (x)g(x)+
i

2
θ µν ∂ f

∂x
′µ

∂g

∂x
′′ν

+O(θ 2).

this product obeys associative property f ⋆ (g ⋆ h) = ( f ⋆ g) ⋆ h, if we apply the commutative limit

θ µν → 0 then above expression will reduce to ordinary product as f ⋆g = f .g. In our case the NC

product is the Moyal-product and we consider the non-commutativity between space variable and

its function.

We are familiar with Lax equations as a nice representation of integrable systems. The Lax

equation and zero curvature condition both have same form on deformed spaces as they possess on

ordinary space. These representations involve two linear operators, these operators may be differ-

ential operators or matrices [7-12]. If A and B are the linear operators then Lax equation is given

by At = [B,A] where [B,A] is commutator under the star product or quantum product, this Lax

pair formalism is also helpful to construct the DT, Riccati equation and BT of integrable systems.

The compatibility condition of inverse scattering problem Ψx = A(x, t)Ψ and Ψt = B(x, t)Ψ yields

At −Bx = [B,A] which is called the zero curvature representation of integrable systems [13-16. Fur-

ther we will denote the commutator and anti-commutator by [, ]− and [, ]+ respectively. Now the Lax

equation and zero curvature condition can be expressed as At = [B,A]− and At −Bx = [B,A]−.

The Painlevé equations can be represented by the Noumi-Yamada systems [25], these systems

are discovered by Noumi and Yamada while studying symmetry of Painlevé equations and these

systems also possess the affine Weyl group symmetry of type A1
l . For example Noumi-Yamada

system for Painlevé II equation is given by







u
′

0 = u0u2 +u2u0 +α0

u
′

1 =−u1u2 −u2u1 +α1

u
′

2 = u1 −u0

(1.1)

where u
′

i =
dui

dz
and α0 , α1 are constant parameters. Above system 1.1 also also a unique repre-

sentation of NC and quantum PII equation, for NC derivation of PII equation [19] the dependent

functions u0, u1, u2 obey a kind of star product and in case of quantum derivation these functions

are subjected to some quantum commutation relations [26] and [27].

In this paper, I construct the Darboux transformations for the solutions of Toda equations at n = 1,

u1 = φ
′
φ−1 and its negative counterpart u−1 = ψ

′
ψ−1, with the help of linear systems whose com-

patibility condition yields zero curvature representation of their associated systems of non-linear

differential equations. I also derive the quasideterminant solutions of the non-commutative Painlevé

II equation by taking the Toda solutions at n = 1 as a seed solution in its Darboux transformations.

Further by iteration I generalize the Darboux transformations of the seed solutions of the NC PII

equation to the N-th form. I also describe an equivalent zero-curvature representation of quantum



PII equation that involves Planck constant h̄ explicitly. Further, I construct the quantum PII Riccati

form with the help of its linear system by using the method of Konno and Wadati [28].

2. Brief introduction of Non-commutative Painlevé II equation

The following NC analogue of classical Painlevé II equation

u
′′

2 = 2u3 −2[z,u]++C (2.1)

where [z,u]+ = zu+ uz and constant C = 4(β + 1
2
) was obtained by eliminating u0 and u1 from

(1.1), here u = u2 [19]. Further it was shown by V. Retakh and V. Roubtsov that with the following

identities

φ
′′
φ−1 = 2z−2φψ (2.2)

ψ−1ψ
′′
= 2z−2φψ (2.3)

and

ψφ
′
−ψ

′
φ = 2β (2.4)

the solutions un = θ ′
nθ−1

n of the Toda equation

(θ ′
nθ−1

n )′ = θn+1θ−1
n −θnθ−1

n−1 for n > 1 (2.5)

satisfies the NC PII(z,β +n−1) equation and the solutions u−m = η ′
−mη−1

−m of the negative counter

part of (2.5)

(η−1
−mη ′

−m)
′ = η−1

−mη−m−1 −η−m +1−1η−m for m > 1 (2.6)

satisfies the NC PII (z,β − n) equation, here θ1 = φ ,θ0 = ψ−1 and η0 = φ−1
,η−1 = ψ . In the

following section we review the zero curvature representation of NC PII equation (2.1). Further

in proposition 1.1, we construct the linear representation of (2.2) and (2.3) that will be helpfull to

derive an explicit expression of the Darboux transformations for φ and ψ ..

2.1. Zero curvature representation of NC PII equation

The NC PII equation (2.1) can be derived from inverse scattering problems with zero constant C = 0

[20] and in general form with non zero constant C 6= 0 [21]. Let consider the following linear system

[21]

Ψλ = A(z;λ )Ψ Ψz = B(z;λ )Ψ (2.7)

with Lax matrices
{

A = (8iλ 2 + iu2 −2iz)σ3 +u
′
σ2 +( 1

4
Cλ−1 −4λu)σ1

B =−2iλσ3 +uσ1
(2.8)

where σ1, σ2 and σ3 are Pauli spin matrices given by

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

σ3 =

(

1 0

0 −1

)



here λ is spectral parameter. The linear system (2.7) is a equivalent representation of NC PII equa-

tion the compatibility condition of that system yields NC PII equation (2.1). The following propo-

sition contains the derivation of NC PII Riccati form by using the method of Konno and Wadat [28]

Proposition 1.1.

The linear system (2.7) with eigenvector Ψ =

(

χ

Φ

)

and setting Γ = χΦ
−1 can be reduced to the

following NC PII Riccati form

Γ
′
=−4iλΓ+u−ΓuΓ

Proof:

In order to derive the NC PII Riccati we consider following the eigenvector Ψ =

(

χ

Φ

)

in linear

systems (2.7) and we obtain











dχ

dλ
= (8iλ 2 + iu2 −2iz)χ +(−iuz +

1

4
Cλ−1 −4λu)Φ

dΦ

dλ
= (iuz +

1

4
Cλ−1 −4λu)χ +(−8iλ 2 − iu2 +2iz)Φ

(2.9)

and
{

χ
′
=−2iλ χ +uΦ

Φ
′
= uχ +2iλΦ

(2.10)

where χ
′
= dχ

dz
and from system (2.10) we can evaluate the following expressions

χ
′
Φ

−1 =−2iλ χΦ
−1 +u (2.11)

Φ
′
Φ

−1 =−2iλ +uχΦ
−1
. (2.12)

Now let consider the following substitution

Γ = χΦ
−1 (2.13)

and after taking the derivation of above equation with respect to z we get

Γ
′
= χ

′
Φ

−1 −χΦ
−1

Φ
′
Φ

−1
.

Finally by making use of Γ and Γ
′

in ( 2.11) and (2.12) and after simplification we obtain the

following expression

Γ
′
=−4iλΓ+u−ΓuΓ (2.14)

the above equation (2.14) is NC PII Riccati form in Γ where u is the solution of NC PII equation

(2.1). As Γ has been expressed in terms of χ and Φ, the components of eigenvector of NC PII

system (2.7).

Remark1.1.



We can easily show that the NC PII Riccati form (2.14) can be satisfied by taking the solutions of u

and Γ as follow

u[1] =−8iλ1(1− e−8iλ1z)−1e−4iλ1z

Γ = e4iλ1z

in that equation. The following proposition 1.2. involves the zero curvature representation of non-

linear differential equations (2.2) and (2.3)

Proposition 1.2.

The compatibility condition of linear systems

{

Ψλ = LΨ

Ψz = MΨ
(2.15)

with the Lax matrices
{

L = 2λ 2I −q
′
iσ2 +(−q2 −2φψ)σ3 −4zΣ

M = qσ1 +λ I
(2.16)

yields equation (2.2) when q = φ and for q = ψ the compatibility condition gives equation (2.3).

Here σ1, σ2, σ3 are Pauli spin matrices, I is identity matrix of order 2 and Σ =

(

0 0

0 1

)

.

Proof:

We can easily evaluate the following values

Az −Bλ =

(

−2(φψ)
′
− (q2)

′
−1 −q

′′

q
′′

2(φψ)
′
+(q2)

′
−5

)

(2.17)

BA−AB =

(

qq
′
+q

′
q ω+

ω− −qq
′
−q

′
q

)

(2.18)

where ω+ = 2qφψ +2q3 −4qz+2φψq and ω− =−2qφψ −2q3 +4zq−2φψq. Finally from zero

curvature condition we get

2(φψ)
′
+2(q2)

′
+1 = 0 (2.19)

q
′′
=−2qφψ −2q3 −2φψq+4qz (2.20)

2(φψ)
′
+2(q2)

′
−5 = 0 (2.21)

q
′′
=−2qφψ −2q3 −2φψq+4zq (2.22)

Now adding (2.19) and (2.21) , we get

(φψ)
′
+(q2)

′
−1 = 0 (2.23)

on integrating above emuation with respect to z we get

φψ +q2 − z = D (2.24)



where D is constant of integration, set D = 0 in above equation then

φψ +q2 − z = 0 (2.25)

Now after combining equation (2.20) and equation (2.22) we obtain

q
′′
=−2qφψ −2q3 −2φψq+2qz+2zq (2.26)

For q = φ above expression (2.26)

φ
′′
=−2φ(φψ +φ 2 − z)−2φψφ +2zφ . (2.27)

Now after using equation (2.25) for q = φ in equation (2.27) we obtain following expression

φ
′′
= 2zφ −2φψφ . (2.28)

When q = ψ then the (2.26) can be written as

ψ
′′
=−2ψφψ −2(ψ2 +φψ − z)ψ +2ψz (2.29)

again using equation (2.25) for q = ψ in above (2.30, we get

ψ
′′
= 2ψz−2ψφψ (2.30)

In next proposition 1.3., we derive the explicit expressions of Darboux transformations for φ and ψ

with the help of linear systems given in (2.15).

Proposition 1.3.

For the column vector Ψ =

(

X

Y

)

in linear systems (2.15) with the standard transformations on its

components X and Y

X → X [1] = λY −λ1Y1(λ1)X
−1
1 (λ1)X (2.31)

Y → Y [1] = λX −λ1X1(λ1)Y
−1
1 (λ1)Y (2.32)

we can construct the Darboux transformations for φ and ψ as follow

φ [1] = Y1X−1
1 φY1X−1

1 (2.33)

and

ψ[1] = Y1X−1
1 ψY1X−1

1 (2.34)

respectively, where X , Y are arbitrary solutions at λ and X1(λ1) , Y1(λ1) are the particular solutions

at λ = λ1.



Proof:

Let us write the second expression of (2.15) in the form of

(

X

Y

)

z

=

(

λ q

q λ

)(

X

Y

)

. (2.35)

Now under the transformations (2.31) and (2.32) above equation (2.35) becomes

(

X [1]

Y [1]

)

z

=

(

λ q[1]

q[1] λ

)(

X [1]

Y [1]

)

. (2.36)

From (2.35) and (2.36) we obtain the following systems of equations

{

X
′
= λX +qY

Y
′
= λY +qX

(2.37)

and

{

X
′
[1] = λX [1]+q[1]Y [1]

Y
′
[1] = λY [1]+q[1]X [1]

(2.38)

Now after substituting the transformed values X [1] and Y [1] from (2.31) and (2.32) in equation

(2.38) and then using (2.37) in resulting equation, we get one fold Darboux transformation for q.

q[1] = Y1X−1
1 qY1X−1

1 . (2.39)

It is obvious that by taking q = φ in (2.39) we obtain (2.33) and for q = ψ we get transformation

(2.34) on ψ . In upcoming section after taking a brief review of quasideterminant, we will substi-

tute φ and ψ as seed solutions in NC PII Darboux transformations [21]. Finally we generalize the

Darboux transformations (2.33) and (2.34) to the N-th form.

3. A Brief Introduction of Quasideterminants

This section is devoted to a brief review of quasideterminants introduced by Gelfand and Retakh

[22]. Quasideterminants are the replacement for the determinant for matrices with noncommutative

entries and these determinants plays very important role to construct the multi-soliton solutions

of NC integrable systems [23,24], by applying the Darboux transformation. Quasideterminants are

not just a noncommutative generalization of usual commuta- tive determinants but rather related

to inverse matrices, quasideterminants for the square matrices are defined as if A = ai j be a n× n

matrix and B = bi j be the inverse matrix of A. Here all matrix elements are supposed to belong to a

NC ring with an associative product. Quasideterminants of A are defined formally as the inverse of

the elements of B = A−1

|A|i j = b−1
i j

this expression under the limit θ µν → 0 , means entries of A are commuting, will reduce to

|A|i j = (−1)i+ j detA

detAi j



where Ai j is the matrix obtained from A by eliminating the i-th row and the j-th column. We can

write down more explicit form of quasideterminants. In order to see it, let us recall the following

formula for a square matrix

A =

(

A B

C D

)−1

=

(

A−BD−1C)−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)

(3.1)

where A and D are square matrices, and all inverses are supposed to exist. We note that any matrix

can be decomposed as a 2× 2 matrix by block decomposition where the diagonal parts are square

matrices, and the above formula can be applied to the decomposed 2× 2 matrix. So the explicit

forms of quasideterminants are given iteratively by the following formula

|A|i j = ai j −Σp6=i,q 6= jaiq|A
i j|−1

pq ap j

the number of quasideterminant of a given matrix will be equal to the numbers of its elements for

example a matrix of order 3 has nine quasideterminants. It is sometimes convenient to represent the

quasi-determinant as follows

|A|i j =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1 j · · · a1n

...
...

...
...

...

ai1 · · · ai j · · · ain

...
...

...
...

...

ain · · · ani · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.2)

Let us consider examples of matrices with order 2 and 3, for 2×2 matrix

A =

(

a11 a12

a21 a22

)

now the quasideterminats of this matrix are given below

|A|11 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11 −a12a−1
22 a21

|A|12 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a12 −a22a−1
21 a12

|A|21 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a21 −a11a−1
12 a22

|A|22 =

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a22 −a21a−1
11 a12.

The number of quasideterminant of a given matrix will be equal to the numbers of its elements for

example a matrix of order 3 has nine quasideterminants. Now we consider the example of 3× 3



matrix, its first quasidetermints can be evaluated in the following way

|A|11 =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11 −a12Ma21 −a13Ma21 −a12Ma31 −a13Ma31

where M =

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

−1

, similarly we can evaluate the other eight quasideterminants of this matrix.

4. Quasideterminant representation of Darboux transformation

4.1. Darboux transformations of NC PII equation

In the theory of integrable systems the applications of Darboux transformations (DTs) are quite

interesting to construct the multi-soliton solutions of these systems. These transformations consist

the particular solutions of corresponding linear systems of the integrable equations and their seed

(initial) solutions. For example the NC PII equation (2.1) possesses following N fold DT

u[N +1] = Π
N
k=1Θk[k]uΠ

1
j=NΘ j[ j] for N ≥ 0 (4.1)

with

ΘN [N] = Λ
φ
N [N]Λ

χ
N [N]−1

where u[1] is seed solution and u[N + 1] are the new solutions of NC PII equation [21]. In above

transformations (4.2) Λ
φ
N [N] and Λ

χ
N [N] are the quasideterminants of the particular solutions of NC

PII linear system (2.7). Here the odd order quasideterminant representationS of Λ
φ
2N+1[2N +1] and

Λ
χ
2N+1[2N +1] are presented below

Λ
φ
2N+1[2N +1] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φ2N Φ2N−1 · · · Φ1 Φ

λ2N χ2N λ2N−1χ2N−1 · · · λ1χ1 λ χ
...

... · · ·
...

...

λ 2N−1
2N χ2N λ 2N−1

2N−1 χ2N−1 · · · λ 2N−1
1 χ1 λ 2N−1χ

λ 2N
2N Φ2N λ 2N

2N−1Φ2N−1 · · · λ 2N
1 Φ1 λ 2N

Φ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

Λ
χ
2N+1[2N +1] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ2N χ2N−1 · · · χ1 χ

λ2NΦ2N λ2N−1Φ2N−1 · · · λ1Φ1 λΦ

...
... · · ·

...
...

λ 2N−1
2N Φ2N λ 2N−1

2N−1 Φ2N−1 · · · λ 2N−1
1 Φ1 λ 2N−1

Φ

λ 2N
2N χ2N λ 2N

2N−1χ2N−1 · · · λ 2N
1 χ1 λ 2N χ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

with

Λ
φ
1 [1] = Φ1, Λ

χ
1 [1] = χ1

where χ1,χ2,χ3, ...,χN and Φ1,Φ2,Φ3, ...,ΦN are the solutions of system (2.10) at λ1,λ2,λ3, ...,λN .



Proposition 1.4.

By taking u = u1 = φ
′
φ−1 as a seed solution in (4.1) then the solitonic solutions u[N] of NC PII

equation can be expressed in terms of N-fold quasideterminant Darboux transformation of φas

follow

u[N +1] = Π
N
k=1Θk[k]φ

′
[N]φ−1[N]Π1

j=NΘ j[ j] for N ≥ 1 (4.2)

and φ [N] is given by

φ [N] = Π
N−1
k=0 ΘN−k[N − k]φΠ

0
j=N−1ΘN− j[N − j]

where ΘN [N] = ΩY
N [N]Ω X

N [N]−1 and ΩY
N [N], Ω X

N [N] represent quasideterminants of order N.

Proof:

The one fold NC PII Darboux transformation with seed solution u1 = φ
′
φ−1 can be written as

u[1] = Φ1χ−1
1 φ

′
φ−1

Φ1χ−1
1 (4.3)

where Φ and χ are the eigenvector components of linear systems associated to NC PII equation

[21]. Now we can express the two fold Darboux transformation as follow

u[2] = Φ1[1]χ
−1
1 [1]φ

′
[1]φ−1[1]Φ1[1]χ

−1
1 [1]. (4.4)

here φ [1] is given in equation (2.33). Now we consider the third solitonic solution of NC PII equation

as under

u[3] = Φ1[2]χ
−1
1 [2]φ

′
[2]φ−1[2]Φ1[2]χ

−1
1 [2]. (4.5)

where

φ [2] = Y [1]X−1[1]φ [1]Y [1]X−1[1].

In order express φ [2] in terms of quasideterminant, fisrt we write the transformations (2.31) and

(2.32) by using the definition (3.2)as under

X [1] =

∣

∣

∣

∣

∣

X1 X0

λ1Y1 λ0Y0

∣

∣

∣

∣

∣

= δ e
X [1] (4.6)

and

Y [1] =

∣

∣

∣

∣

∣

Y1 Y0

λ1X1 λ0X0

∣

∣

∣

∣

∣

= δ e
Y [1] (4.7)

We have taken λ = λ0, X = X0 and Y = Y0 in order to generalize the transformations in Nth form.

Further, we can represent the transformations X [2] and Y [2] by quasideterminants

X [2] =

∣

∣

∣

∣

∣

∣

∣

X2 X1 X0

λ2Y2 λ1Y1 λ0Y0

λ 2
2 X2 λ 2

1 X1 λ 2
0 X0

∣

∣

∣

∣

∣

∣

∣

=ϒ o
X [2]



and

Y [2] =

∣

∣

∣

∣

∣

∣

∣

Y2 Y1 Y0

λ2X2 λ1X1 λ0X0

λ 2
2 Y2 λ 2

1 Y1 λ 2
0 Y0

∣

∣

∣

∣

∣

∣

∣

=ϒ o
Y [2].

here superscripts e and o of ϒ represent the even and odd order quasideterminants. The Nth trans-

formations for ϒ o
X [N] and ϒ o

Y [N] in terms of quasideterminants are given below

ϒ o
X [N] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

XN XN−1 · · · X1 X0

λNYN λN−1YN−1 · · · λ1X1 λ0Y0

...
... · · ·

...
...

λ N−1
N YN λ N−1

N−1 YN−1 · · · λ N−1
1 X1 λ N−1

0 Y0

λ N
N XN λ N

N−1XN−1 · · · λ N
1 X1 λ N

0 X0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

ϒ o
Y [N] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

YN YN−1 · · · Y1 Y0

λNXN λN−1XN−1 · · · λ1X1 λ0X0

...
... · · ·

...
...

λ N−1
N XN λ N−1

N−1 XN−1 · · · λ N−1
1 X1 λ N−1

0 X0

λ N
N YN λ N

N−1YN−1 · · · λ N
1 Y1 λ N

0 Y0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

here N is to be taken as even. in the same way we can write Nth quasideterminant representations

of ϒ e
X [N] and ϒ e

Y [N].

ϒ e
X [N] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

XN XN−1 · · · X1 X0

λNYN λN−1YN−1 · · · λ1X1 λ0Y0

...
... · · ·

...
...

λ N−1
N XN λ N−1

N−1 XN−1 · · · λ N−1
1 X1 λ N−1

0 X0

λ N
N YN λ N

N−1YN−1 · · · λ N
1 Y1 γN

0 Y0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

ϒ e
Y [N] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

YN YN−1 · · · Y1 Y0

λNXN λN−1XN−1 · · · λ1X1 λ0X0

...
... · · ·

...
...

λ N−1
N YN λ N−1

N−1 YN−1 · · · λ N−1
1 Y1 λ N−1

0 Y0

λ N
N XN λ N

N−1XN−1 · · · λ N
1 X1 γN

0 X0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Similarly, we can derive the expression for N-fold Darboux transformations for φ by applying

the transformation (2.33) iteratively, for this pupose let us consider

φ [1] = ΩY
1 [1]Ω

X
1 [1]

−1φΩY
1 [1]Ω

X
1 [1]

−1

where

ΩY
1 [1] = Y1



Ω X
1 [1] = X1

this is one fold Darboux transformation. The two fold Darboux transformation is given by

φ [2] = Y [1]X−1[1]φ [1]Y [1]X−1[1]. (4.8)

We may rewrite the equation (4.6) and equation (4.7) in the following forms

X [1] =

∣

∣

∣

∣

∣

X1 X0

λ1Y1 λ0Y0

∣

∣

∣

∣

∣

= Ω X
2 [2]

Y [1] =

∣

∣

∣

∣

∣

Y1 Y0

λ1X1 λ0X0

∣

∣

∣

∣

∣

= ΩY
2 [2].

and equation (4.8) may be written as

φ [2] = ΩY
2 [2]Ω

X
2 [2]

−1ΩY
1 [1]Ω

X
1 [1]

−1φΩY
1 [1]Ω

X
1 [1]

−1ΩY
2 [2]Ω

X
2 [2]

−1

We can show that the fourth solitonic solution u[4] will take the following form

u[4] = Φ1[3]χ
−1
1 [3]φ

′
[3]φ−1[3]Φ1[3]χ

−1
1 [] (4.9)

where the three fold Darboux transform φ [3] can be expressed as

φ [3] = ΩY
3 [3]Ω

X
3 [3]

−1ΩY
2 [2]Ω

X
2 [2]

−1ΩY
1 [1]Ω

X
1 [1]

−1φΩY
1 [1]Ω

X
1 [1]

−1ΩY
2 [2]Ω

X
2 [2]

−1ΩY
3 [3]Ω

X
3 [3]

−1
.

here

X [2] =

∣

∣

∣

∣

∣

∣

∣

X2 X1 X0

λ2Y2 λ1Y1 λ0Y0

λ 2
2 X2 λ 2

1 X1 λ 2
0 X0

∣

∣

∣

∣

∣

∣

∣

= Ω X
3 [3]

and

Y [2] =

∣

∣

∣

∣

∣

∣

∣

Y2 Y1 Y0

λ2X2 λ1X1 λ0X0

λ 2
2 Y2 λ 2

1 Y1 λ 2
0 Y0

∣

∣

∣

∣

∣

∣

∣

= ΩY
3 [3].

Finaly, by applying the transformtion iteratively we can construct the N-th solitonic solution of

NC PII (z,β +n−1) equation in the following form

u[N +1] = Π
N
k=1Θk[k]φ

′
[N]φ−1[N]Π1

j=NΘ j[ j] for N ≥ 0 (4.10)

the N fold Darboux transformation φ [N] given by

φ [N] =ΘN [N]ΘN−1[N −1]...Θ2[2]Θ1[1]φΘ1[1]Θ2[2]...ΘN−1[N −1]ΘN [N]

or

φ [N] = Π
N−1
k=0 ΘN−k[N − k]φΠ

0
j=N−1ΘN− j[N − j]

where



ΘN [N] = ΩY
N [N]Ω X

N [N]−1
.

Here we present only the Nth expression for odd order quasideterminants ΩY
2N+1[2N + 1] and

Ω X
2N+1[2N +1]

ΩY
2N+1[2N +1] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Y2N Y2N−1 · · · Y1 Y0

λ2NX2N λ2N−1X2N−1 · · · λ1X1 λ0X0

...
... · · ·

...
...

λ 2N−1
2N X2N λ 2N−1

2N−1 X2N−1 · · · λ 2N−1
1 X1 λ 2N−1

0 X0

λ 2N
2N Y2N λ 2N

2N−1Y2N−1 · · · λ 2N
1 Y1 λ 2N

0 Y0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

and

Ω X
2N+1[2N +1] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X2N X2N−1 · · · X1 X0

λ2NY2N λ2N−1Y2N−1 · · · λ1X1 λ0Y0

...
... · · ·

...
...

λ 2N−1
2N Y2N λ 2N−1

2N−1 Y2N−1 · · · λ 2N−1
1 X1 λ 2N−1

0 Y0

λ 2N
2N X2N λ 2N

2N−1X2N−1 · · · λ 2N
1 X1 λ 2N

0 X0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Similarly, we can derive an explicit expression of N-fold Darboux transformation for ψ in the

following form

ψ[N] = Π
N−1
k=0 KN−k[N − k]ψΠ

0
j=N−1KN− j[N − j]

where KN [N] = ΞY
N [N]Ξ X

N [N]−1 and ΞY
N [N], Ξ X

N [N] represent quasideterminants of order N. Simi-

larly, we can construct the N-th soliton solution of NC PII(z,β −n) equation in terms of quasideter-

minant by taking u = u−1 = ψ ′ψ−1 as a seed solution in its Darboux transformation (4.2). In next

sections we some basic quantum commutation relations [26], we will observe that in section 6 how

these commutation relations are helpful to derive quantum PII equation from its Lax representation

which involves Planck constant h̄ explicitly.

5. Quantum Painlevé II equation

The quantum extension of classical Painlevé equations involves the symmetrical form of Painlevé

equations proposed in [26] to noncommuting objects. For the quantum Painlevé II equation let us

replace the function u0 , u1, u2 by f0 , f1, f2 respectively in system (1.1) , further parameters α0

and α1 belong to the complex number field C. The operators f0, f1 and f2 obey the following

commutation rules

[ f1, f0]− = 2h̄ f2, [ f0, f2]− = [ f2, f1]− = h̄ (5.1)

where h̄ is Planck constant, the derivation ∂z preserves the commutation relations (5.1) [26] . The

NC differential system (1.1) admits the affine Weyl group actions of type A
(1)

l and quantum PII



equation

f
′′

2 = 2 f 3
2 − z f2 +α1 −α0. (5.2)

can be obtained by elimination f0 and f1 from system (1.1) with the help of commutation relations

(5.1). The above equation (5.2) is called quantum PII equation because after eliminating f0 and f2

from same system ( 1.1) we obtain P34 that involves Planck constant h̄ [26] and [27]. In next section I

construct a linear systems whose compatibility condition yields quantum PII equation with quantum

commutation relation between function f2 and independent variable z, further we show that under

the classical limit when h̄ → 0 this system will reduce to classical PII equation.

6. Zero curvature representation of quantum PII equation

Proposition 1.5.

The compatibility condition of following linear system

Ψλ = A(z;λ )Ψ, Ψz = B(z;λ )Ψ (6.1)

with Lax matrices

{

A = (8iλ 2 + i f 2
2 −2iz)σ3 + f

′

2σ2 +( 1
4
cλ−1 −4λ f2)σ1 + ih̄σ2

B =−2iλσ3 + f2σ1 + f2I
(6.2)

yields quantum PII equation, here I is 2× 2 identity matrix and λ is spectral parameter and c is

constant.

Proof:

The compatibility condition of system (6.1) yields zero curvature condition

Az −Bλ = [B,A]−. (6.3)

We can easily evaluate the values for Az, Bλ and [B,A]− = BA−AB from the linear system (6.2) as

follow

Az = (i f
′

2 f2 + i f2 f
′

2 −2i)σ3 + f
′′

2 σ2 −4λ f
′

2σ1 (6.4)

Bλ =−2iσ3 (6.5)

and

[B,A] =

(

i f
′

2 f2 + i f2 f
′

2 +[ f2,z]−− ih̄ δ

λ −i f
′

2 f2 − i f2 f
′

2[z, f2]−+ ih̄

)

(6.6)

where

δ =−i f
′′

2 +2i f 3
2 −2i[z, f2]++ ic+ i[ f

′

2, f2]−+4iλ h̄

and



λ = i f
′′

2 −2i f 3
2 +2i[z, f2]+− ic+ i[ f2, f

′

2]−−4iλ h̄.

now after substituting these values from (6.4), (6.5) and (6.6) in equation (6.3) we get

(

[ f2,z]−− ih̄ δ

λ [z, f2]−+ ih̄

)

= 0 (6.7)

and the above result (6.7) yields the following expressions

[ f2,z] =
1

2
ih̄ f2 (6.8)

and

i f
′′

2 −2i f 3
2 +2i[z, f2]+− ic+ i[ f2, f

′

2]−−4iλ h̄ = 0 (6.9)

equation (6.8) shows quantum relation between the variables z and f2. In equation (6.9) the term

i[ f2, f
′

2]−− 2iλ h̄ can be eliminated by using equation f
′

2 = f1 − f0 from (1.1 ) and quantum com-

mutation relations (5.1). For this purpose let us replace f2 by −1
2
λ−1 f2 in (5.1), then commutation

relations become

[ f0, f2]− = [ f2, f1]− =−2λ h̄. (6.10)

Now let us take the commutator of the both side of the equation f
′

2 = f1− f0 with f2 from right side,

we get

[ f
′

2, f2]− = [ f1, f2]−− [ f0, f2]−

above equation with the commutation relations (6.10) can be written as

[ f
′

2, f2]− =−4λ h̄. (6.11)

Now after substituting the value of [ f
′

2, f2]− from (6.11) in (6.9) we get

i f
′′

2 −2i f 3
2 +2i[z, f2]+− ic = 0.

Finally, we can say that the compatibility of condition of linear system (6.1) yields the following

expressions

{

f
′′

2 = 2 f 3
2 −2[z, f2]++ c

z f2 − f2z = ih̄ f2
(6.12)

in above system (6.12) the first equation can be considered as a pure version of quantum Painlevé

II equation that is equipped with a quantum commutation relation [z, f2]− = −ih̄ and this equation

can be reduced to the classical PII equation under the classical limit when h̄ → 0.



Remark 1.2.

The linear system (6.1) with eigenvector Ψ =

(

ψ1

ψ2

)

and setting ∆ = ψ1ψ−1
2 can be reduced to the

following quantum PII Riccati form

∆
′
=−4i∆ + f2 +[ f2,∆ ]−−∆ f2∆

Proof:

Here we apply the method of Konno and Wadati [28] to the linear system (6.12) of quantum PII

equation. For this purpose let us substitute the eigenvector Ψ =

(

ψ1

ψ2

)

in linear systems (6.1) and

we get











dψ1

dλ
= (8iλ 2 + i f 2

2 −2iz)ψ1 +(−i f
′

2 +
1

4
C0λ−1 −4λ f2 + h̄)ψ2

dψ2

dλ
= (i f

′

2 +
1

4
C0λ−1 −4λ f2 − h̄)ψ1 +(−8iλ 2 − i f 2

2 +2iz)ψ2

(6.13)

and
{

ψ
′

1 = (−2iλ + f2)ψ1 + f2ψ2

ψ
′

2 = f2ψ1 +(2iλ + f2)ψ2

(6.14)

where ψ
′

1 =
dψ1

dz
and now from system (6.14) we can derive the following expressions

ψ
′

1ψ−1
2 = (−2iλ + f2)ψ1ψ−1

2 + f2 (6.15)

ψ
′

2ψ−1
2 =−2iλ + f2 + f2ψ1ψ−1

2 . (6.16)

Let consider the following substitution

∆ = ψ1ψ−1
2 (6.17)

now taking the derivation of above equation with respect to z

∆
′
= ψ

′

1ψ−1
2 −ψ1ψ−1

2 ψ
′

2ψ−1
2

after using the ( 6.15), (6.16) and (6.17) in above equation we obtain

∆
′
=−4i∆ + f2 +[ f2,∆ ]−−∆ f2∆ (6.18)

the above expression (6.18) can be considered as quantum Riccati equation in ∆ because it involves

commutation [ f2,∆ ]− = f2∆ −∆ f2 that has been derived from the linear system (6.14).

7. Conclusion

In this paper, I have derived non-vacuum solutions of NC PII equation taking the solutions of Toda

equations at n = 1 as seed solutions in its Darboux transformation. I have also generalized the

Darboux transformations of these seed solutions to N-th form. Further, I derived a zero curvature



representation of quantum Painlevé II equation with its associated Riccati form and also we have

derived an explicit expression of NC PII Riccati equation from the linear system of NC PII equation

by using the method of Konno and Wadati [28]. Further, one can derive Bc̈klund transformations

for NC PII equation with the help of our NC PII linear system and its Riccati form by using the

technique described in [28, 29], these transformations may be helpful to construct the nonlinear

principle of superposition for NC PII solutions. It also seems interesting to construct the connec-

tion of NC PII equation to the known integrable systems such as its connection to NC nonlinear

Schrödinger equation and to NC KdV equation as it possesses this property in classical case. Fur-

ther it is quite interesting symmetrically to construct zero curvature representations for Quantum

Painlevé equation PIV, PV in such a way to derive the similar results that have been described in

(6.12) for quantum PII by using the quantum commutation relations of [26].
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SIGMA 4 (2008), no. 051, 9 pages.

[28] K. Konno and M. Wadati, Simple Derivation of Bäcklund transformation from Riccati Form of inverse
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