Minimal quasi-stationary distribution approximation for a birth and death process
Abstract
In a first part, we prove a Lyapunov-type criterion for the $\xi_1$-positive recurrence of absorbed birth and death processes and provide new results on the domain of attraction of the minimal quasi-stationary distribution.
In a second part, we study the ergodicity and the convergence of a Fleming-Viot type particle system whose particles evolve independently as a birth and death process and jump on each others when they hit $0$. Our main result is that the sequence of empirical stationary distributions of the particle system converges to the minimal quasi-stationary distribution of the birth and death process.
Origin | Files produced by the author(s) |
---|
Loading...