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Polynomial spaces revisited via weight functions

Marie-Laurence Mazure

Abstract

Extended Chebyshev spaces are natural generalisations of polynomial spaces due to the same
upper bounds on the number of zeroes. In a natural approach, many results of the polynomial
framework have been generalised to the larger Chebyshevian framework, concerning Approxima-
tion Theory as well as Geometric Design. In the present work, we go the reverse way: considering
polynomial spaces as examples of Extended Chebyshev spaces, we apply to them results specif-
ically developed in the Chebyshevian framework. On a closed bounded interval, each Extended
Chebyshev space can be defined by means of sequences of generalised derivatives which play the
same rôle as the ordinary derivatives for polynomials. We recently achieved an exhaustive descrip-
tion of the infinitely many such sequences. Surprisingly, this issue is closely related to the question
of building positive linear operators of the Bernstein type. As Extended Chebyshev spaces, one
can thus search for all generalised derivatives which can be associated with polynomials spaces
on closed bounded intervals. Though this may a priori seem somewhat nonsensical due to the
simplicity of the ordinary derivatives, this actually leads to new interesting results on polynomial
and rational Bernstein operators and related results of convergence.

Keywords: Bernstein bases, Bernstein operators, Extended Chebyshev spaces, generalised
derivatives, weight functions, blossoms, polynomial and rational spaces.

MSC: Primary 41A36; Secondary 41120, 41A50, 65D17.

§1. Introduction

In the introduction I will denote a fixed given non-trivial real interval, and Pn the restriction to I of
the polynomial space of degree n. Moreover, for the sake of simplicity, all functions we consider will
be assumed to be infinitely many times differentiable on I.

1



2 Marie-Laurence Mazure

On the interval I, the class C of all Extended Chebyshev spaces of any dimension is the natural
generalisation of the class P of all polynomial spaces Pn, n ≥ 0, with which they share the same
upper bounds on the number of zeroes of non-zero elements. In particular, though not as simple
to handle, the class C can serve as a useful substitute for the class P to obtain unique solutions to
Hermite interpolation problems. Indeed, it presents real advantages compared to P , due both to its
great variety and to the shape parameter(s) each Extended Chebyshev space offers. In front of such
a generalised situation, the logical approach for a mathematician consists in taking each single known
result of the class P , and try to extend it to the larger class C. However, this turns out to be not so
easy, for two underlying facts are crucial in many ways in the polynomial framework. Firstly, we have
a nested sequence

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn. (1.1)

Secondly, the class P is closed under the ordinary derivative D since

DPn := Pn−1, n ≥ 1. (1.2)

To quote only a most classical example, given any x0, . . . , xn ∈ I, the n-th order divided difference
based on x0, . . . , xn of any function F on I is defined as the leading coefficient of the unique polynomial
Pn ∈ Pn which interpolates F at x0, . . . , xn, in the Hermite sense. The famous recurrence relations
for divided differences readily follows from (1.1), along with the so important Newton expression of
the interpolating polynomial Pn. No similar possibility naturally appears in the class C, unless we
more closely imitate the class P by restricting ourselves to nested sequences

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En, (1.3)

where each Ei is a (i + 1)-dimensional Extended Chebyshev space on I. Indeed, each such sequence
(1.3) naturally gives sense to the concept of leading coefficient in each Ei by selecting once and for
all a function Ui ∈ Ei \ Ei−1 for each i ≥ 0, with Ei−1 := {0}. This in turn naturally leads to the
concept of associated generalised divided differences, associated recurrence relations and Newton-type
formula for the unique element Fn ∈ En which interpolates F at x0, . . . , xn. Concerning this specific
issue, definitions and proofs can easily be adapted from the polynomial framework to all Chebyshevian
situations (1.3). This corresponds to the subclass C0 ⊂ C formed by the so-called Extended Complete
Chebyshev spaces on I.

What about the case where x0 = . . . = xn = ξ, corresponding to Taylor interpolation of order
n of F at ξ? As is well known, the corresponding divided difference is equal to F (n)(ξ)/(n!). This
obviously fails to be true in general in the class C0. What is thus the corresponding result? This is
actually strongly connected with the question: what is the analogue of (1.2) within the class C? Well,



Polynomial spaces revisited via weight functions 3

we precisely face there a major difference between the polynomial and the Chebyshevian frameworks:
unlike P , the class C is not closed under D. Applying D to an Extended Chebyshev space decreases
the dimension only when it contains constants, but even so, there is absolutely no guarantee that the
resulting space will be an Extended Chebyshev space on I.

To overcome this difficulty, one can try to go still closer to the class P by considering generalised
monomials associated with any given sequence (w0, . . . , wn) of positive functions on I, defined on I
by U0(t) := w0(t) and

Ui(t) := w0(t)

∫ t

a

w1(ξ1)

∫ ξ1

a

w2(ξ2) . . .

∫ ξi−1

a

wi(ξi)dξi . . . dξ1, i = 1, . . . , n, (1.4)

where a is any point in I. Each space Ei := span(U0, . . . , Ui), 0 ≤ i ≤ n, can be proved to be an
(i + 1)-dimensional Extended Chebyshev space on I. Accordingly, these spaces all belong to the class
C0. Now, if L0 stands for the division by w0, the operator DL0 transforms the corresponding nested
sequence (1.3) into the shorter nested sequence DL0Ei, 1 ≤ i ≤ n, built exactly the same way, but now
from the generalised monomials associated with (w1, . . . , wn), instead of (w0, w1, . . . , wn). Iterating
the process, we obtain a sequence DLi, i = 0, . . . , n, of differential operators which is to the nested
sequence Ei := span(U0, . . . , Ui), i = 0, . . . , n, the analogue of what the sequence Di, i ≤ n+1, is to the
sequence (1.1). Note that the corresponding generalised divided difference based on x0, . . . , xn when
they all are equal to some ξ is equal to LnF (ξ). We thus have the answers to our questions within the
subclass C1 of C0 composed of all Extended Chebyshev spaces spanned by generalised monomials. The
good news is that both classes C1 of C0 coincide. Classically, all approximation properties of Extended
Chebyshev spaces, e.g., Taylor expansions, generalised convexity, . . . , were developed within the class
C0, by means of generalised monomials [11, 24, 30, 14].

Now, what about our initial class C? Well, it does coincide too with the class C0, but only if the
interval I is a closed and bounded interval [a, b]. Let us now work under this requirement, which is
not a real limitation for most issues. Within C, we are thus now in the situation (1.3), which seems
the exact counterpart of (1.1). However, in spite of the similarities, in practice a huge difference
still exists between C and P . Life is quiet in the polynomial class P because, in the space Pn, the
nested sequence (1.1) is well identified, just as the sequence of ordinary derivatives Di to decrease
the dimension down to zero. These useful tools are so simple that nobody would reasonably think
of searching for replacements. Life is much less quiet in the larger class C. Indeed, with a given
(n + 1)-dimensional space En of this class one can associate infinitely many nested sequences (1.3).
In general none of them seems preferable to the others. The problem is that a result proved using
the generalised derivatives associated with one of these nested sequences may not be intrinsic. This
motivated the search of all possible such nested sequences, that is, all possible generalised derivatives



4 Marie-Laurence Mazure

which can be associated with En. The result was achieved in [19]. Surprisingly, this issue is very
closely connected to the construction of all linear operators of the Bernstein-type based on En. This
is the reason why each En of the class C, of dimension at least three, provides us with infinitely many
(Chebyshevian) Bernstein operators. In general, none of them seems preferable to the others. This
may be seen as an inconvenience compared to the one and only positive linear operator allocated to
the space Pn after S. Bernstein [2]. We do prefer to interpret this as a real advantage and a great
richness of the Chebyshevian world C.

Returning to the polynomial class P , the object of the present article is to give it the benefit of
the results achieved is the larger Chebyshevian class C via difficult tools and techniques which are a
priori unjustified in P . It is worthwhile mentioning that it is not the first time we develop a similar
approach. Indeed, the knowledge of all systems of generalised derivatives in each polynomial space Pn

already proved to be fruitful for CAGD purposes in [20]. We explained there how to use them to deduce
necessary and sufficient conditions on the connection matrices for the associated space of geometrically
continuous polynomial splines to be suitable for design. Here we present some implications concerning
either polynomial or rational Bernstein operators in the Chebyshevian sense, with corresponding
results of convergence. This is done is Sections 4 and 5, respectively. Beforehand, Section 2 gathers
some technical preliminary results related to the convergence of the classical polynomial Bernstein
operators which will be very useful to achieve convergence results in Sections 4 and 5. Section 3
briefly surveys the question of generalised derivatives and Bernstein operators based on Extended
Chebyshev spaces. Section 6 presents a few final remarks for future related work. It is worthwhile
mentioning that an interesting class of rational Bernstein operators was introduced by P. Piţul and
P. Sablonnière in [26]. They are actually Bernstein operators in the sense of Extended Chebyshev
spaces. Some of our results are closely related to them and a detailed comparison is carried out in
Section 5.

§2. A brief reminder about polynomials

In this section we fix some notations and we mainly remind readers with known results and related
proofs, all connected with the famous Bernstein operators. They will strongly be involved in Sections
4 and 5.

Throughout the rest of the article, for any nonnegative integer k, Pk denotes the degree k polyno-
mial space restricted to [0, 1], and (Bk

0 , . . . , Bk
k ) the polynomial Bernstein basis

Bk
i (t) :=

(
k

i

)
ti(1 − t)k−i, t ∈ [0, 1], i = 0, . . . , k. (2.1)



Polynomial spaces revisited via weight functions 5

We also denote by B
∗
k : C0([0, 1]) → Pk the classical Bernstein operator of degree k [2, 4, 13, 5]. As is

well-known, it is defined by

B
∗
kF :=

k∑

i=0

F (t∗k,i)B
k
i for all F ∈ C0([0, 1]), with t∗k,i :=

i

k
, i = 0, . . . , k. (2.2)

Given an integer n ≥ 1, let Xn denote the monomial function Xn(t) := tn, for t ∈ [0, 1]. For any
k ≥ n, we can consider the Bézier points of Xn, in the sense of the coefficients of Xn when expanded
in terms of the Brenstein polynomial basis of degree k. Let us denote them by xn,k,i, 0 ≤ i ≤ k, so
that

X1 =

k∑

i=0

x1,k,iB
k
i =

k∑

i=0

t∗k,iB
k
i for any k ≥ 1, Xn =

k∑

i=0

xn,k,iB
k
i , for any k ≥ n ≥ 2.

Any polynomial Bernstein basis being normalised, that is,
∑k

i=0 Bk
i = 1I, (where 1I denotes the constant

function 1I(t) = 1 for all t ∈ [0, 1]), the left equality above is the reason why any Bernstein operator
of degree k ≥ 1 reproduces P1, in the sense that BkF = F for all F ∈ P1.

We will see in Theorem 2.2 that Lemma 2.1 below permits an easy proof of the well-known
convergence of the sequence B

∗
k, k ≥ 1, via Korovkin’s theorem. However this is not the reason why

we need to cite it here. We actually need it for Proposition 2.3 which will be strongly involved in the
proofs of the convergence results we will establish in Sections 4 and 5.

le:Xn Lemma 2.1. For any n ≥ 2, we have

lim
k→+∞

max
0≤i≤k

∣∣Xn(t∗k,i) − xn,k,i

∣∣ = 0. (2.3)

Proof. Let us select any k ≥ n. Considered as a polynomial of degree at most k, the monomial Xn

possesses a blossom in k variables [28]. Let us denote it as xn,k. It is the unique function of k variables
which is symmetric, of degree at most one in each variable, and which gives Xn on the diagonal. It is
therefore given by

xn,k(t1, . . . , tk) =
1(
k

n

)
∑

1≤i1<i2<···<in≤k

ti1ti2 . . . tin
.

With the notation x[j] for x repeated j times, we know that

xn,k,i := xn,k

(
0[k−i], 1[i]

)
, 0 ≤ i ≤ k.
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Blossoms thus provide an easy way to obtain the known formula xn,k,i =
( i

n)
( k

n)
, that is,

xn,k,i = 0 for 0 ≤ i ≤ n − 1, xn,k,i =
i(i − 1) . . . (i − n + 1)

k(k − 1) . . . (k − n + 1)
for n ≤ i ≤ k.

We thus have to check that

lim
k→+∞

max
n≤i≤k

∣∣∣∣

(
i

k

)n

− i(i − 1) . . . (i − n + 1)

k(k − 1) . . . (k − n + 1)

∣∣∣∣ = 0. (2.4)

For n = 1 there is nothing to prove. Besides, for i ≥ n + 1, we have
∣∣∣∣∣

(
i

k

)n+1

− i(i − 1) . . . (i − n)

k(k − 1) . . . (k − n)

∣∣∣∣∣ ≤
i

k

∣∣∣∣

(
i

k

)n

−
(

i − 1

k − 1

)n∣∣∣∣ +
i

k

∣∣∣∣

(
i − 1

k − 1

)n

− (i − 1) . . . (i − n)

(k − 1) . . . (k − n)

∣∣∣∣ .

Given that ∣∣∣∣

(
i

k

)n

−
(

i − 1

k − 1

)n∣∣∣∣ ≤ 2n−1 (k − i)i

k(k − 1)
,

the proof of (2.4) readily follows by induction on n. �

th:bernstein Theorem 2.2 ([2]). For any V ∈ C0([0, 1]), limk→+∞ ‖V − B
∗
kV ‖∞ = 0.

Proof. Since each positive linear operator Bn reproduces 1I, X1, Korovkin’s theorem [12, 4, 5] says
that it is sufficient to prove the claimed result for F = X2. Now,

‖BkX2 − X2‖∞ =

∥∥∥∥∥

k∑

i=0

[
X2(t

∗
k,i) − x2,k,i

]
Bk

i

∥∥∥∥∥
∞

≤ max
0≤i≤k

∣∣X2(t
∗
k,i) − x2,k,i

∣∣ .

Lemma 2.1 guarantees that limk→+∞ ‖BkX2 − X2‖∞ = 0. �

As mentioned earlier the following consequence of Lemma 2.1 will be essential in the subsequent
sections.

prop:limitP Proposition 2.3. Let P ∈ Pn for some n ≥ 1. Given any k ≥ n, let pk,i, 0 ≤ i ≤ k, be the Bézier
points of P considered as a polynomial of degree at most k. Then,

lim
k→+∞

max
0≤i≤k

∣∣P (t∗k,i) − pk,i

∣∣ = 0 (2.5)
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Proof. Let us write P as P =
∑n

ℓ=0 AℓXℓ, with X0 = 1I. Consider any k ≥ n. We have both

P (t∗k,i) =

n∑

ℓ=0

AℓXℓ(t
∗
k,i), pk,i =

n∑

ℓ=0

Aℓxℓ,k,i for i = 0, . . . , k, (2.6)

with x0,k,i = 1 for i = 0, . . . , k. Setting A := max (|A2|, . . . , |An|), it readily follows that

max
0≤i≤k

∣∣P (t∗k,i) − pk,i

∣∣ ≤ A
n∑

ℓ=2

max
0≤i≤k

∣∣Xℓ(t
∗
k,i) − xℓ,k,i

∣∣ . (2.7)

Accordingly (2.5) follows from Lemma 2.1. �

ee elevation Remark 2.4. Observe that Lemma 2.1 also permits an efficient proof of the convergence of degree
elevation: with the notations of Proposition 2.3, for each P ∈ Pn, the sequence LkP , k ≥ n, defined
by

LkP (t∗k,i) = pk,i for i = 0, . . . , k, LkP is affine on
[
t∗k,i, t

∗
k,i+1

]
for i = 0, . . . , k − 1,

uniformly converges to P on [0, 1]. Indeed, out of linearity, it suffices to prove this for any monomial
Xn, n ≥ 2. Simple convexity arguments show that

BkXn ≥ Lk (BkXn) ≥ Xn ≥ LkXn, k ≥ n.

It follows that

‖Xn − LkXn‖∞ ≤ ‖Lk(BkXn) − LkXn‖∞ = max
0≤i≤k

∣∣Xn(t∗k,i) − xn,k,i

∣∣ , k ≥ n.

Lemma 2.1 proves that limk→+∞ ‖Xn − LkXn‖∞ = 0.

§3. The Chebyshevian framework: generalised derivatives vs

Bernstein operators

In the present section, we briefly present Extended Chebyshev spaces and the few main tools which
this work relies on: Bernstein bases, Bernstein operators, weight functions and associated generalised
derivatives, along with how they are connected together. For further acquaintance with this question
readers are referred to [18, 19] and also [1], and more generally for further acquaintance with Extended
Chebyshev spaces, to [11, 30, 14, 27, 15, 16, 17].
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3.1. Extended Chebyshev spaces

Throughout the present section I stands for any non-trivial real interval, and E ⊂ Cn(I) is an (n+1)-
dimensional linear space. Such a space is said to be an Extended Chebyshev space on I (for short,
EC-space on I) if any non-zero F ∈ E vanishes at most n times on I, multiplicities included up to
(n +1), or, equivalently, if E permits Hermite interpolation on I, that is, if any Hermite interpolation
problem in (n + 1) data in I has a unique solution in E.

Example 3.1. Let E be the null space of any linear differential operator of order (n + 1) with
real constant coefficients. If the characteristic polynomial has only real roots, then E is an (n + 1)-
dimensional EC-space on the whole of R. If some of the roots are not real, then E is also an EC-space,
however only on sufficiently small intervals, and at least on any interval of length less that π divided
by the maximum of the imaginary parts of all non-real roots. Any power functions with pairwise
distinct exponents also span EC-spaces, this time on any interval not containing 0.

re:closure Remark 3.2. The class of all EC-spaces on a fixed interval I is closed under integration (Rolle’s
theorem), as well as under multiplication by sufficiently differentiable positive functions. As indicated
in the introduction, it is important to observe that it is not closed under the ordinary differentiation
D, and this is one of the difficulties encountered in the Chebyshevian world. This is made clear by
the classical example of the space spanned by 1I, cos, sin: it is an EC-space on [a, b] if and only if
b − a < 2π, while the space spanned by cos, sin is an EC-space on [a, b] if and only if b − a < π.

EC-spaces can be characterised by the existence of special bases resembling polynomial Bernstein
bases, see Theorem 3.3 of [16] or Theorem 12 of [17].

th:BLB Theorem 3.3. The space E is an EC-space on I if and only if for any c, d ∈ I, c < d, E possesses a
Bernstein-like basis relative to (c, d), that is, a basis (B0, . . . Bn) such that for each i = 0, . . . , n, Bi

vanishes exactly i times at c and exactly (n − i) times at d, and is positive on ]c, d[.

To complete Remark 3.2, consider again the EC-space E spanned by 1I, cos, sin, this time on [0, π].
The functions

B0(t) := 1 + cos t, B1(t) := sin t, B2(t) := 1 − cos t,

form a Bernstein-like basis of E relative to (0, π). All other Bernstein-like bases relative to (0, π) are
of the form (α0B0, α1B1, α2B2) with any positive α0, α1, α2. None of them is normalised. This is the
reason why the space E cannot be used for CAGD purposes on [0, π]. Actually, as recalled below, this
is connected to that fact that the space DE fails to be an EC-space on [0, π] (see Theorem 4.2 of [16]).

th:BB Theorem 3.4. Assume that E is an (n+1)-dimensional EC-space on I. The following properties are
equivalent:
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(i) for any c, d ∈ I, c < d, E possesses a Bernstein basis relative to (c, d), that is, a Bernstein-like
basis relative to (c, d) which is normalised;

(ii) the space E contains constants and the (n-dimensional) space DE is an EC-space on I.

Definition 3.5. An EC-space on I is said to be good for design when it satisfies (ii) of Theorem 3.4.

Behind this definition is hidden the fact that condition (ii) of Theorem 3.4 characterises the existence
of blossoms in the space E. Blossoms are functions of n variables generalising polynomial blossoms.
However, unlike them they are not defined by algebraic properties, but in a geometrical way by means
of intersections of osculating flats [27, 17]. As soon as they exist, blossoms permit the development
of the classical CAGD algorithms like polynomial blossoms, and they guarantee that the Bernstein
basis (B0, . . . , Bn) relative to any given c, d ∈ I, c < d, is totally positive on [c, d] ( i.e., for any
c ≤ x0 < x1 < · · · < xn ≤ d, all minors of the matrix (Bi(xj))0≤i,j≤n

are non-negative). It is even the

optimal normalised totally positive basis of E restricted to [c, d] (that is, the normalised B-basis in the
sense of [3]), see [15, 16, 17]. In order to facilitate the reading we will avoid saying more on blossoms,
though they are strongly involved in many proofs.

Example 3.6. Following from Remark 3.2 we can say that the trigonometric space spanned by
1I, cos, sin is an EC-space good for design only on any interval [a, b] such that 0 < b − a < π.

We now have to recall a classical procedure to build EC-spaces on I, see [30]. This will complete
and explain the presentation given in the introduction. Start with a system (w0, . . . , wn) of weight
functions on I, i.e., for each i, wi ∈ Cn−i(I) and is positive on I. The generalised derivatives
associated with this system are obtained by alternating division by a weight function and ordinary
differentiation as follows:

L0F :=
F

w0
, LiF :=

DLi−1F

wi

, i = 1, . . . , n. (3.1)

For each i ≤ n, Li is a linear differential operator of order i. Due to the class of all EC-spaces on I
being closed under integration and multiplication by positive functions (see Remark 3.2), the set of
all functions F ∈ Cn(I) for which LnF is constant on I is an (n + 1)-dimensional EC-space on I, of
which a basis is formed by the generalised monomials (1.4). We denote it as E = EC(w0, . . . , wn).
As an instance, if I = R and wi := 1I for i = 0, . . . , n, the generalised derivatives are simply the
ordinary derivatives and the space EC(w0, . . . , wn) is simply the space of all polynomials of degree
at most n. From the recursive definition of generalised derivatives (3.1) one can derive that w0 ∈
EC(w0, . . . , wn) and that D (EC(1I, w1, . . . , wn)) = EC(w1, . . . , wn). Hence, any space EC-space of
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the form EC(1I, w1, . . . , wn) is good for design on [a, b]. Within the class of all EC-spaces on I which
are defined by means of systems of weight functions, the generalised derivatives are appropriate tools
to diminish the dimension. However, if the interval is not closed and bounded this class is strictly
contained in the class of all EC-spaces on I. By contrast, both classes coincide if the interval is closed
and bounded. This is the case surveyed in the subsection below.

3.2. Weight functions and Bernstein operators on closed bounded intervals

In this section we assume that the interval I is a closed bounded interval [a, b]. It is known that each
EC-space on [a, b] can be associated with systems of weight functions via the procedure described in
the previous subsection. We are even able to build all such systems, see [19]. Surprisingly, the search
for all such systems is somehow equivalent to the search for all Bernstein operators, as recalled in
Theorem 3.10 below.

Unless we explicitly state it differently, we assume that E ⊂ Cn([a, b]) is an (n + 1)-dimensional
EC-space good for design on [a, b], in which (B0, . . . , Bn) stands for the Bernstein basis relative to
(a, b). When no ambiguity is possible, we will omit “relative to (a, b)”.

def:BO Definition 3.7. Given a strictly increasing sequence a = ζ0 < ζ1 < · · · < ζn = b, the linear operator
B : C0([a, b]) → E defined by

BF =

n∑

i=0

F (ζi)Bi, F ∈ C0([a, b]), (3.2)

is said to be a Bernstein operator based on E if there exists a two-dimensional EC-space U on [a, b]
which is reproduced by B, in the sense that BF = F for all F ∈ U.

re:BO Remark 3.8. A Bernstein operator B based on E reproduces constants. Since it cannot reproduce
three linear independent functions (see Proposition 3.7 of [18]), the two-dimensional EC-space re-
produced by B must contain constants. It is thus of the form E = span(1I, U) where U is a strictly
increasing function. Determining all Bernstein operators based on E amounts to determining all
non-constant functions they reproduce [18].

Remark 3.9. A Bernstein operator based on E is a positive operator ( i.e., for any non-negative
F ∈ C0([a, b]), the function BF is non-negative on [a, b]). Furthermore, due to the Bernstein basis
being totally positive on [a, b], any Bernstein operator based on E is also variation diminishing [18].
See [10] for further acquaintance with variation diminishing issues.
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The following result explains the links between weight functions and Bernstein operators. Its proof,
based on Theorem 3.4, strongly involves blossoms and their properties (see Theorem 4.8 of [18] and
Theorems 3.2 and 5.1 of [19]).

th1 Theorem 3.10. Given any integer n ≥ 2, we assume that E ⊂ Cn([a, b]) is an (n + 1)-dimensional
EC-space good for design on [a, b], and we denote by (B0, . . . , Bn) its Bernstein basis (relative to (a, b)).
Consider a function U ∈ E, expanded as U =

∑n

i=0 αiBi ∈ E, and its first derivative w1 := DU . The
following six properties are then equivalent:

(i) α0, . . . , αn ( i.e., the Bézier points of U relative to (a, b)) form a strictly increasing sequence;

(ii) w1 is positive on [a, b], and there exists a (unique) Bernstein operator based on E reproducing U ;

(iii) the function w1 is positive on [a, b] and, if we define the first order linear differential operator
L1 by L1V := (DV )/w1, then the n-dimensional space L1E is an EC-space good for design on
[a, b];

(iv) the coordinates of w1 in any Bernstein-like basis relative to (a, b) of the space DE are positive;

(v) U(a) < U(b) and there exists a nested sequence

E1 := span(1I, U) ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En := E, (3.3)

where, for each p = 1, . . . , n, Ep is a (p + 1)-dimensional EC-space on [a, b];

(vi) the function w1 is positive on [a, b] and there exists a system (w2, . . . , wn) of weight functions on
[a, b] such that E = EC(1I, w1, w2, . . . , wn).

Theorem 3.10 calls for some comments, listed below.

re:zeta Remark 3.11. The equivalence between the first two properties in Theorem 3.10 show that, when
(i) is satisfied, the Bernstein operator based on E which reproduces U is given by (3.2) with

ζi := U−1(αi), 0 ≤ i ≤ n. (3.4)

allBO Remark 3.12. Each strictly increasing sequence of Bézier points (α0, . . . , αn) generates a unique
Bernstein operator based on E. Actually, this establishes a one-to-one correspondence between the
set of all Bernstein operators based on E and the set of all equivalence classes of strictly increasing
sequences of (n + 1) real numbers under the equivalence relation (α0, . . . , αn) ∼ (α0, . . . , αn) if and
only if there exist α, β such that αi = ααi + β for i = 0, . . . , n. Accordingly, as soon as n ≥ 2, the
space E provides us with infinitely many Bernstein operators. In general none of them has a special
meaning for the space E.
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:allweightsgood Remark 3.13. Iteration of the equivalence (i) ⇔ (iii) provides us with all systems (w1, . . . , wn) of
weight functions on [a, b] such that E = EC(1I, w1, . . . , wn). In general none of the associated sequences
of generalised derivatives has a special meaning for the space E. Each such system yields a nested
sequence (3.3), defined by Ei := EC(1I, w1, . . . , wi), i = 1, . . . , n. Conversely, via repeated iteration
of (i) ⇒ (iii), each sequence (3.3) leads to a system of weight functions (w1, w2, . . . , wn) such that
E = EC(1I, w1, w2, . . . , wn), each wi being unique up to multiplication by a positive constant. In
particular, the class of all (n + 1)-dimensional EC-spaces which are good for design on [a, b] coincides
with the class of all spaces of the form EC(1I, w1, . . . , wn), where (w1, . . . , wn) ranges over the set of
all systems of weight functions on [a, b]. By differentiation it also follows that the class of all (n + 1)-
dimensional EC-spaces on [a, b] coincides with the class of all spaces of the form EC(w0, w1, . . . , wn).

re:nestedBO Remark 3.14. Assume that E ⊂ E
∗, where E

∗ is an (n + 2)-dimensional EC-space good for design
on [0, 1]. Let E1 be a two-dimensional EC-space which is reproduced by a Bernstein operator based
on E. From the existence of a nested sequence (3.3) we can assert that E1 is automatically reproduced
too by a Bernstein operator based on E

∗.

We conclude this section with the subsequent observation: the three properties (iii) and (iv), and
(vi) of Theorem 3.10 can be considered as properties of the EC-space DE. We can thus restate them
as follows:

th:w0 Theorem 3.15. Let E ⊂ Cn([a, b]) be an (n+1)-dimensional EC-space on [a, b] (not necessarily good
for design). Given w0 ∈ E, the following properties are equivalent:

(i) the coordinates of w0 in any given Bernstein-like basis of E relative to (a, b) are all positive;

(ii) w0 is positive on [a, b] and the space L0E obtained by division by w0 is good for design;

(iii) there exists a system (w1, . . . , wn) of weight functions on [a, b] such that E = EC(w0, w1, . . . , wn).

re:BBab Remark 3.16. Theorem 3.4 says that, among all EC-spaces containing constants on a given interval
I, those which are good for design can be characterised by the presence of Bernstein bases relative to
any pair of distinct points of I. On a closed bounded interval [a, b], one can more simply characterise
them by the presence of a Bernstein basis relative to (a, b). This is obtained when applying (i) ⇒ (ii)
of Theorem 3.15 with w0 := 1I.

re:BLO Remark 3.17. When the (n + 1)-dimensional EC-space E is not assumed to be good for design on
[a, b], instead of Bernstein operators one can introduce Bernstein-like operators based on E. Such
an operator is associated with a unique two-dimensional EC-space EC(w0, w1) which it reproduces.
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However there are specific difficulties due to the fact that Bernstein-like bases are unique only up to
multiplication by positive numbers. Therefore, given any w0 satisfying (i) of Theorem 3.15, it is more
convenient to define the Bernstein-like operator B reproducing EC(w0, w1) as

L0

(
BF

)
:= B (L0F ) , F ∈ C0([a, b]),

where B is the unique Bernstein operator based on L0E which reproduces EC(1I, w1). We will not go
further into this matter, preferring to refer the reader to [18].

§4. View Pn as an EC-space good for design on [0, 1]

In the present section as well as in the following one, we apply recently obtained results recalled in
Section 3 to polynomial spaces on a closed bounded interval, say on [0, 1] without loss of generality.
We are thus revisiting the space Pn, viewing it as an instance of EC-space on [0, 1]. This revisit will
prove to be fruitful since all results we will deduce from it concerning Bernstein operators, either
polynomial (present section) or rational (next section) are new.

In the present section, we actually consider Pn as an element of the class of all EC-spaces good for
design on [0, 1], which corresponds to writing Pn under the general form

Pn = EC(1I, w1, . . . , wn), (4.1)

where (w1, . . . , wn) is an appropriate system of weight functions on [0, 1]. Any such equality should
be understood as the replacement of the ordinary derivatives (corresponding to the equality Pn =
EC(1I, 1I, . . . , 1I︸ ︷︷ ︸

(n+1) times

)) by generalised ones.

4.1. Polynomial Bernstein operators

As an EC-space good for design on [0, 1], we can apply Theorem 3.10 to the polynomial space Pn.
The classical Bernstein operator (2.2) is a Bernstein operator in the sense of Definition 3.7 since it
reproduces P1. This corresponds to the fact that the identity X1 has strictly increasing Bézier points
i
n
, i = 0, . . . , n. On account of all results and remarks in the previous section, we can state:

Theorem 4.1. For each n ≥ 2, there exist infinitely many polynomial Bernstein operators of degree
n (that is, infinitely many Bernstein operators based on the space Pn), characterised by the two-
dimensional EC-space they reproduce, among which the classical Bernstein operator (2.2) is the one
which reproduces P1.
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Remark 4.2. We thus observe that building all polynomial Bernstein operators of degree n can
exactly be viewed as searching for all weight functions w1 permitting an equality of the form (4.1). In
particular w1 = 1I corresponds to the classical Bernstein operator (2.2). It also amounts to finding all
first order differential operators L1, obtained by composition of the ordinary derivative and division
by a positive function, which, applied to Pn, ensures the same property as the ordinary derivative D,
i.e., decrease the dimension by one within the class of all EC-spaces good for design on [0, 1].

The use of generalised derivatives or of polynomial Bernstein operators different from the classical
ones may seem surprising. It is therefore certainly useful to give a few detailed examples.

Example 4.3. Assume that n = 3 and consider the polynomial function

U(t) =
3∑

i=0

uiB
3
i (t) = B3

0(t) + 2B3
1(t) + 4B3

2(t) + 7B3
3(t) = 3t2 + 3t + 1, t ∈ [0, 1].

The sequence (u0, u1, u2, u3) = (1, 2, 4, 7) of its Bézier points being strictly increasing, we know that
there exists a unique polynomial Bernstein operator B which reproduces U . In order to compute
BF =

∑3
i=0 F (ζi)B

3
i we have to solve the equations U(ζi) = ui for i = 0, . . . , 3. This yields

BF := F (0)B3
0 + F

(
−3 +

√
21

6

)
B3

1 + F

(
−1 +

√
5

2

)
B3

2 + F (1)B3
3 , F ∈ C0([0, 1]).

Note that, via Theorem 3.10, this operator B corresponds to all possible equalities of the form

P3 = EC(1I, w1, w2, w3), with w1(t) := 2t + 1 for all t ∈ [0, 1].

Example 4.4. Let us consider the polynomial function U ∈ Pn defined by

U(t) := 2t3 − 3t2 + 3t − 1 =

3∑

i=0

αiB
3
i (t) = −B3

0(t) + B3
3(t), t ∈ [0, 1].

Since U ′(t) = 3
(
t2 + (t − 1)2

)
, the function w1 := U ′ is positive on [0, 1]. We can thus introduce the

first order differential operator L1V := DV
w1

. The three-dimensional space L1P3, obtained by division
of P2 by a positive C∞ function, is an EC-space on [0, 1] (see Remark 3.2). However, it is not good for
design on [0, 1], i.e., the two-dimensional space DL1P3 is not an EC-space on [0, 1]. In other words,
L1 is not a generalised derivative in P3, which means that we cannot find any system (w2, w3) of
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weight functions on [0, 1] permitting to write P3 = EC(1I, w1, w2, w3). This is due to the sequence
(α0, α1, α2, α3) = (−1, 0, 0, 1) not being strictly increasing. On the other hand, U being strictly
increasing, clearly we cannot expect to find 0 < ζ1 < ζ2 < 1 such that U(ζi) = αi = 0 for i = 1, 2.
Hence, the function U cannot be reproduced by a Bernstein operator based on P3. Nevertheless, out
of dimension elevation we can write U as

U = −B4
0 − 1

4
B4

1 +
1

4
B4

3 + B4
4 .

The Bézier points of U viewed as an element of P4 thus form a strictly increasing sequence. Therefore,
U is reproduced by a Bernstein operator based on P4. Equivalently, we can say that there exists
systems (w2, w3, w4) of weight functions on [0, 1] such that P4 = EC(1I, w1, w2, w3, w4). In other words,
the four-dimensional EC-space L1P4 is good for design on [0, 1], that is, DL1P4 is a three-dimensional
EC-space on [0, 1]. Accordingly, L1 is indeed a generalised derivative in P4. From Theorem 3.10 we
can also say that it is possible to find infinitely many EC-spaces E2, E3, of dimension 3, 4, respectively,
such that

span(1I, U) ⊂ E2 ⊂ E3 ⊂ P4,

but none of them is included in P3.

4.2. Convergence of sequences of polynomial Bernstein operators

According to Remark 3.14, a two-dimensional EC-space E1 which is reproduced by a polynomial Bern-
stein operator of degree n will automatically be reproduced too by a polynomial Bernstein operator of
any degree k ≥ n. This observation gives sense to considering sequences of polynomial Bernstein ope-
rators all reproducing the same two-dimensional EC-space. This is what we do in Theorem 4.5 below
which proves that convergence in the sense of Theorem 2.2 is not specific to the classical Bernstein
operators (2.2).

th:CONV Theorem 4.5. Any infinite sequence of polynomial Bernstein operators of increasing degrees which
all reproduce the same two-dimensional EC-space on [0, 1] permits uniform approximation of any
continuous function on [0, 1].

Proof. We start with a function U ∈ Pn for some n ≥ 1, assumed to have strictly increasing Bézier
points un,0, . . . , un,n. We know the existence of a nested sequence

E1 := span(1I, U) ⊂ E2 ⊂ · · · ⊂ En := Pn ⊂ Pn+1 ⊂ · · · ,
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As observed in Remark 3.14, for any k ≥ n, U is reproduced by a polynomial Bernstein operator Bk

of degree k. We want to prove that the sequence Bk, k ≤ n, satisfies

lim
k→+∞

‖F − BkF‖∞ = 0 for any F ∈ C0([0, 1]). (4.2)

The case n = 1 gives the sequence of classical polynomial Bernstein operators B
∗
k, k ≥ 1. We can

therefore assume that n ≥ 2. Since each Bk, k ≥ n, reproduces the two functions 1I, U , Korovkin’s
theorem ensures that it is sufficient to prove (4.2) for any V ∈ E2. Actually, we will more generally
select any V ∈ Pn and prove (4.2) for this V .

Let us expand U and V in the Bernstein bases as

U =

k∑

i=0

uk,iB
k
i , V =

k∑

i=0

vk,iB
k
i , k ≥ n.

For each k ≥ n, the polynomial Bernstein operator Bk is defined on C0([0, 1]) by

BkF =

k∑

i=0

F (tk,i)B
k
i , with U(tk,i) := uk,i for i = 0, . . . , k.

We thus obtain, for any k ≥ n,

‖BkV − V ‖∞ =

∥∥∥∥∥

k∑

i=0

[V (tk,i) − vk,i] B
k
i

∥∥∥∥∥
∞

≤ max
0≤i≤k

|V (tk,i) − vk,i| .

In order to make sure that limk→+∞ ‖V − BkV ‖∞ = 0, it is sufficient to prove that

lim
k→+∞

max
0≤i≤k

|V (tk,i) − vk,i| = 0. (4.3)

Now, from Proposition 2.3 we know that

lim
k→+∞

max
0≤i≤k

∣∣U(t∗k,i) − uk,i

∣∣ = 0 = lim
k→+∞

max
0≤i≤k

∣∣V (t∗k,i) − vk,i

∣∣ . (4.4)

The leftmost equality can be replaced by

lim
k→+∞

max
0≤i≤k

∣∣U(t∗k,i) − U(tk,i)
∣∣ = 0. (4.5)
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Figure 1: The function F defined in (4.6) (red graph), and its approximant B3F , where B3 is the
polynomial Bernstein operator of degree 3 reproducing Uα defined in (4.7), with α := i

6 . From top to
bottom in the left part of the graphs, i =1; 2 ( i.e., B3 = B

∗
3); 3; 4; 5.

The function U being strictly increasing on [0, 1], we can consider its inverse U−1. Using the uniform
continuity of V ◦ U−1 on the interval [U(0), U(1)], (4.5) implies that

lim
k→+∞

max
0≤i≤k

∣∣V ◦ U−1
(
U(t∗k,i)

)
− V ◦ U−1

(
U(tk,i)

)∣∣ = lim
k→+∞

max
0≤i≤k

∣∣V (t∗k,i) − V (tk,i)
∣∣ = 0.

To obtain (4.3) we just have to additionally use the rightmost part of (4.4) after observing that

|V (tk,i) − vk,i| ≤
∣∣V (tk,i) − V (t∗k,i)

∣∣ +
∣∣V (t∗k,i) − vk,i

∣∣ .

�

Remark 4.6. The latter result suggests that it might be interesting to do polynomial approximation of
continuous functions with shape parameters. The shape parameters would be provided by the strictly
increasing sequence (un,0, . . . , un,n) we start with. Our purpose is not to thoroughly investigate this
question, but rather to briefly illustrate this with an example. Consider the function



18 Marie-Laurence Mazure

F (t) := sin
(
πt − π

2

)
, t ∈ [0, 1]. (4.6)

For any n ≥ 3, let Bn be the Bernstein operator based on Pn which reproduces the function Uα

depending on the parameter α ∈]0, 1[

Uα(t) := −B3
0(t) − αB3

1(t) + αB3
2(t) + B3

3(t) = (2t − 1)
[
1 + (3α − 1)t(1 − t)

]
. (4.7)

Observe that, for α = 1
3 , Uα(t) = 2t − 1. Accordingly, for this specific value of the parameter α, the

operator Bn is the classical Bernstein operator of degree n, that is B
∗
n. Figure 1 presents the graphs of

the function B3F for various values of the parameter α, by comparison with the graph of the function
F itself. Visually speaking, B3F is all the closer to F as α is closer to 1. In particular, the function
B3F obtained for α = 5

6 seems a much better approximant than B
∗
3F .

§5. Simply view Pn as an EC-space on [0, 1]

In the present section, we forget about the fact that the EC-space Pn is good for design, that is, about
the fact that DPn = Pn−1 itself is an EC-space on [0, 1]. In terms of weight functions, this means
that we no longer require that the first weight function be equal to 1I. We are now rather interested
in all polynomials Ω ∈ Pn ensuring equalities of the form

Pn = EC(Ω, w1, . . . , wn). (5.1)

5.1. Rational spaces and weight functions

In order to fix the notations which will be used subsequently it is worthwhile rewriting Theorem 3.15
as follows:

th:Omega Theorem 5.1. Given Ω :=
∑n

i=0 ωiB
n
i ∈ Pn, the following three properties are equivalent:

(i) ωi > 0 for i = 0, . . . , n;

(ii) Ω is positive on [a, b] and the space P̂n obtained from Pn by division of all its elements by Ω is
an EC-space good for design on [0, 1];

(iii) there exist systems (w1, . . . , wn) of weight functions on [0, 1] such that (5.1) holds.
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From now on, the function Ω is fixed, and we assume that all ω’s are positive. Then, division of
both sides of the equality Ω :=

∑n

i=0 ωiB
n
i by Ω shows that the sequence

B̂i :=
ωiB

n
i

Ω
, i = 0, . . . , n,

is normalised and presents the same property of zeroes as the classical Bernstein basis (Bn
0 , . . . , Bn

n).

Accordingly, it is the Bernstein basis relative to (0, 1) in P̂n. The space P̂n is thus composed of all
functions

F̂ (t) =

n∑

i=0

αi

ωiB
n
i (t)

Ω(t)
=

∑n

i=0 αiωiB
n
i (t)∑n

i=0 ωiBn
i (t)

, t ∈ [0, 1]. (5.2)

In other words, (5.2) proves that P̂n is the rational space of degree n based on the positive weights
ω0, . . . , ωn. To avoid confusion with weight functions, we will rather say that it is based on Ω. For a
classical approach of rational spaces, see for instance [7, 9, 25].

On account of (i) ⇒ (ii), Theorem 5.1 ensures that the rational space P̂n is an EC-space good for
design on [0, 1]. The interesting part of this statement is that

Theorem 5.2. ([22]) The first derivative DP̂n of a rational space P̂n is an EC-space on [0, 1].

re:rational Remark 5.3. We thus observe that building all rational spaces of degree n can exactly be viewed
as searching for all weight functions Ω permitting an equality of the form (5.1). It also amounts to
finding all first order differential operators DL0 ensuring the same property as the ordinary derivative
D when applied to Pn, i.e., decrease the dimension by one within the class of all EC-spaces on [0, 1].

5.2. Convergence of rational Bernstein operators

In the previous subsection we have seen that the space P̂n is an EC-space good for design on [0, 1].
As so, it provides us with Bernstein operators based on it, and we now focus on these operators.
From Theorem 3.10 we know that they correspond to all weight functions w1 permitting to write
the rational space P̂n as P̂n = EC(1I, w1, w2, . . . , wn), that is, the polynomial space Pn itself as
Pn = EC(Ω, w1, w2, . . . , wn). From Remark 3.17 we also know that they correspond to all Bernstein-
like operators based on Pn which reproduce a two-dimensional space of the form EC(Ω, w1).

We will more precisely be interested in convergence. This is why we will now write Ω as

Ω =

k∑

i=0

ωk,iB
k
i for all k ≥ n,
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so that in particular ωn,i = ωi for i = 0, . . . , n. Applying the degree elevation process to Ω shows that,
for each k ≥ n, and each i = 1, . . . , k, ωk+1,i is a strictly convex combination of ωk,i−1, ωk,i. Moreover
ωk+1,0 = ωk,0 and ωk+1,k+1 = ωk,k. By induction we can therefore state that, for each k ≥ n, the
Bézier points of Ω viewed as an element of Pk can be expressed as convex combinations of the initial
positive Bézier points ω0, . . . , ωn. Hence they all are positive. Accordingly, the nested sequence

P̂n =
1

Ω
Pn ⊂ P̂n+1 :=

1

Ω
Pn+1 ⊂ · · · ⊂ P̂k :=

1

Ω
Pk ⊂ P̂k+1 :=

1

Ω
Pk+1 ⊂ · · · (5.3)

is a nested sequence of rational spaces, all based on the same function Ω. According to Remark 3.14, a
two-dimensional EC-space which is reproduced by a rational Bernstein based on P̂n will automatically
be reproduced too by a rational Bernstein operator based on P̂k for all k ≥ n. This situation (5.3) is
the most natural one to build infinite sequences of rational Bernstein operators, as will be done in the
theorem below.

CONVRat Theorem 5.4. Consider an infinite sequence B̂k, k ≥ n, of Bernstein operators respectively based on
the rational spaces P̂k, k ≥ n, introduced in (5.3), assumed to all reproduce the same two-dimensional

EC-space on [0, 1]. Then, for each F ∈ C0([0, 1]), the sequence B̂kF , k ≥ n, converges to F uniformly
on [0, 1].

Proof. Let Ê1 be the two-dimensional EC-space on [0, 1] which is reproduced by each operator B̂k,

k ≥ n. For any k ≥ n, let (B̂k,0, . . . , B̂k,k) denote the Bernstein basis of the rational space P̂k. In Ê1

we select a strictly increasing function Û , expanded as

Û =

k∑

i=0

ûk,iB̂k,i, k ≥ n.

For each k ≥ n, the Bézier points ûk,0, . . . , ûk,k of Û form a strictly increasing sequence, and the

Bernstein operator B̂k based on the rational space P̂k which reproduces E1 is given by

B̂kF :=

k∑

i=0

F (t̂k,i)B̂k,i, with Û(t̂k,i) = ûk,i for i = 0, . . . , k.

All positive operators B̂k, k ≥ n, reproduce 1I and Û . According to Korovkin’s theorem, in order

to prove the claimed result, it suffices to show that limk→+∞

∥∥∥B̂kV − V
∥∥∥
∞

= 0 for one given V ∈
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C0([0, 1]) chosen so that the functions 1I, Û , and V span a three-dimensional EC-space on [0, 1] (see,
for instance, [5], Theorem 4.2). Without loss of generality, we can assume that n ≥ 2 and prove the

desired property for any P̂ ∈ P̂n. Select any such P̂ in the rational space P̂n, expanded as

P̂ =
P

Ω
=

k∑

i=0

p̂k,iB̂k,i =

k∑

i=0

pk,i

ωk,i

B̂k,i, with P =

k∑

i=0

pk,iBk,i, k ≥ n. (5.4)

Clearly, it is sufficient to prove that

lim
k→+∞

max
0≤i≤k

∣∣∣P̂ (t̂k,i) − p̂k,i

∣∣∣ = 0. (5.5)

Now, applying Proposition 2.3 both to P and Ω, we can assert that

lim
k→+∞

max
0≤i≤k

∣∣P (t∗k,i) − pk,i

∣∣ = 0 = lim
k→+∞

max
0≤i≤k

∣∣Ω(t∗k,i) − ωk,i

∣∣ . (5.6)

Using (5.4) we can write

P̂ (t∗k,i) − p̂k,i =
P (t∗k,i)

Ω(t∗k,i)
− pk,i

ωk,i

=
ωk,i

[
P (t∗k,i) − pk,i

]
+ pk,i

[
ωk,i − Ω(t∗k,i)

]

ωk,iΩ(t∗k,i)
. (5.7)

As already observed, for each k ≥ n, and for each i = 0, . . . , k, ωk,i can be calculated as a convex
combination of ωn,0, . . . , ωn,n and each pk,i can be calculated via the same convex combination of
pn,0, . . . , pn,n. It follows that, for each k ≥ n and each i = 0, . . . , k, we have

0 < m := min(ωn,0, . . . , ωn,n) ≤ ωk,i ≤ M := max(ωn,0, . . . , ωn,n),

|pk,i| ≤ Q := max(|pn,0|, . . . , |pn,n|).
(5.8)

On the other hand, for any t1, . . . , tn ∈ [0, 1], the value ωn(t1, . . . , tn) of the blossom ωn of Ω ∈ Pn can
be calculated as a convex combination of the Bézier points ωn,0, . . . , ωn,n of Ω, via an n-step generalised
version of the de Casteljau evaluation algorithm. This holds in particular for each Ω(t) = ωn(t[n]),
t ∈ [0, 1]. In other words we can also state that

0 < m ≤ Ω(t) ≤ M for all t ∈ [0, 1]. (5.9)
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Taking (5.8) and (5.9) into account, (5.7) leads to

∣∣∣P̂ (t∗k,i) − p̂k,i

∣∣∣ ≤
M max

0≤j≤k

∣∣P (t∗k,j) − pk,j

∣∣ + Q max
0≤i≤k

∣∣Ω(t∗k,i) − ωk,i

∣∣

m2
,

thus proving that

lim
k→+∞

max
0≤i≤k

∣∣∣P̂ (t∗k,i) − p̂k,i

∣∣∣ = 0. (5.10)

In particular, for P̂ = Û , this yields

lim
k→+∞

max
0≤i≤k

∣∣∣Û(t∗k,i) − Û(t̂k,i)
∣∣∣ = 0. (5.11)

As in the proof of Theorem 4.5, uniform continuity arguments eventually lead to the fact that

lim
k→+∞

max
0≤i≤k

∣∣∣P̂ (t̂k,i) − P̂ (t∗k,i)
∣∣∣ = 0.

This proves (5.5) via an appropriate triangular inequality and (5.10). �

nsion elevation Remark 5.5. Generalising Remark 2.4, observe that the convergence of the so-called dimension
elevation algorithm generated by the infinite sequence (5.3) can efficiently be obtained as a consequence
of (5.5). Subsequently, we use exactly the same notations as in Theorem 5.4 and in its proof. Given

any P̂ ∈ P̂j for any given j ≥ n, consider the sequence L̂kP̂ , k ≥ j, defined by

L̂kP̂ (t̂k,i) = p̂k,i for i = 0, . . . , k, L̂kP̂ is affine on
[
t̂k,i, t̂k,i+1

]
for i = 0, . . . , k − 1,

where, for each k ≥ j, p̂k,i, i = 0, . . . , k, are the Bézier points of P̂ in P̂k. The set of all t̂k,i, k ≥ n,
0 ≤ i ≤ k, being dense in [0, 1] (see (5.11)), convergence of the dimension elevation algorithm can

be viewed as the uniform convergence of the sequence L̂kP̂ , k ≥ n, to P̂ on [0, 1], for any such

P̂ . Select a nested sequence Ê2, . . . , Ên−1 of EC-spaces on [0, 1] of increasing dimension, so that

Ê1 ⊂ Ê2 ⊂ · · · ⊂ Ên−1 ⊂ P̂n. This is made possible by Theorem 3.10. Setting Êk := P̂k for k ≥ n,

for any j ≥ 2, we can then choose a function Ûj ∈ Êj \ Êj−1 so that Ûj will be Û -convex, that is, so

that the function Ûj ◦ Û−1 will be convex on [Û(0), Û(1)]. Out of linearity, it suffices to prove uniform

convergence for each Ûj , j ≥ 2. Taking the Û -convexity into account we have (see [18])

B̂kÛj ≥ L̂k

(
B̂kÛj

)
≥ Ûj ≥ L̂kÛj , k ≥ j.

Similar arguments as those in Remark 2.4 enable us to state that limk→+∞ ‖Ûj − L̂kÛj‖∞ = 0.
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5.3. An example

Any (n + 1)-dimensional EC-space E assumed to be good for design on [0, 1] permits to obtain any
straight line segments in R

d, d ≥ 2, as examples of parametric curves: it suffices to choose any Bézier
points in a monotonic way on the segment in question. However such segments cannot be described
as graphs of a function with values in R

d−1, unless P1 ⊂ E. This property is generally referred to
as linear precision. The question of linear precision for rational spaces was solved in [6]; also see [8].
Linear precision can be useful in many ways, and this is why we devote this section to it. For instance,
recently rational spaces with linear precision were successfully used to build rational shape-preserving
Hermite interpolants in [23].

As a preliminary result we need to recall the corresponding obvious observation in order to make
forthcoming formulæ natural. Since P̂n contains constants, it satisfies linear precision if and only if
the identity belongs to P̂n. The very definition of the space P̂n makes the following statement obvious.

Lemma 5.6. The rational space P̂n satisfies linear precision ( i.e., P1 ⊂ P̂n) if and only if Ω is of
degree at most (n − 1).

Let us come back to the infinite nested sequence of rational spaces introduced in (5.3). Clearly,

if P̂n satisfies linear precision, so does any P̂k, k ≥ n. Nevertheless, it should be observed that, in
case P̂n fails to satisfy linear precision, i.e., in case Ω is of exact degree n, then each further space
P̂k, k ≥ n + 1, does satisfy linear precision all the same. This is why, for the rest of this section,
without loss of generality we do assume that Ω is of degree at most (n− 1). Equivalently, we assume
the existence of real numbers ω∗

0 , . . . , ω∗
n−1 (the Bézier points of Ω as an element of Pn−1) leading to

the positive ω0, . . . , ωn via degree elevation from Pn−1 to Pn, i.e., ensuring that

ω0 := ω∗
0 , ωi :=

i

n
ω∗

i−1 +
n − i

n
ω∗

i for 1 ≤ i ≤ n − 1, ωn := ω∗
n−1. (5.12)

Remark 5.7. Note that, in order to ensure the positivity of all ω0, . . . , ωn, it is sufficient to require
that ω∗

0 , . . . , ω
∗
n−1 be positive. However, this is not necessary. For instance, for n = 3, the choice

ω∗
0 = ω∗

2 = 2, ω∗
1 = − 1

2 , yields ω2 = ω3 = 1
3 . Accordingly, though the space P̂n−1 := 1

ΩPn−1 is well
defined due to Ω being positive on [0, 1], this space is not necessarily a rational space of degree (n−1).

The problem we want to tackle here is the following one: how should we select ω∗
0 , . . . , ω∗

n−1 so that

the nested sequence (5.3) provides us with a corresponding sequence B̂k, k ≥ n, of Bernstein operators
all reproducing the space P1? From Remark 3.14 we know that it is sufficient to ensure reproduction
of P1 by a Bernstein operator based on P̂n. From Theorem 3.10 we know that this holds if and only if
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the Bézier points of the identity X1 as an element of P̂n form a strictly increasing sequence. To solve
this question, we start with the following simple lemma on polynomial blossoms.

le:blosprod Lemma 5.8. Given any integers n1, n2 ≥ 1, and for i = 1, 2, given Pi ∈ Pni
, let P ∈ Pn be defined

by P := P1P2, with n := n1 + n2. Then, the blossom p in n variables of P is given by

p(t1, . . . , tn) =
1(
n
n1

)
∑

p1(ti1 , . . . , tin1
)p2(tj1 , . . . , tjn2

), t1, . . . , tn ∈ [0, 1], (5.13)

where, for i = 1, 2, pi denotes the blossom in ni variables of Pi ∈ Pni
, and where the sum in (5.13) is

taken over all sequences of indices 1 ≤ i1 < · · · < in1
≤ n, 1 ≤ j1 < · · · < jn2

≤ n with ir �= js for
1 ≤ r ≤ n1, 1 ≤ s ≤ n2.

Proof. Due to the properties of the blossoms pi, i = 1, 2, the function appearing in the right-hand side
of (5.13) is clearly symmetric and affine in each variable t1, . . . , tn, and clearly too, on the diagonal of
[0, 1]n we have p(t[n]) = p1(t

[n1])p2(t
[n2]) = P1(t)P2(t) = P (t). �

Let ω∗ be the blossom of Ω ∈ Pn−1, that is, its blossom in (n−1) variables. Let P ∈ Pn be defined
by P (t) := tΩ(t), t ∈ [0, 1]. The blossom p of P (in n variables) is thus given by

p(t1, . . . , tn) =
1

n

n∑

i=1

tiω
∗(t1, . . . , ti−1, ti+1, . . . , tn), t1, . . . , tn ∈ [0, 1].

As a special case, given distinct a, b ∈ [0, 1], we obtain

p(a[n−i], b[i]) =
i

n
b ω∗(a[n−i], b[i−1]) +

n − i

n
a ω∗(a[n−1−i], b[i]), 1 ≤ i ≤ n − 1.

Let us apply the latter formula with a = 0, b = 1. The Bézier points p0, . . . , pn of P are thus given by

p0 = 0, pi = p(0[n−i], 1[i]) =
i

n
ω∗

i−1 for i = 1, . . . , n. (5.14)

Accordingly, as an element of the rational space P̂n, the Bézier points of the identity X1 = P
Ω are

given by (see (5.12))
p0

ω0
= 0,

pi

ωi

=
iω∗

i−1

iω∗
i−1 + (n − i)ω∗

i

, 1 ≤ i ≤ n. (5.15)
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The positivity of ω∗
0 and ω∗

n−1 enables us to conclude that we always have

0 =
p0

ω0
<

p1

ω1
,

pn−1

ωn−1
<

pn

ωn

.

We thus have to find conditions on ω∗
0 , . . . , ω∗

n−1 ensuring that

iω∗
i−1

iω∗
i−1 + (n − i)ω∗

i

<
(i + 1)ω∗

i

(i + 1)ω∗
i + (n − i − 1)ω∗

i+1

, 1 ≤ i ≤ n − 2. (5.16)

Assume that (5.16) is satisfied. Both denominators in (5.16) being positive –see (5.12)–, we can see
that as soon as ω∗

i−1 > 0 for some integer i, 1 ≤ i ≤ n−1, then ω∗
i is positive in turn. We already know

that ω∗
0 , ω

∗
n−1 are positive. Hence, we now know that ω∗

0 , . . . , ω∗
n−1 are all positive. Moreover, again

due to the positivity of the denominators, condition (5.16) can equivalently be written as follows:

i(n − i − 1)ω∗
i−1ω

∗
i+1 < (i + 1)(n − i)ω∗

i
2 for i = 1, . . . , n − 2. (5.17)

On the other hand, we know that the positivity of ω∗
0 , . . . , ω∗

n−1 guarantees that of ω0, . . . , ωn

obtained via (5.12). Accordingly, we can summarise all previous discussion as follows.

th:reproP1 Theorem 5.9. Given Ω =
∑n

i=0 ωiB
n
i ∈ Pn, the following properties are equivalent:

(i) the function Ω is positive on [0, 1] and (5.3) is a sequence of rational spaces which provides us

with a sequence B̂k, k ≥ n, of rational Bernstein operators reproducing P1;

(ii) ω0, . . . , ωn are given by (5.12), where ω∗
0 , . . . , ω∗

n−1 are any positive numbers satisfying

i(n − i − 1)ω∗
i−1ω

∗
i+1 < (i + 1)(n − i)ω∗

i
2 for i = 1, . . . , n − 2.

One interesting advantage of reproduction of the identity is that it directly yields explicit expres-
sions of the Bernstein operators. We can indeed complete Theorem 5.9 by the following one, which
follows from (5.15) and (5.12).

h:reproP1bis Theorem 5.10. Assume that Ω =
∑n

i=0 ωiB
n
i ∈ Pn, and that (ii) of Theorem 5.9 holds. Then, for

each k ≥ n the Bernstein operator B̂k based on the rational space P̂k which reproduces the identity is
given by

B̂kF =
k∑

i=0

F

(
iωk−1,i−1

kωk,i

)
B̂k,i, F ∈ C0([0, 1]), (5.18)

where, for each k ≥ n − 1, ωk,0, . . . , ωk,k are the (positive) Bézier points of Ω as an element of Pk.
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Remark 5.11. As observed in Remark 5.7, when P1 ⊂ P̂n the space P̂n−1 := 1
ΩPn−1 may fail to be a

rational space of degree (n− 1). However, as soon as P1 is reproduced by a Bernstein operator based

on P̂n, all ω∗
0 , . . . , ω∗

n−1 being positive (Theorem 5.9), P̂n−1 is indeed a rational space.

Remark 5.12. All suitable ω∗
0 , . . . , ω∗

n−1 ensuring condition (ii) of Theorem 5.9 can, for instance, be
obtained by first choosing any positive ω∗

0 , ω∗
1 , and then successively selecting ω∗

2 , . . . , ω∗
n−1 such that

0 < ω∗
i <

i(n − i + 1)

(i − 1)(n − i)

ω∗
i−1

2

ω∗
i−2

for i = 2, . . . , n − 1.

5.4. Comments on rational Bernstein operators

We would like to pay tribute to P. Piţul and P. Sablonnière for their interesting work [26] on a class of
rational Bernstein operators, to which we will compare the previous subsection. As a special case of
Theorem 5.4, we can say that the sequence of rational Bernstein operators defined by (5.18) satisfies

lim
k→+∞

‖B̂kF − F‖∞ = 0 for all F ∈ C0([0, 1]). (5.19)

We would like to mention that this sequence is one instance of the sequences of rational positive
operators studied in [26] (see also [29]). For each integer k, the authors of [26] considered a positive
operator Rk

RkF =

∑k

i=0 wk,iF (tk,i)B
k
i

Ωk

, F ∈ C0([0, 1]), with Ωk :=
k−1∑

i=0

wk,iB
k−1
i , (5.20)

the wk,i, 0 ≤ i ≤ k, being any positive numbers chosen so as to satisfy

wk,i−1wk,i+1

wk,i
2

<

(
i + 1

i

) (
k − i

k − i − 1

)
, 1 ≤ i ≤ k − 2. (5.21)

Moreover in the numerator, the wk,i, tk,i, are given by

wk,i = wk,0, wk,k = wk,k−1, wk,i =
i

k
wk,i−1 +

(
1 − i

k

)
wk,i, (5.22)

and

tk,0 := 0, tk,k := 1, tk,i =
iwk,i−1

iwk,i−1 + (k − i)wk,i

, (5.23)
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That Ωk belongs to Pk−1 and has positive Bézier points is required to guarantee that the space 1
Ωk

Pk

is a rational space of degree k with linear precision. All other requirements (5.21), (5.22), (5.23), are
intended to ensure reproduction of P1 by the operator Rk, along with strictly increasing tk,i, 0 ≤ i ≤ k.
All these conditions are satisfied by our operators (5.18). The operators Rk form an infinite sequence
of Bernstein operators in the Chebyshevian sense. However, while in our case Ωk = Ω ∈ Pn−1 for all
k ≥ n, in [26] we have a sequence of Bernstein operators respectively based on the rational spaces
1

Ωk

Pk, each Ωk being a priori chosen independently of the others. Nevertheless, in the more general

situation addressed in [26], the main result of uniform convergence of RkF to F for any continuous
function F ([26], Theorem 7.1), is obtained under the additional requirement that there exists a
function ϕ ∈ C0([0, 1]) such that

Ωk = B∗
k−1ϕ for all k. (5.24)

Clearly, Theorems 5.9 and 5.10 are not within this context, unless our Ω is reproduced by B
∗
k−1 for

all k ≥ n, that is unless Ω belong to P1. If so, (5.18) can be rewritten with ωk,i = Ω( i
k
).

Assume that we are not in the latter special case. Using the notations introduced in Remark 2.4,
we can always state that

Ω = B∗
k−1ϕk, with ϕk := Lk−1Ω, k ≥ n − 1.

We know that the sequence ϕk, k ≥ n, is uniformly convergent to Ω on [0, 1]. Accordingly, in the
special situation addressed in Theorems 5.9 and 5.10, the convergence result of Theorem 5.4 illustrates
Remark 7.2 of [26]. Indeed, it is mentioned there that condition (5.24) can be weakened and replaced
by Ωk = B∗

k−1ϕk where ϕk is a sequence of continuous functions uniformly convergent to some function
ϕ on [0, 1].

To conclude this section, let us mention that, prior to [26], rational operators of the Bernstein type
were generally defined as

QkF :=

∑k

i=0 wk,iF
(

i
k

)
Bk

i∑k

i=0 wk,iBk
i

, F ∈ C0([0, 1]), (5.25)

where the wk,i, i = 0, . . . , k are any positive numbers [7, 9, 25]. This is indeed an easy way to obtain
uniform rational approximation of continuous functions as a consequence of Korovkin’s theorem and
(2.3). However, in general such operators are not Bernstein operators in the Chebyshevian sense.
We would like to draw the reader’s attention on the fact that, even if the wk,i’s are chosen so as to
have linear precision in the corresponding rational space, the operator Qk defined in (5.25) cannot
reproduce P1 unless it is the classical Bernstein operator B

∗
k, that is, if all wk,i’s are equal.
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§6. Final remarks

It can be advantageous to regard polynomial spaces on closed bounded intervals as instances of EC-
spaces, and thereby to replace the simple ordinary derivatives by generalised ones, more difficult to
handle. We hope that we have convinced the reader of this fact via the question of Bernstein operators.
Further issues concerning approximation by polynomial or rational Bernstein operators could be of
interest. Below we cite only a few possible ones:

- It may be worthwhile looking deeper into the question of polynomial (rational) approximation with
shape parameters.

- As in [26] we have considered reproduction of the identity by rational Bernstein operators. Via
Lemma 5.8, one could address the more general problem: U ∈ Pn being given, how to determine Ω so
that the corresponding rational space P̂n will provide us with a Bernstein operator reproducing U?

- Is it possible to build polynomial or rational Bernstein operators with prescribed ζ0, . . . , ζn?

- In connection with the previous question, can we choose positive wk,i, i = 0, . . . , k, so that the
operator Qk defined in (5.25) will be a Bernstein operator?

Finally we would like to conclude this article by mentioning that similar results do exist for
polynomial and rational Schoenberg operators. In that case, they are obtained when considering
polynomial splines as examples of piecewise Chebyshevian splines ( i.e., splines with pieces taken from
different EC-spaces) which are good for design (in the sense that they possess refinable B-spline bases,
or blossoms as well) [21].
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