
HAL Id: hal-00983701
https://hal.science/hal-00983701

Submitted on 25 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPPAS: a tool for the phonetic segmentations of Speech
Brigitte Bigi

To cite this version:
Brigitte Bigi. SPPAS: a tool for the phonetic segmentations of Speech. The eighth international
conference on Language Resources and Evaluation, May 2012, Istanbul, Turkey. pp.1748-1755. �hal-
00983701�

https://hal.science/hal-00983701
https://hal.archives-ouvertes.fr

SPPAS: a tool for the phonetic segmentation of speech

Brigitte Bigi

Laboratoire Parole et Langage
CNRS & Aix-Marseille Université,

5, avenue Pasteur, BP80975
13604 Aix-en-Provence France

brigitte.bigi@lpl-aix.fr

Abstract
SPPAS is a tool to produce automatic annotations which include utterance, word, syllabic and phonemic segmentations from a recorded
speech sound and its transcription. SPPAS is distributed under the terms of the GNU Public License. It was successfully applied during
the Evalita 2011 campaign, on Italian map-task dialogues. It can also deal with French, English and Chinese and there is an easy
way to add other languages. The paper describes the development of resources and free tools, consisting of acoustic models, phonetic
dictionaries, and libraries and programs to deal with thesedata. All of them are publicly available.

Keywords: phonetic, annotation, segmentation

1. Introduction
The last ten years or so have witnessed an explosion in
the quantity of linguistic data which have become available
as evidence for the nature of linguistic representations of
speech. Whereas it was common some years ago to for-
mulate phonetic models on the basis of rather limited data,
today it is becoming more and more expected for linguists
to take into account large quantities of empirical data, of-
ten including several hours of recorded speech. Up un-
til a few years ago it was difficult, if not impossible, to
manipulate such large quantities of data outside special-
ized laboratories using expensive main-frame computers.
Software for the analysis of acoustic data was often diffi-
cult to install and use, nearly always platform specific and,
above all, very expensive. Today, the situation has radi-
cally changed and the availability of cheaper and cheaper
data storage has made it possible to envisage data analysis
involving several hundreds gigabytes data. In the same pe-
riod, a number of software tools for the analysis of audio
and/or video recordings of speech have become available
such as Anvil (Kipp, 2001), Elan (Sloetjes et al., 2010),
Praat (Boersma and Weenink, 2009), Transcriber (Tran-
scriberAG, 2011) and WaveSurfer (WaveSurfer, 2012), to
name just some of the most popular tools, all of which are
both free and multi-platform. For an extensive list of speech
analysis software see (Llisterri, 2011). The biggest obsta-
cle linguists are faced with today is not the storage of data,
nor its analysis, but its annotation.
The analysis of the phonetic entities of speech nearly al-
ways requires the alignment of the speech recording with
a phonetic transcription of the speech. This task is ex-
tremely labour-intensive - it may require several hours for
even an experienced phonetician to transcribe and align a
single minute of speech manually. It is consequently ob-
vious that transcribing and aligning several hours of speech
by hand is not generally something which can be envisaged.
A number of tool boxes are currently available which can
be used to automate the task, including the HTK Toolkit
(Young and Young, 1994), Sphinx (Carnegie Mellon Uni-
versity, 2011), or Julius (Nagoya Institute of Technology,

2010). For most of these, our experience is that the tools
require a level of expertise in computer science which is
beyond the reach of most linguists without the help of an
engineer. Some wrapper tools propose to simplify the use
of HTK, as for example P2FA (Yuan and Liberman, 2008)
or EasyAlign (Goldman, 2011). The EasyAlign Praat plu-
gin is currently the most “linguist-friendly” but it currently
runs only on Windows. Moreover, due to the HTK license
limitations, both tools assume that HTK is installed on the
user’s computer.
SPPASis a tool to produce automatic annotations which
include utterance, word, syllabic and phonemic segmen-
tations from a recorded speech sound and its transcrip-
tion. The whole procedure is a succession of 4 automatic
steps and resulting alignments are a set of TextGrid files.
TextGrid is the native file format of the Praat software
which became one of the most common tool for phoneti-
cians (Boersma and Weenink, 2009).SPPASis imple-
mented with python and was tested under Linux, Mac-OSX
and WindowsR©. SPPASis currently designed for French,
English, Italian and Chinese and there is an easy way to
add other languages. Recently, it was successfully applied
to the forced alignment task during the Evalita 2011 cam-
paign, on Italian map-task dialogues. Evalita is an initiative
devoted to the evaluation of Natural Language Processing
and Speech tools for Italian1. Systems were required to
align audio sequences of spoken dialogues to the provided
relative transcriptions.
This tool and all resources are distributed under the terms
of the GPL license at the URL:

http://www.lpl-aix.fr/∼bigi/sppas/

SPPASis also designed to be used directly by linguists.
Current developments consist in integrating Momel (Hirst
and Espesser, 1993) and Intsint (Hirst and Di Cristo, 1998).
Section 2. of this paper presents an overview of what SP-
PAS (version 1.4) can do. Section 3. describes resources
included in SPPAS. Finally, Section 4. gives details about
the SPPAS architecture.

1http://www.evalita.it/

1748

2. SPPAS overview
2.1. Main description

SPPAScan be executed using the GUI - Graphical User In-
terface, or by using tools in a console-mode. Figures 6 and
7 show the GUI of version 1.3 and version 1.4 respectively.
To execute SPPAS, the user just need to double-click on the
SPPASmain program. A wav file or a directory containing a
set of wav files and the corresponding transcriptions have to
be selected. Then, the user selects the appropriate language
and modules to execute. The Preferences button allows to
configure these modules (to fix options).
Figure 1 summarizes the workflow, with all possible in-
puts/outputs. Inputs are represented in yellow boxes and
black arrows. Outputs are represented with the green boxes
and the green arrows.SPPAScan be used in a completely
automatic mode. It can also be used semi-automatically, by
respecting file name conventions and transcription conven-
tions.

Figure 1: SPPAS workflow

2.2. History of the versions

The first version ofSPPASwas released on March 9, 2011.
This version was made only oftcshand gawk scripts and it
could be used only in a console mode. In this first version,
no resources were included. Some resources were added
in version 1.1 (in June, 2011). The next release was dis-
tributed on July 23, 2011. This version included resources
to deal with English, French, Italian (read speech, mono-
phones) and Chinese. MacOS support was added in version
1.3, and the first GUI was included in this version. Italian
acoustic models and the dictionary was changed and the
French acoustic models was improved.
Version 1.4 will to be released on May, 2012. This version
will be entirely implemented with python and far easier to
install than previous versions. The present paper describes
this version.

2.3. Inter-Pausal Unit Segmentation

Inter-pausal unit segmentation is an open research problem.
It consists in aligning macro-units of a document with the
corresponding sound, as illustrated in Figure 2. The imple-
mentation of SPPAS - version 1.4, includes an algorithm

for this step which we hope to improve in future versions
of the software.
In SPPAS, silent pauses can be indicated in the transcrip-
tion either by the symbol ’#’ or by a newline, or both. A
recorded speech file with the .wav extension must corre-
spond to each .txt file. The correspondences are established
by means of the file names.

Figure 2: Example of IPU-segmentation

The algorithm currently implemented identifies silent
pauses in the signal and attempts to align them with the
inter-pausal units proposed in the transcription, under the
assumption that each such unit is separated by a silent
pause. For a given minimum duration for pauses and for
inter-pausal units a dichotomic search adjusts the silence
threshold (in dB) and identifies the number of units thus
defined. If the number of units found is greater or smaller
than the desired number, the search is renewed adjusting
the minimum duration of the silences and units accordingly.
The search halts when the three parameters are correctly
adjusted: minimal duration of pauses, minimal duration of
units and silence threshold.
This ipu-segmentation was used to align read speech in two
projects. The first one consisted in a set of recordings of
40 English words. SPPAS succeeded to align all files. The
second one consisted of a set of recordings of paragraphs
made of 3 to 6 sentences. These are part of the AixOx
corpus (Herment et al., 2012). In this case, SPPAS failed
to align about 10% of the files and 40% of the sentence
boundaries had to be manually corrected. Errors were only
due to the fact that silences were not at the end of sentences
as it was supposed to be in the script speakers had to read.
To perform this ipu-segmentation, and despite these errors,
the use of SPPAS saved time.

2.4. Phonetization
Phonetization is the process of representing sounds with
phonetic signs. There are two general ways to construct
a phonetization process: dictionary based solutions which
consist in storing a maximum of phonological knowledge
in a lexicon and rule based systems with rules based on in-
ference approaches or proposed by expert linguists. In both
cases, phonetization is based on a manual transcription.
Clearly, there are different ways to pronounce the same ut-
terance. Different speakers have different accents and tend
to speak at different rates. When a speech corpus is tran-
scribed into a written text, the transcriber is immediately

1749

confronted with the following question: how to reflect the
orality of the corpus? Conventions are then designed to pro-
vide rules for writing speech corpora. These conventions
establish phenomena to annotate and also how to annotate
them.
A system based on a dictionary solution consists in storing a
maximum of phonological knowledge in a lexicon. In this
sense, this approach is language-independent unlike rule-
based systems. The SPPAS module for the phonetization
of the orthographic transcription produces a phonetic tran-
scription based on a phonetic dictionary. The phonetization
is the equivalent of a sequence of dictionary look-ups. It is
assumed that all words of the speech transcription are men-
tioned in the pronunciation dictionary. Otherwise, SPPAS
implements a language-independent algorithm to phonetize
unknown words. At this stage, it consists in exploring the
unknown word from left to right and to find the longuest
strings in the dictionary. Since this algorithm uses the dic-
tionary, the quality of such a phonetization will depend on
this resource.
Actually, some words can correspond to several entries in
the dictionary with various pronunciations. Unlike rule-
based systems, in dictionary-based solutions the pronuncia-
tion is not supposed to be “standard”. Phonetic variants are
proposed for the aligner to choose the phoneme string. The
hypothesis is that the answer to the phonetization question
is in the signal. For example, the French sentenceje suis
can be pronounced:

• /Zs4i/ is the standard pronunciation,

• /Zs4iz/ is the standard pronunciation plus a liaison,

• /Z@s4i/ is the South of France pronunciation,

• /Z@s4iz/ is the South of France pronunciation plus a
liaison,

• /S4i/ is a frequent specific realization.

The corresponding dictionary entries for both words are:

je [je] Z

je(2) [je] Z@

je(3) [je] S

suis [suis]s4i

suis(2) [suis]s4iz

suis(3) [suis]sui

suis(4) [suis]4i

suis(5) [suis]4iz

SPPAScan take as input a tokenized standard orthographic
transcription and some enrichments only if the acoustic
model includes them. For example, the French transcrip-
tions can contain laugh (represented by the symbol ’@’ in
the transcription).
An example ofSPPASphonetization output is presented in
Figure 3 on a French sentence. By usingSPPASin a semi-
automatic way, this phonetization can be manually modi-
fied. TheSPPASconventions are:

• spaces separate tokens,

• dots separate phonemes,

• pipes separate phonetic variants.

Thus, the phrase“je suis” is phonetized as:

Z|Z.@|S s.4.i|s.4.i.z|s.u.i|4.i|4.i.z

Figure 3: Example of Phonetization (French)

2.5. Alignment

Phonetic segmentation is the process of aligning speech
with its corresponding transcription at the phone level. The
alignment problem consists in a time-matching between a
given speech unit along with a phonetic representation of
the unit. The goal is to generate an alignment between the
speech signal and its phonetic representation.
SPPASis based on the Julius Speech Recognition Engine
(SRE) (Nagoya Institute of Technology, 2010) for three rea-
sons: 1/ it is easy to install which is important for users; 2/it
is also easy to use then easy to integrate in SPPAS; and 3/ its
performances correspond to the state-of-the-art of HMM-
based systems and are quite good. Julius was designed
for dictation applications, however the Julius distribution
only includes Japanese Acoustic Models. But since it uses
Acoustic Models trained using the HTK toolkit (Young and
Young, 1994), it can also use Acoustic Models trained for
other languages. Initially, Julian was a special version of
Julius that performed grammar based speech recognition.
The release 4 merged Julius and Julian.
To perform alignment, a finite state grammar that describes
sentence patterns to be recognized and an acoustic model
are needed. A grammar essentially defines constraints on
what the SRE can expect as input. It is a list of words that
the SRE listens to. Each word has a set of associated list
of phonemes, extracted from the dictionary. When given a
speech input, Julius searches for the most likely word se-
quence under constraint of the given grammar. For exam-
ple, the sentence “we are reading” will produce the follow-
ing list of words with associated pronunciations (extracted
from the CMU pronunciation dictionary):

0 [w_0] w iy

0 [w_0] w ih

1 [w_1] aa r

1 [w_1] er

2 [w_2] r eh dx ix ng

2 [w_2] r iy dx ix ng

The Julius corresponding grammar file is defined as:

1750

0 2 1 0 1

1 1 2 0 0

2 0 3 0 0

3 -1 -1 1 0

The grammar indicates that each word of the dictionary has
to be aligned, from word 0 to word 1, from word 1 to word
2, and so on. The Julius alignment task is a 2-step process:
the first step chooses the phonetization and the second step
performs the segmentation.
Speech Alignment also requires an Acoustic Model in or-
der to align speech. An acoustic model is a file that contains
statistical representations of each of the distinct soundsof
one language. Each phoneme is represented by one of
these statistical representations.SPPASis based on the use
of HTK-ASCII acoustic models. Then, acoustic models
were trained with HTK by taking the training corpus of
speech, previously segmented in to utterances and phone-
tized. HTK (Hidden Markov Toolkit) is a portable toolkit
for building and manipulating the statistical models used to
represent sound in Speech Recognition. These are called
Hidden Markov models (HMMs). HTK’s licence requires
registering before it can be downloaded. The software is
open source but there are limitations on the distribution of
the HTK Toolkit itself. For example, an HTK tool can not
be embedded in an other tool. However, there is no lim-
itation on the distribution of the models created with the
toolkit. This model can be distributed under GPL license.
Figure 4 illustrates a SPPAS alignment output on a French
sentence. The alignment of words is deduced from their
alignment into phonemes.

Figure 4: Example of alignment (French)

2.6. Syllabification
The syllabification of phonemes is performed with a rule-
based system previously described for French in (Bigi et al.,
2010). This RBS phoneme-to-syllable segmentation sys-
tem is based on 2 main principles:

1. a syllable contains a vowel, and only one.

2. a pause is a syllable boundary.

These two principles focus the problem of the task of find-
ing a syllabic boundary between two vowels. As in state-of-
the-art systems, phonemes were grouped into classes and
rules established to deal with these classes. This system
was applied for the labelling of CID (Bertrand et al., 2008).
Evaluations were carried out by using a subset of 7 min-
utes. Two experts labelled this corpus manually. The sylla-
ble agreement rate was 97.8% between experts. This agree-
ment was 95.8% and 94.9% between automatic system and
each expert.

A new set of rules was developed to deal with Italian. At
present there is, to our knowledge, no generally available
corpus manually labelled to evaluate such a syllabification.
We will of course be pleased to perform this evaluation as
soon as we can obtain one.

3. SPPAS Resources
3.1. Phonetic resources

An important step is building pronunciation dictionaries,
where each word in the vocabulary is expanded into its con-
stituent phones.
The dictionary file format is the same as that used in the
HTK toolkit (Young and Young, 1994) and in the VoxForge
project (VoxForge, 2006 2011), as for example:

A [A] a

A(2) [A] wa

A(3) [A] ja

ACQUA [ACQUA] a k wa

ACQUA(2) [ACQUA] k wa

The dictionary contains a set of possible pronunciations for
words, including accents asperchèpronounced as /b e r k
e/, and reduction phenomena as /p e k/ or /k wa/ for the
wordacqua.
The Italian dictionary was downloaded from the Festival
synthetizer tool (The Centre for Speech Technology Re-
search, 2011). This dictionary was enriched by word pro-
nunciations observed in the Evalita train corpus. A large set
of both phonetizations was manually corrected. Finally, the
dictionary contains about 390k words and 5k variants.
The French dictionary was constructed by merging sev-
eral free dictionaries. Some word pronunciations were also
added using the LIA_Phon tool. It contains about 350k
words and 300k variants.
The English dictionarySPPASdeals with was downloaded
from the VoxForge project (VoxForge, 2006 2011).
The Chinese dictionary was hand-made. It now contains
about 350 entries and is still in progress.

3.2. Acoustic Model (AcM) Training

SPPASis based on a common practice and uses context-
independent HMMs for speech segmentation.SPPAScan
use various types of acoustic models. This section describes
how we created models which are included inSPPAS. The
Italian, French and Chinese models were trained following
these steps. An English model can be downloaded from the
VoxForge web site.
French AcM was trained by using 7h30 of conversational
speech extracted from CID (Bertrand et al., 2008), and 30
minutes of read speech extracted from AixOx corpus (Her-
ment et al., 2012). Italian AcM was trained from 3h30
of map-tasks dialogues distributed during the Evalita 2011
campaign. Chinese AcM was trained from 50 min read
speech, from Chinese Multext corpus.
The phoneme statistical representation is based on a 5-state
model with a left-to-right topology with self-loops and no

1751

1
0.70.6

0.4
0.6

0.4 0.3

Figure 5: 5-states HMM with initial probabilities

transitions which skip over states, as represented in Figure
5 with its initial probabilities.
Ideally, the phones would have unique articulatory and
acoustic correlates. But acoustic properties of a given
phone can depend on the phonetic environment. These co-
articulation phenomena motivated the adoption of context-
dependent models such as triphones, except for Chinese.
Our training procedure was adapted from the VoxForge tu-
torial. Typically, the HMM states are modelled by Gaussian
mixture densities whose parameters are estimated using an
expectation maximization (EM) procedure. The outcome
of this training procedure is dependent on the availability
of accurately annotated data and on good initialization. As
more speech audio data is collected, better Acoustic Models
can be created. Acoustic models were trained from 16 bits,
16000 hz wav files. The Mel-frequency cepstrum coeffi-
cients (MFCC) along with their first and second derivatives
were extracted from the speech in the standard way.
The acoustic model training procedure is based on 3 main
steps. Step 1 is the data preparation. It establishes the list of
phonemes, plus silence and short pauses. It converts the in-
put data (phonetization of the corpus) into the HTK-specific
data format. It codes the (audio) data: this step is called
"parameterizing the raw speech waveforms into sequences
of feature vectors" (from wav format to MFCC). Step 2 is
the monophones generation. It creates a Flat Start Mono-
phones model by defining a prototype model and copying
this model for each phoneme. Then, this flat model is re-
estimated using the MFCC files to create a new model.
Then, it fixes the “sp” model from the “sil” model by ex-
tracting only 3 states of the initial 5-states model. Then, this
model is re-estimated using the MFCC files and the phone-
tization. Step 3 creates tied-state triphones from mono-
phones and from some language specificities defined by the
way of a configuration file. This file summarizes phone-
mic informations as for example the list of vowels, liquids,
fricatives, nasals or stops. This resource was created man-
ually for Italian, French and Chinese and are available on-
demand.

4. SPPAS Architecture
4.1. SPPAS 1.4 packages

SPPAS is implemented using the programming lan-
guage Python. This choice was motivated by many
reasons. First of all, “All Python releases are
Open Source (see http://www.opensource.org/ for the
Open Source Definition). Historically, most, but not
all, Python releases have also been GPL-compatible”
(http://docs.python.org/license.html). For many operating
systems, Python is a standard component. Thanks to be-
ing scripting language with module architecture, syntax

simplicity and rich text processing tools, Python is object-
oriented programming.
SPPAS version 1.4 package content is detailed below:

README Several general information
CHANGES Versions tracking
COPYRIGHT GPL license
dict Pronunciation dictionaries

FR.dict French
IT.dict Italian
EN.dict English
ZH.dict Simplified Chinese

models Acoustic models
models-FR French: hmmdefs and tiedlist
models-IT Italian: hmmdefs and tiedlist
models-EN English: hmmdefs and tiedlist
models-ZH Simplified Chinese: hmmdefs

syll Syllabification configurations
syllConfig-FR.txt French
syllConfig-IT.txt Italian

samples A set of samples
... (wav and transcriptions)

samples-FR French set of examples
samples-IT Italian set of examples
samples-EN English set of examples
samples-ZH Simplified Chinese

lib SPPAS library
param.py sppasParam Class
log.py sppasLog Class
wav
trs
phon
align
momel
gui
term

tools SPPAS tools
wavsplit.py
phonetize.py
alignment.py

LPL-Syllabeur-2.2.jar

momel.py
...
sppas.command Bash to execute SPPAS

(Unix-based systems)
sppas.py Main SPPAS program

SPPAS can deal with a new languageL by simply adding
the language resources to the appropriate directories:

• the dictionary to: SPPAS/dict/L.dict

• the acoustic model to: SPPAS/models/models-L

• the syllabification rules to: SPPAS/syll/syllConfig-
L.txt

1752

By using the GUI,SPPASdynamically creates the list of
available languages by exploring appropriate directories.
Steps using language-dependent resources (phonetization,
alignment and syllabification) are activated or disabled de-
pending on the directory contents.

4.2. SPPAS 1.4 modules
SPPAS library is placed in the “lib” directory. Shared mod-
ules are placed directly in this directory. It is the case for
example of the Class “sppasLog” that handles the log file
created by SPPAS during each run. Sub-directories are used
to separate SPPAS modules. For each one of these modules,
a set of classes is implemented:

wav This module contains a set of classes dealing with wav
files: the main class “Wave”, the class “WavePitch”,
the class “WaveSil”.

trs This module contains a set of classes dealing with
a “Transcription” represented as a set of “Tier” in-
stances. A tier is a set of “Annotation” instances. An-
notations are represented by a label and 1 or 2 time
values, depending on the annotation type: interval or
point. A set of Transcription Input/Output classes are
also available and are still in-progress: current version
includes a TextGrid IO class and an Ascii IO class (txt
or csv).

phon This module contains a set of classes dealing with
the phonetization problem. The class “DictPhon” is
the main class to perform phonetization; “PhonUnk”
is related to the phonetization of unknown words; and
“PhonTrs” uses DictPhon on a whole tier.

align This module contains a set of classes dealing with
the alignment problem. It is a 3-steps process: 1/ the
transcription and related wav files are split into units;
2/ each unit is aligned; then 3/ unit alignments are
merged in a transcription tier and saved. Step 2 is a
little bit more complicated than it can look at first. We
encountered 2 difficulties using Julius. Firstly, a unit
is not aligned if a triphone is missing in the tiedlist.
We implemented a “TiedList” class that adds the un-
observed triphone into the tiedlist. Secondly, we ob-
served that the alignment failed for about 3-5% of
units. In these cases, Julius performs its 1st step prop-
erly (it chooses the phonetization, depending on the
grammar) but its 2nd step (the segmentation) fails. To
deal with these errors (and to produce a result instead
of nothing), we implemented a function that uses the
same duration for each phone of the unit.

momel This module contains the SPPAS implementation
of the Momel (Hirst and Espesser, 1993) and Intsint
(Hirst and Di Cristo, 1998) tools. Momel (Modelling
melody) is an algorithm for the analysis and synthe-
sis of intonation patterns. INTSINT is an acronym
for INternational Transcription System for INTona-
tion. INTSINT codes the intonation of an utterance by
means of an alphabet of 8 discrete symbols constitut-
ing a surface phonological representation of the into-
nation: T (Top), H (Higher), U (Upstepped), S (Same),
M (mid), D (Downstepped), L (Lower), B (Bottom).

gui All classes related to the graphical user interface.

term All classes related to the terminal user interface.

These modules constitute the API - Application Program-
ming Interface, ofSPPAS.

4.3. SPPAS 1.4 tools

The main tool to work with SPPAS issppas.pythat exe-
cutes the GUI or that can be used in command-line mode.
However, this latter usage does not let the possibility to fix
specific options for each module. A set of tools is then
available: they propose main programs to deal with the SP-
PAS API. For each one of these tools, a large set of options
can be fixed. SPPAS 1.4 tools are:

wavsplit.py is the main tool to perform IPU-segmentation.
This tool enables to find silences from a wav input file,
depending on 4 parameters:

• the window width (used to estimate rms) in sec-
onds,

• the minimal speech units duration in seconds,

• the minimal silence duration in seconds,

• the volume in dB.

The silence research can also be controlled by using
one of these options: fix a number of units or set a
transcription file. This tool can provide three different
outputs:

• a directory containing units as a set of wav files
and a set of text files with the corresponding tran-
scription,

• a text file containing the list of start time and end
time of each unit,

• a TextGrid file with silences/units segmentation.

phonetize.py is the main tool to perform phonetization.
This tool takes as input a transcription in the form of
a tier in a TextGrid file, and a dictionary. It produces
a tier containing the phonetization that optionally can
be added to the intput or written in a separate TextGrid
file. For units containing unknown words, this tool can
optionally use an internal algorithm to phonetize it or
it can use the label “UNK”.

alignment.py is the main tool to perform alignment. This
tool takes as input a phonetization in the form of a tier
in a TextGrid file, and an acoustic model. It produces 2
tiers containing the alignments (words and phonemes)
that optionally can be added to the intput or written in
2 separate TextGrid files.

LPL-Syllabeur-2.2.jar is the main tool to perform syllab-
ification. This tool takes as input a phoneme align-
ment in the form of a tier in a TextGrid file, and a con-
figuration file (with a set of rules). It produces a tier
containing syllables time-aligned whichnis written in
a separate TextGrid file.

1753

momel.py is the SPPAS implementation of the Momel
tool. This tool allows to find pitch targets from a wav
input file. The Intsint tool can be optionally activated.
This tool produces 2 point tiers containing the mo-
mel targets and the Intsint labels that can be optionally
added to the intput or written in a separate TextGrid
file.

SPPAS 1.4 also contains a set of utility tools to deal with
wav files, as for example:

• wavcut.pyis used to cut a wav file by using a start time
and a duration.

• wavstats.pyis used to obtain some statistics about a
wav input file.

• wav2intensity.pyis used to create an intensity tier from
a wav input file.

4.4. Evaluations

A large set of evaluations were carried on the phonetiza-
tion of French (Bigi et al., 2012). Evaluations on Italian
were also carried out during the Evalita evaluation cam-
paign: SPPAS participated to the “Forced Alignment on
Spontaneous Speech”. Both phonetization and alignment
(phonemes and words) were evaluated (Bigi, 2012).

5. Conclusion

SPPASis a tool to perform automatic phonetic segmenta-
tions. SPPASis not only dedicated to computer-scientists.
It is rather dedicated to phoneticians because such a tool
does not yet exist under GPL license. The only step in the
procedure which is probably beyond the means of a lin-
guist without external aid is the creation of a new acoustic
model when it does not yet exist for the language being
analysed. This only needs to carried out once for each lan-
guage, though, and we plan to provide detailed specifica-
tions of the information needed to train an acoustic model
on an appropriate set of recordings and dictionaries or tran-
scriptions. Acoustic models obtained by such a collabora-
tive process will be made freely available to the scientific
community.
Version 1.4 deals with TextGrid files. Future development
will consist in improving portability to other transcription
tools as Transcriber or Elan. Other automatic annotation
modules are still in progress: Momel and Intsint are cur-
rently implemented. A multilingual tokenizer will also
be integrated complying with the architecture proposed in
(Bigi, 2011). Finally, we plan to add some languages and
to improve the Chinese resources.

6. Acknowledgements

Our thanks to Masahiko Komatsu for allowing us to use
the Chinese Multext corpus and to Na Zhi for her help in
developing the resources for annotating Chinese.
This work was supported by ANR OTIM project Ref. Nr.
ANR-08-BLAN-0239.

7. References
R. Bertrand, P. Blache, R. Espesser, G. Ferré, C. Meunier,

B. Priego-Valverde, and S. Rauzy. 2008. Le CID - Cor-
pus of Interactional Data.Traitement Automatique des
Langues, 49(3):105–134.

B. Bigi, C. Meunier, I. Nesterenko, and R. Bertrand. 2010.
Automatic detection of syllable boundaries in sponta-
neous speech. InLanguage Resource and Evaluation
Conference, pages 3285–3292, La Valetta (Malta).

B. Bigi, P. Péri, and R. Bertrand. 2012. Orthographic Tran-
scription: Which Enrichment is required for Phonetiza-
tion? In The eighth international conference on Lan-
guage Resources and Evaluation, Istanbul (Turkey).

B. Bigi. 2011. A multilingual text normalization approach.
In 2nd Less-Resourced Languages workshop, 5th Lan-
guage & Technology Conference, Poznàn (Poland).

B. Bigi. 2012. The SPPAS participation to Evalita 2011.
In Working Notes of EVALITA 2011, ISSN: 2240-5186,
Roma (Italy).

P. Boersma and D. Weenink. 2009. Praat: doing phonetics
by computer, http://www.praat.org.

Carnegie Mellon University. 2011. CMUSphinx:
Open Source Toolkit For Speech Recognition.
http://cmusphinx.sourceforge.net.

J.-Ph. Goldman. 2011. EasyAlign: an automatic phonetic
alignment tool under Praat. InInterSpeech, Florence
(Italy).

S. Herment, A. Loukina, A. Tortel, D. Hirst, and B. Bigi.
2012. A multi-layered learners corpus: automatic anno-
tation. In4th International conference on corpus linguis-
tics Language, corpora and applications: diversity and
change, Jaen (Spain).

D.-J. Hirst and A. Di Cristo. 1998.Intonation Systems. A
survey of Twenty Languages.

D.-J. Hirst and R. Espesser. 1993. Automatic modelling of
fundamental frequency using a quadratic spline function.
Travaux de l’Institut de Phonétique d’Aix, 15:75–85.

M. Kipp. 2001. Anvil - a generic annotation tool for
multimodal dialogue. In7th European Conference on
Speech Communication and Technology, pages 1367–
1370, Scandinavia.

J. Llisterri. 2011. Speech analysis and transcription soft-
ware.

Nagoya Institute of Technology. 2010. Open-source large
vocabulary csr engine julius, rev. 4.1.5.

H. Sloetjes, A. Russel, and A. Klassmann. 2010. Elan: a
free and open source multimedia annotation tool.

The Centre for Speech Technology Research. 2011. The
festival speech synthesis system.

TranscriberAG. 2011. A tool for segmenting, labeling
and transcribing speech. [computer software] paris: Dga.
http://transag.sourceforge.net/.

VoxForge. 2006-2011. http://www.voxforge.org.
WaveSurfer. 2012. http://www.speech.kth.se/wavesurfer/.
S.J. Young and Sj Young. 1994. The htk hidden markov

model toolkit: Design and philosophy.Entropic Cam-
bridge Research Laboratory, Ltd, 2:2–44.

J. Yuan and M. Liberman. 2008. Speaker identification on
the SCOTUS corpus. InAcoustics.

1754

Figure 6: SPPAS GUI, version 1.3 (based on pyGtk)

Figure 7: SPPAS GUI, version 1.4 (based on wxpython)

1755

