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1. Introduction

Adiabatic shear bands (ASB) are generally considered as
resulting from a thermo-mechanical instability leading to large
deformation and high temperature in a narrow band, typically a
few tens of micrometers in width (Zener and Hollomon, 1944;
Merzer, 1982; Wright, 2002). The development of ASB is
assumed to proceed in three steps: in stage I, the deformation in
shear is homogeneous, and strain hardening of the material
overcomes thermal softening effects; in stage II, after the
maximum stress has been reached, a diffuse instability develops
due to the prominence of thermal softening, and the deformation
begins to be slightly heterogeneous; in stage III, a strong insta-
bility develops and deformation localizes in a narrow band.
Fracture may occur in this third stage. The instability can be
triggered by a geometrical imperfection, or by an heterogeneity,
either in temperature, stress, or microstructure. Note that other
softening mechanisms than temperature can be at play: in
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particular, recent work (Rittel et al., 2008; Dolinski et al., 2010) has
shown the important role of micro-mechanisms such as dynamic
recrystallization, which could also be at the origin of ASB forma-
tion. In the present paper, wewill nonetheless restrict ourselves to
thermal softening. Under certain circumstances, when the hard-
ening is saturated and the heat produced by visco-plastic dissi-
pation is removed by heat conduction, a steady state may develop
in the final stage. In the following, the fully developed adiabatic
shear band under steady state is analyzed, setting aside early
stages of formation.

Because of their narrowwidth and inhomogeneous temperature
distribution, it is very difficult to experimentally capture detailed
features of ASBs, such as central temperature. Consequently, a large
part of the literature concentrates on theoretical and numerical
simulations. Numerous contributions propose a one-dimensional
analysis of ASB (canonical problem) to capture the critical condi-
tion for occurrence of ASB and the velocity profile inside the band
(Merzer, 1982; Leroy and Molinari, 1992; Wright and Ockendon,
1992; Wright and Ravichandran, 1997; DiLellio and Olmstead,
1997, 1998, 2003; Dinzart and Molinari, 1998). An interesting
outcome of the cited papers is the crucial role of heat transfer
(thermal conductivity) in structuring the shear localization. Two-
dimensional analyses of ASB were also considered to determine



shear band propagation (Gioia and Ortiz, 1996; Mercier and
Molinari, 1998). However, analytical works cannot easily be
extended to general constitutive relations and real configurations
(3D initiation, transient regime). These methods are thus not best
adapted to study full complex applications.

Numerical simulation of ASB is difficult because of large defor-
mation gradients and strong thermal softening existing during its
development. Difficulties such as mesh dependence, interactions
between multiple bands, require advanced numerical methods
(Yang et al., 2005; Areias and Belytschko, 2007). To bypass these
problems, some authors have proposed to introduce discontinuities
to accurately describe the shear localization (Ortiz et al., 1987;
Oliver et al., 1999). In most of these numerical approaches, it is
necessary to know approximately the domain where the shear
localization takes place. Predicting the width of shear band in
thermo-viscoplastic materials is another prerequisite to proceed to
the dynamic evolution of shear localization. Many challenges thus
remain unsolved concerning shear localization. For example, this is
why it is difficult to simulate forming operations and response of
structures when ASBs are involved.

In this paper, starting from canonical solutions of velocity and
temperature profiles (Leroy and Molinari, 1992), we propose a new
method to define the key parameters of ASB (width, maximum
temperature). This method relies on the variational formulation of
coupled thermo-mechanical boundary-value problems recently
proposed by Yang et al. (2006). This formulation allows to describe
thermal and mechanical balance equations, including irreversible
and dissipative behaviors, under the form of an optimization
problem of an energy-like functional. The variational formulation
can adopt a wide range of constitutive models and also presents
interesting mathematical properties like symmetry, inherent to
variational approaches, contrarily to alternative coupled thermo-
mechanical formulations. Applying this formulation, Stainier and
Ortiz (2010) were able to model the thermo-viscoplastic behav-
iors of materials such as Aluminum alloy, a-Titanium and Tantalum.

As an application of this variational formulation, we aim at
building an energy-based variational modeling to analyze shear
localization in one dimension. This paper is organized as follows:
the variational approach for the thermo-mechanical problem is
simply restated. In the following section, we validate the theory by
considering classical problems such as Couette flow, thermal con-
duction in a layer and non-Newtonian thermal-Couette flow. In
Section 5, the fully formed adiabatic shear band is considered and
the configuration proposed in Leroy and Molinari (1992) is first
adopted. The thermo-mechanical coupled variational approach is
used to predict the shear band width and central temperature in
the adiabatic shear band. Exact results of Leroy and Molinari (1992)
are retrieved. Meanwhile, effects of material parameters (thermal
softening, strain-rate sensitivity) on these two features are
analyzed. Then, different constitutive laws, power-law strain-rate
dependency and thermal softening, and classical JohnsoneCook
law, are adopted to demonstrate the versatility of the proposed
approach. Since analytical solutions do not exist for general
constitutive behaviors, a variational-based Finite Element Method
(FEM) provides the evolutions of velocity and temperature up to the
steady state. It is shown that the results obtained by the proposed
variational model are in good agreement with FEM. Finally, we
consider the introduction of a heat exchange thermal flux at remote
boundaries of the layer so as to obtain invariance of the shear band
width for different sizes of the layer.

2. Variational framework

In this section, the variational formulation of the coupled
thermo-mechanical boundary-value problem proposed by Yang
2

et al. (2006) is summarized. The potential of total power density
is stated for general dissipative materials as follows:
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where B0 is the undeformed reference configuration, b is the body
force per unit mass, r0 is the mass density per unit undeformed
volume, T is the applied traction force over the traction boundary
vTB0, Q and H are the specified heat source per unit mass and the
outward normal heat flux over the Neumann boundary vNB0, 4 is
the displacement mapping, and N ¼ r0h is the nominal entropy
density (h being the entropy per unit mass). T and Q are respec-
tively an external temperature and an equilibrium temperature.
This distinction is introduced to ensure the symmetry of the vari-
ational formalism, although T ¼ Q in the local thermodynamic
state. E is the internal energy density (per unit undeformed vol-
ume), related to the Helmholtz free energy W by a Legendre
transform:

E ¼ sup
T

½r0hT þW� (2)

Furthermore the equilibrium temperature is defined by:

Q ¼ vE
vðr0hÞ

(3)

The thermo-mechanical coupling originates from the thermal
dependence of parameters involved in the plasticity constitutive
relations and from the dissipation due to viscoelasticity and vis-
coplasticity parts. The general dissipation potential D is defined by:

D
�
_F; _Z;G;Q

�
¼ f�� _F;Q	þ j�� _Z;Q	� cðG;QÞ (4)

where j*, f� and c are respectively the kinetic potential, the viscous
potential (KelvineVoigt viscoelasticity) and the conduction po-
tential, and where G ¼ �V0T/T. In the above expressions, we have
included the possibility of a parametric dependence on tempera-
tureQ. The first PiolaeKirchhoff stress P is the conjugate variable of
the deformation gradient F ¼ V04:

P ¼ vW
vF

þ vf*

v _F
(5)

The driving forces Y and the internal variables Z are conjugate
variables so that:

Y ¼ �vW
vZ

¼ vj*

v _Z
(6)

Finally, the nominal heat flux H is given by:

H ¼ vc

vG
(7)

Choosing potentials j*, f� and c as non-negative and convex
functions of their main argument (resp. _Z, _F, G) will then be a
sufficient condition for verifying the second law in
thermodynamics.



From the above description, the thermal and mechanical bal-
ance equations, the constitutive relations, as well as the equality
between the external temperature and equilibrium temperature
are the EulereLagrange equations of the following variational
formulation:

inf
_4; _z; _N

sup
T

F
h
_4; T ; _N; _Z

i
(8)

The thermo-mechanical coupling for general dissipative materials
can thus be described as an optimization problem, and many
mathematical algorithms, such as trust-region method, Leven-
bergeMarquardt algorithm, are suitable to seek a minimum or
maximum value with respect to physical fields. In contrast to
conventional coupled thermo-mechanical problem formulation,
this variational approach intrinsically yields a symmetric stiffness
matrix when adopting finite element methods based on this vari-
ational framework. Indubitably, these characteristics allow the
application of a broad range of mathematical algorithms, contrib-
uting to numerical efficiency in matrix storage and nonlinear pro-
gramming. Furthermore, this variational formulation seamlessly
works for general standard materials. Consequently in view of
these advantages, variational principle (8) allows to design robust
and efficient algorithms, such as the RitzeGalerkin method that we
will adopt within the present paper.

In the following,we restrict our attention to steady state problems
( _E ¼ _N ¼ 0) and isotropic materials. An Eulerian description can
thus be adopted, and the total power density potential reduces to:

F ¼
Z
B

D
�
T
Q
VV ;

T
Q

_Z;�VT
T
;Q

�
dV (9)

where body forces and heat sources, imposed surface tractions and
heat fluxes have been neglected. The integral in (9) is now taken on
the current deformed configuration (assumed to be stationary).
3. Couette flow and thermal conduction in a layer

Asafirst validation,we consider an isothermalCouetteflowwhere
two infinite plates, one of which subjected to a shearing velocity V0
relatively to the other, are separated by a distance L. The viscous fluid
located between the plates is considered Newtonian and incom-
pressible, so that NaviereStokes equation can be written as follows:

v2V
vy2

¼ 0 (10)

By using the boundary conditions:

Vð0Þ ¼ 0; VðLÞ ¼ V0; (11)

the analytical velocity can be written:

VðyÞ ¼ V0

L
y (12)

Under steady state and without thermal conduction, the potential
F in (9) reduces, for the Couette flow, to

F ¼
Z
B

f� dV (13)

For an incompressible and Newtonian fluid, f� ¼ 1=2mðV;yÞ2,
where m represents the fluid viscosity. We adopt the following
polynomial form to describe velocity fields:
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VðyÞ ¼
XN

ai y
i (14)
i¼0

which is simplified through the boundary conditions as:

VðyÞ ¼ V0

L
�
XN
i¼2

ai L
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!
yþ

XN
i¼2

ai y
i (15)

where aiði ¼ 2;.;NÞ are unknown parameters to be defined.
Adopting the velocity field (15), variational principle (8) becomes:

inf
ai

FðVÞ (16)

So defining the velocity of the Couette flow reduces to an optimi-
zation problemwith respect to coefficients ai. These coefficients can
be calculated by the corresponding EulereLagrange equation of
(16), yielding ai ¼ 0ði ¼ 2;.;NÞ. The analytical solution is thus
retrieved.

Next, the variational principle is tested on a simple conduction
problem. Consider a 1D layer (of width L) with fixed temperature
boundary conditions:

Tð0Þ ¼ T0; TðLÞ ¼ T1; (17)

In that case, the total power density is:

F ¼
Z
B

�c

�
� T;y

T
;Q

�
dV where c ¼ 1

2
Ql

�
T;y
T

�2

(18)

where l is the thermal conductivity. As previously described, Q is
the equilibrium temperature introduced to satisfy the symmetry
property of the variational formulation. Note that Q ¼ T in steady
state. Hence the variational model of the thermal layer is written as

sup
T

FðTÞ (19)

Similarly to the foregoing Couette flow problem, we adopt the
following trial temperature field which satisfies the boundary
conditions:

TðyÞ ¼ T0 þ
�
T1 � T0

L
� cL

�
yþ cy2 (20)

Using Galerkin method, we recover the analytical solution, corre-
sponding to c ¼ 0:

TðyÞ ¼ T0 þ
T1 � T0

L
y y˛½0; L� (21)
4. Thermal Couette flow

Merging the above two examples, the Couette flowwith thermal
effect is next considered. In Fig. 1, two plates at constant temper-
ature T0 and T1 are considered. The bottom plate is fixed while the
top plate is moving at constant velocity V0.

In the present case, the fluid is considered incompressible and
non-Newtonian. The constitutive model is given by:

s ¼ m _g0

�
_g
_g0

�m

(22)

wherem is a strain rate sensitivity exponent, s is the effective shear
stress, _g is the effective shear strain rate and _g0 is a reference strain
rate. The conservation of mass, the conservation of linear mo-
mentum and the conservation of energy are simplified to:



Fig. 1. 1D thermal Couette flow problem.
V;x ¼ 0 s;y ¼ 0 p;y ¼ 0 �l
v2T
vy2

¼ s _g (23)

where p represents the pressure and is uniform in our problem.
Obviously, the analytical profiles of velocity and temperature are:
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L
y; (24a)
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Considering the thermal Couette flow in steady state, the total
power density has two contributions: the viscous potential and the
conduction potential:

FðV ; TÞ ¼
ZL
0

"
1

mþ 1
m

_gm�1
0

�
T
Q
V;y

�mþ1

� 1
2
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�
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T

�2
#
dy (25)

Note that expressing stationarity of F with respect to V and T leads
to momentum and energy balance equations. The following trial
velocity and temperature are adopted:

VðyÞ ¼ ay2 þ
�
V0

L
� aL

�
y; (26a)

TðyÞ ¼ cy2 þ
�
T1 � T0

L
� cL

�
yþ T0 (26b)

where a and c are the unknown parameters. The variational model
of thermal Couette flow is restated and rewritten as:

inf
a

sup
c

FðV ; TÞ (27)

Finding the solution of the thermal Couette flow turns to a
mathematical optimization problemwith a saddle point for the two
unknowns a and c. Adopting the material parameters listed in
Table 1, values of a and c obtained from the analytical solutions and
the variational modeling are given in Table 2. We obtain a perfect
agreement (which was expected since our space of trial functions
Table 1
Material properties for thermal Couette flow problem.

m (GPa/s) _g0 (s�1) l (Wm�1 K�1) V0 (m/s) m T0 (K) L (m) T1 (K)

0.157 1 0.6 50 0.5 273 0.2 300

4

includes the analytical solution). Fig. 2 presents the corresponding
profiles of velocity and temperature in the layer. The velocity has a
linear form with a slope V0/L, while the temperature in the fluid
between the plates is gradually increasing with a parabolic form
from the cold plate to the hot plate.
5. Fully formed adiabatic shear band

The variational principle in continuum form has shown its ef-
ficiency in deriving exact solutions of classical problems. We
consider next a fully coupled thermo-mechanical problem: the
formation of ASB. As described in Fig. 3, a slab of thickness 2H is
subject to simple shearing by imposing velocity�V0 and isothermal
conditions T ¼ T0 at y ¼ �H. The material is representative of steel
with a thermo-viscoplastic behavior as considered in Leroy and
Molinari (1992). The constitutive relation is written as:

s ¼ s0 exp
�
� b

�
T
T0

� 1
���

_g
_g0

�m

(28)

Hardening is disregarded in this section (e.g. we consider a satu-
rated hardening regime). Constitutive parameters s0 and _g0 are
reference stress and strain rate, while T0 is a reference temperature,
taken equal to the imposed temperature at y ¼ �H. Coefficient b
defines the level of thermal softening and m is the strain rate
sensitivity. We consider that a steady state prevails so that the
elastic strain rate and the entropy rate are zero. Under these con-
ditions, the total strain rate is equal to the plastic one. For the
proposed problem, the total power density then reduces to:

FðV ; TÞ ¼
ZH
�H

�
j�
�
T
Q
V;y;Q

�
� c

�
� T;y

T
;Q

��
dy (29)

where the dissipation pseudo-potential j* is defined based on the
flow stress relation of the material (28):

j�ð _g;QÞ ¼ s0 _g0
mþ 1

exp
�
� b

��
Q

T0

�
� 1
���

_g
_g0

�mþ1

m˛½0;1�

(30)

The second part c is the conduction potential corresponding to the
isotropic Fourier law, given by (18). The problem in Fig. 3 can thus
be solved by adopting the following optimization formulation:

inf
V

sup
T

FðV ; TÞ (31)

The mechanical equilibrium equation derives from the stationarity
condition on velocity V, while the heat equation derives from the
stationarity condition on temperature T (see Appendix A). In
addition, thermal equilibrium requires that Q ¼ T. Leroy and
Molinari (1992) have shown that an exact solution exists for the
problem of Fig. 3 when thematerial flow law is given by (28). In this
section, HY100 steel with material parameters given in Table 3 is
considered.
Table 2
Values of parameters a and c obtained from the analytical solutions and the varia-
tional method.

Variational modeling Analytical solutions

a (m�1 s�1) �2.84 � 10�13 0
c (Km�2) �517.16 �517.16



Fig. 2. Profiles of velocity and temperature in the thermal Couette flow.

Table 3
Material properties for HY100 steel (Leroy and Molinari, 1992).

T0 (K) l (Wm�1 K�1) _g0 (s�1) s0 (MPa) b m

300 54 1000 500 0.33 0.012
5.1. RitzeGalerkin method

As stated before, Leroy and Molinari (1992) gave analytical ex-
pressions for the profiles of velocity and temperature in a layer
made of material whose behavior is modeled by (28) and with the
following boundary conditions:

V j�H ¼ V0; T j�H ¼ T0

Wright and Ravichandran (1997) observed that these expressions
were representing a good approximate for different constitutive
models.

Our aim is to show that the proposed variational formulation is
able to recover the exact solution when the material constitutive
model is given by (28). In addition, it will be shown that this
approach can also provide accurate results for other constitutive
models.
5.1.1. Shear band width and penalty method
In this section, the trial functions representing the velocity and

the temperature within the ASB are based on the analytical solu-
tions derived by Leroy and Molinari (1992) and considered as ca-
nonical functions by Wright and Ravichandran (1997):

VðyÞ ¼ V0
tan hðy=hV Þ
tan hðH=hV Þ

; TðyÞ ¼ T0

�
1� 2m

b
ln

cos hðy=hT Þ
cos hðH=hT Þ

�
(32)

Two length-like parameters (hV and hT) have been introduced.
Owing to symmetry, the actual widths are twice these values.
Fig. 3. 1D shear band configuration Leroy and Molinari (1992).
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Nevertheless in the following, hV and hT will be referred to as shear
band widths.

A penaltymethod is introduced to fulfill the condition hV¼ hT. At
this stage, hV and hT are the unknowns. The optimization condition
(31) is then replaced by the new optimization problem:

stathV ;hT

�
Fþ 1

2
KðhV � hTÞ2

�
(33)

where K is a penalty coefficient. Note that for the proposedmaterial
flow law and the trial function, the stationarity of (33) with respect
to hV is always satisfiedwhatever the value of hV . The stationarity of
(33) with respect to hT will lead to a nonlinear equation for hT . After
some mathematical development, we can prove that the corre-
sponding relationship defined by Leroy and Molinari (1992) is
retrieved, see Appendix A. As a consequence, our approach is able
to capture the exact solution.
5.1.2. Shear band width and central temperature
The trial function adopted in the previous section for the tem-

perature involved material parametersm and b which are related to
theflow law. To avoid this drawback, a new set of variables is adopted
to define velocity and temperature in the shear band. Instead of hT
and hV , we introduce h and Tmax, so that the two trial functions
become:

VðyÞ ¼ V0
tan hðy=hÞ
tan hðH=hÞ;

TðyÞ ¼ Tmax � ðTmax � T0Þ
lnðcos hðy=hÞÞ
lnðcos hðH=hÞÞ

(34)

where h and Tmax represent the shear band width and central
temperature. The values of Tmax and h are determined by a sta-
tionary condition on F:

stath;Tmax
Fðh; TmaxÞ (35)

Indeed, the stationarity of F with respect to Tmax leads to an
equation which represents energy conservation while the statio-
narity of F with respect to h leads to an equation representing the
momentum conservation. Fig. 4 represents the variation of F with
respect to parameters h and Tmax. Results are presented with
H ¼ 1.25 mm and V0 ¼ 0.01108 m/s. Material parameters are those
of Table 3. The solution of the thermo-mechanical coupled problem
is then obtained through an optimization problemwhere one has to
locate the saddle point.

Note that parameters h and Tmax are unknowns of our optimi-
zation problem, which serve to define continuous profiles of ve-
locity and temperature. While the interpretation of Tmax as the
maximal temperature, in the middle of the ASB, is very clear, the
interpretation of h offers more freedom. Indeed, it is interesting to
mention that there is no unique definition of the shear band width.
For instance, Batra and Ko (1992) considered that the localized zone
is fully formedwhen the shear stress drops to 85% of the peak value.
In our approach, h measures the distance where rapid variations of
velocity and temperature are observed (see Fig. 5), and we identify
this length with the shear band width. Alternatively, since the slab
width H is large compared to the shear band width h, then from
relations (34), it is possible to derive a simple definition of h:



Fig. 4. Modeling of adiabatic shear band by the energy-based variational approach.
The solution of the problem is located on the saddle point.

Table 4
Shear bandwidth (dimensionless) and central temperature (b¼ 0.38; V0¼ 0.1108m/
s).

Variational model Analytical solutions

hV ðh Tmax½K�Þ ðh Tmax½K�Þ
m ¼ 0.012 0.0310 ð0:0311 896:6 Þ ð0:0311 896:6 Þ
m ¼ 0.06 0.1535 ð0:1535 851:3 Þ ð0:1535 851:3 Þ
m ¼ 0.12 0.3126 ð0:3126 775:0 Þ ð0:3126 775:0 Þ
VðhÞ ¼ V0 tan hð1Þ (36)

i.e. the distance from the center at which the velocity reaches
V0tan h(1).
5.2. Results and analysis

First, predictions based on the two approaches (set of variables
(hV,hT) or (h,Tmax)) are compared. Due to the strong non-linearity of
the EulereLagrange equations (31), an optimized algorithm of the
NewtoneRaphson method named the trust-region method, is
adopted to solve the set of stationary problem (35). In addition, the
equilibrium temperature profileQðyÞ at a given iteration is taken as
the (external) temperature profile obtained at the previous itera-

tion. Table 4 shows the numerical solutions (hV ¼ hT ) and (h, Tmax)

obtained for different strain rate sensitivities, where hV ¼ hV=H

and h ¼ h=H. It is shown that analytical results of Leroy and
Molinari (1992) are found. Fig. 5 presents the profiles of velocity
and temperature in the slab for the reference set of parameters
presented in Table 3 and for H ¼ 1.25 mm, V0 ¼ 0.1 m/s. The shear
band thickness is 0.08965 mm and the central temperature is
893.3 K.
Fig. 5. Profiles of velocity and temperature in steady state. The formation of ASB is
considered and exact results of Leroy and Molinari (1992) are retrieved (The nominal
strain rate is 90 s�1, but the average strain rate inside the band is 2230 s�1).
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In the following, we adopt the set of variables h and Tmax to
describe the shear localization. Fig. 6(a) illustrates the influence of
the imposed velocity V0 on h and Tmax. The nominal strain rate is
varying up to 1600 s�1 for a velocity of 2 m/s prescribed at the
frontier of the domain. When the velocity increases, the shear band
width h decreases and the central temperature in the band in-
creases. From this figure, we observe that the reduction of the shear
band width slows down when V0 > 0.5 m/s. The occurrence of the
adiabatic shear band is the result of a thermo-mechanical insta-
bility. In a thermal softening material, a higher strain rate causes a
smaller band width and also brings more dissipation and heat
generation in the band. As the strain rate increases, the time scale of
the deformation process (which is proportional to the inverse of the
strain rate) becomes smaller so the heat removal by conduction is
less efficient, leading to a higher central temperature.

The influence of thermal conductivity l on h and Tmax is also
analyzed in Fig. 6(b). The shear band width increases almost line-
arly with l, while the central temperature decreases in a nonlinear
way. Numerical analysis also illustrates the well known fact that
adiabatic shear band is a misnomer, since heat conduction plays an
important role in the final process of ASB formation, significantly
affecting localization zone width and central temperature.

The shear band width and temperature computed in our model
are calculated under steady state assumption, when strain hard-
ening is saturated. Note that in experiments, fracture of the spec-
imen probably occurs before a steady state is reached. Leroy and
Molinari (1992) discussed that point and concluded that shear
bands observed in torsional Kolsky bar test are not tending towards
a steady state. Therefore, our approach does not provide direct
comparison with experimental results. Nevertheless, it is worth
mentioning that shear band widths captured by our approach are
reasonablewhen compared to results of the literature. Typical shear
band width are in the range 10e100 mm for a wide range of mate-
rials. For instance,Marchand andDuffy (1988)measured shear band
width of 20 mmfor aHY100 steel (nominal strain rate of 1600 s�1). In
our approach, with the proposed definition of the shear bandwidth,
the corresponding shear band width is around 10 mm.

Note also that central temperatures obtained within the band
are larger than in experiments (Marchand and Duffy, 1988; Guduru
et al., 2001). First, one has to recognize that the TayloreQuinney
coefficient is set to one (all plastic work is transformed into heat),
so with a lower value (as measured in experiments), the temper-
ature increase would be lower. Second, the temperature obtained is
the one which exists under steady state, when the hardening is
saturated. Note that in experiments, this regime is never reached
and the specimen is fractured before. Finally, temperature mea-
surements are seldom provided in the literature. Marchand and
Duffy (1988) have provided some measurements which corre-
spond to an average temperature measured on the surface by a
device with a spot size and not within the material itself.
6. Extension to various constitutive laws

The shapes of the trial functions (32) were defined based on
analytical expressions obtained by Leroy and Molinari (1992).



(a) (b)

Fig. 6. Effect of the imposed velocity V0 (a) and the thermal conductivity l (b) on the shear band width and the central temperature. A larger velocity or a lower thermal con-
ductivity increases the central temperature and reduces the shear band width.
These expressions were exact when considering the material flow
law (28) but depending upon material parameters (m and b). To
extend this formalism, we have defined a new set of functions (34)
depending on parameters (h, Tmax) which characterizes the shear
localization independently of material behavior. In this section, we
propose to validate our approach by considering two different
constitutive models: power law and JohnsoneCook model. Trial
functions (34) are used and predictions of the variational approach
are compared to FEM solutions. The latter are obtained by applying
the FEM formulation sketched in Appendix C.

6.1. Power law

In this constitutive model, rate dependence and thermal soft-
ening are described via power law expressions:

s ¼ s0

�
T
T0

�n
 
_g
p

_g0

!m

(37)

where _g
p
is the equivalent plastic shear strain rate, and where s0

represents the flow stress level for T¼ T0 and _g
p ¼ _g0. Constitutive

parameters _g0 and T0 are thus reference strain rate and tempera-
ture. Exponent n defines the thermal softening. Under steady state,
_ge ¼ 0, and thus _g

p ¼ j _gj. Assuming the material obeys a von
Mises law, and under simple shear, we obtain:

_g
p ¼ 

V;y



 (38)

By adopting the following dissipation potential:

j�� _gp;Q� ¼ s0 _g0
mþ 1

�
Q

T0

�n
 
_g
p

_g0

!mþ1

m˛½0;1� (39)

and using the canonical formulations for the velocity and temper-
ature (34) in variational principle (35), EulereLagrange equations
for the unknowns h and Tmax are defined. The adiabatic shear band
is then fully characterized by solving two nonlinear equations.

For illustrative purpose, the material considered here is repre-
sentative of a CRS 1018 steel, with constitutive parameters given in
Table 5.
Table 5
Material parameters for CRS 1018 steel from Leroy and Molinari (1992).

n s0 (MPa) l (Wm�1 K�1) m _g0 (s�1) T0 (K)

�0.38 500 54 0.012 1000 300
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For validation, finite element calculations based on the incre-
mental variational approach (Yanget al., 2006) are used to determine
the evolution of the velocity and the temperature in the shear layer.
In contrast with traditional methods for solving thermo-mechanical
problems, the tangent matrix of our FEM model is symmetric, as a
result of the variational structure of the formulation. The material
flow law adopted in FEM is (37) and elasticity is accounted for in the
numerical simulation. Due to large strain rate in the localization
zone, the mesh is dense in the vicinity of the layer’s center.

Fig. 7 provides the time evolution of velocity and temperature
when V0 ¼ 0.1108 m/s and H ¼ 1.25 mm. Note that Fig. 7 presents
the results for y < H (half of the layer). At the beginning of the
evolution, the loading is homogeneous and the velocity profile is
linear, as expected. Steady state is reached asymptotically when
time increases. In that case, the velocity field is evolving signifi-
cantly in a narrow band and is nearly constant outside. Tempera-
ture significantly evolves as well: from a homogeneous initial stage,
the temperature increases and reaches a maximum in the central
part of the layer when adiabatic shear band has formed.

In order to compare FEM and the proposed model, the previous
definition of h (36) is also adopted to interpret FEM results. Fig. 8
shows the time evolution of shear band width calculated by FEM. As
timeevolves, the calculated shear bandwidthdecreases andsaturates
for t> 0.15 s. Fig. 9 compares the profiles of velocity and temperature
under steady state obtained via FEM and the proposedmodel. Clearly,
there is an excellent agreement between the two approaches. Almost
no difference exists between results. Table 6 gives the shear band
width and the central temperature provided by the FEM and the
variationalmethodwhenV0¼ 0.1108m/s andH¼ 1.25mm. Thus, this
first test proves the efficiency of the proposed approach.

When comparing results of Tables 4 and 6, for the same
configuration (velocity and band width), it is observed that the
predicted shear bandwidth is more than 3 times larger for CRS 1018
than for HY100. This trend is consistent with results of the litera-
ture. Indeed, in addition to HY100, Marchand and Duffy (1988) have
performed testing for CRS 1018 and mentioned that the shear band
is wider (around 100 mm). So clearly, even if our approach has not
been built for direct comparison, the steady state results provided
by our approach are consistent. An extension of the model to
transient regime is necessary for a more precise comparison with
results. Some of this work has been done by the authors (see Su,
2012), with promising perspectives, but a detailed description
would go beyond the scope of this paper. Thus to validate our
approach, and for salient comparisons (same material law and
same configuration and same assumption of steady state), the
recourse to FEM is necessary and compulsory.



(b)(a)

Fig. 7. Time evolution of the velocity and the temperature within the layer obtained by FEM. Loading parameters are V0 ¼ 0.1108 m/s and H ¼ 1.25 mm. The material is repre-
sentative of CRS 1018 steel, and the material behavior is described by a power law.

Fig. 8. Time evolution of shear band width obtained by FEM. Loading parameters are
V0 ¼ 0.1108 m/s and H ¼ 1.25 mm. Material is representative of CRS 1018 steel, see
Table 5 for material parameters.

Fig. 9. Comparison of the velocity and temperature profiles in steady state obtained
using the two approaches: FEM and variational model. Loading parameters are
V0 ¼ 0.1108 m/s and H ¼ 1.25 mm.
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6.2. JohnsoneCook model

When considering high strain rate loading, the JohnsoneCook
(JC) model (Johnson and Cook, 1983) is widely adopted to represent
rate dependent thermo-mechanical behavior of materials:

sy
�
_
ε

P
; εP ; T

�
¼ �

Aþ BðεpÞn	
2
41þ C log

� _
ε

p

_ε0

�35�1� T*q
�

(40)

where the non-dimensional temperature T* is defined as:

T� ¼

8>>>><
>>>>:

0 if T < T0
T � T0
Tm � T0

if T0 < T < Tm

1 if T > Tm

(41)

Parameters A, B, c, n and q are material constants, _ε0 is the reference
effective strain rate, here chosen as 1.0, Tm is the melting temper-
ature, and T0 a reference temperature. To further test our modeling
in the steady state, the hardening contribution in the JC model is
disregarded by setting B ¼ 0. The corresponding dissipation po-
tential is then given by:

j�� _
ε

p
;Q
	 ¼ Ad

�
1� T�ðQÞq	 _εp þ A

�
1� T�ðQÞq	

� C _ε0

� _
ε

p

_ε0
log
� _
ε

p

_ε0

�
�

_
ε

p

_ε0
þ 1

� (42)

where Ad � A. The choice of Ad affects the fraction of plastic energy
transformed into heat. If Ad ¼ A, the classical TayloreQuinney co-
efficient is equal to unity. If Ad < A, this coefficient is lower than
unity, and the total power density functional (29) must be modified
by adding a _W term in the integral, with

_W
�
_
ε

p
;Q
	 ¼ ðA� AdÞ

�
1� T�ðQÞq	 _εp (43)

Note that since we are focusing on the steady-state regime in this
paper, where all hardening mechanisms are saturated, and thus
probably all plastic energy storage mechanisms as well, this latter
case may not be relevant here.
Table 6
Shear band width h and central temperature Tmax obtained by two approaches
(analytical solutions and FEM).

Variational modeling FEM

h (mm) 0.0991 0.0997
Tmax (K) 1052.8 1052.1



Table 7
Material property for Ti-6Al-4V.

A (MPa) Ad (MPa) q l (W/mK) C _ε0 (s�1) T0 (K) Tm (K)

792 792 1.03 54 0.014 1 300 1793

Fig. 10. Time evolution of the shear stress calculated by FEM (V0 ¼ 0.1 m/s and
H ¼ 1.25 mm). The material is representative of Ti-6Al-4V. The JC model has been
considered.

Fig. 11. Comparison of the velocity and temperature profiles in steady state obtained
using the two approaches: FEM (at t ¼ 0.1 s) and variational model. Loading param-
eters are V0 ¼ 0.1 m/s and H ¼ 1.25 mm. The material is representative of Ti-6Al-4V.
The flow law is described by the JC model (see Table 7 for material parameters).
For illustration’s purpose, a layer made of Ti-6Al-4V is consid-
ered. Material parameters are given in Table 7. Fig. 10 presents the
shear stress evolution within the band, as obtained by FEM when
H¼1.25mm;V0¼ 0.1m/s. The shear stress corresponds to the stress
prevailing at the boundary (y ¼ �H). At first the material behaves
elastically. When plasticity develops, the stress level decreases
slightly due to a limited temperature evolution. Up to t¼ 0.01 s, the
deformation remains almost homogeneous. At a later stage, thermal
softening induces strain localization and the stressdrops rapidly. For
t > 0.1 s, a steady state develops. Meanwhile shear band width de-
creases with time and gradually evolves towards a defined value.
Table 8 presents the values of the shear band width and central
temperature for FEM and the variational model. Shear bandwidth h
is well predicted while a small difference exists for the central
temperature. The temperature is still increasing at t¼ 0.1 s for FEM,
yet at a very reduced rate. We extrapolate that it will tend towards
the limit value calculated by the variationalmodel. Fig.11 shows the
stationary velocity and temperature profiles obtained by FEM and
the variational model. A good agreement is found.

7. Effect of thermal boundary conditions

Slab width H is a known parameter in the above energy-based
variational modeling, and numerical analysis illustrates that ASB
band width h and central temperature Tmax increase when H is
increased (Fig. 12), with isothermal boundary conditions T ¼ T0 and
constant velocity V ¼ V0 enforced at y ¼ H. As illustrated in Fig. 5,
outside of the central zone of width 2h, velocity is almost constant
Table 8
Shear band width h and central temperature Tmax obtained by two approaches (JC
Model). FEM values are measured at t ¼ 0.1 s.

Variational modeling FEM

h (mm) 0.0421 0.0427
Tmax (K) 952.8 938.7
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while temperature varies linearly. From this observation, we can
deduce that the effect of slab width H on shear band width and
central temperature is mostly linked to the imposition of a tem-
perature T0 at the boundary. Indeed, as shown in Fig. 13, increasing
the width H while maintaining a fixed temperature T0 at the
boundary leads to an overall increase of temperature, although the
localization is slightly less marked (larger shear band width h).
Isothermal boundary conditions thus result in a strong dependence
of results on slab width H. We thus proceed to include mixed
thermal boundary conditions, with the objective of limiting the
direct dependency of results on slab width H.

The slab of width 2H is now embedded in a larger environment
of constant temperature T0. Heat removal from the sheared layer is
supposed to exist via mixed boundary condition (similarly to the
approach proposed in Leroy and Molinari (1992)):

Hl
vT
vy

¼ cðText � T0Þ for y ¼ �H (44)

where c is a film parameter (a.k.a. exchange coefficient). Isothermal
boundary condition is retrieved for c ¼ þN. Adiabatic condition is
Fig. 12. Effect of the slab width on the shear band width and central temperature. The
velocity is 0.1 m/s. The material, described by exponential law, is representative of
HY100 steel.



Fig. 13. Profiles of velocity (a) and temperature (b) in layers of different width.

Fig. 14. Profiles of temperature on different structure sizes.
obtained when c ¼ 0. Owing to the new boundary condition, T(�H)
is different from T0 and we denote T(�H) ¼ Text. For the new
problem, the trial velocity profile is unchanged:

VðyÞ ¼ V0
tan hðy=hÞ
tan hðH=hÞ (45)

while the trial temperature profile is now defined as:

TðyÞ ¼ Tmax � ðTmax � TextÞ lnðcos hðy=hÞÞlnðcos hðH=hÞÞ (46)

An expression of total power density potential accounting for
mixed thermal boundary condition under steady-state conditions
is given by:

Ftðh; Tmax; TextÞ ¼
Z
B

D
�
T
Q

VV;
T
Q

_Z;�VT
T
;Q
�
dV � 2Ftr (47)

with

FtrðTextÞ ¼ 1
2

c
Q1

ðText � T0Þ2 (48)

andQ1 ¼ Qjy¼�H . As before, balance equations can be obtained by
optimization of Ft with respect to velocity and temperature.
Additionally, mixed thermal boundary conditions are also obtained
by the variation of Ft with respect to T (see Appendix B). Using
RitzeGalerkin method, the variational modeling of an adiabatic
shear band with heat exchange is then described by the following
optimization problem:

stat
Text;h;Tmax

Ftðh; Tmax; TextÞ (49)

Let us now consider the reference velocity and temperature
profile Vr(y) and Tr(y) obtained from the parameter set:
Hr ¼ 1.25 mm, V0 ¼ 0.1 m/s and T0 ¼ 300 K. In the following, hr and
Tmax;r are denoted as the associated reference shear bandwidth and
reference maximum temperature. Considering a new problemwith
mixed thermal boundary condition in this part, we would like to
evaluate the possibility of retrieving reference temperature and
velocity profiles by adjusting the thermal boundary conditionwhen
varying the layer width H.

In contrast with conventional approaches where c is considered
as an input parameter, wewill treat the heat exchange coefficient as
an unknownparameter, whichwill be determined by imposing that
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we should recover similar solutions for various slab width H (and a
constant given loading velocity V0). These profiles are characterized
by h ¼ hr and Tmax ¼ Tmax;r. We then look at solutions obtained for
hr < H < Hr, with mixed boundary conditions. In each case, we seek
a value of exchange coefficient c yielding a matching temperature
profile for �H � y � H, as illustrated on Fig. 14. Since we want to
obtain T(y) ¼ Tr(y), the sought value of Text is defined by:

Text ¼ Tmax;r �
�
Tmax;r � T0

	 lnðcos hðH=hrÞÞ
lnðcos hðHr=hrÞÞ (50)

Adapting exchange coefficient c to satisfy the above constraint for
each value of H, shear band width and central temperature remain
remarkably constant over a wide range of domain width, as shown
in Fig. 15. In this figure, the relative norm for shear band width is
defined by h/hr. Relative norms for central temperature and shear
stress are similarly defined. Unavoidably, there are some small
fluctuations whenH comes close to the reference band width hr, yet
less than 5% in amplitude.

Fig. 16 presents the corresponding evolution of exchange coef-
ficient c with the slab width H. It appears from that figure that a
linear relation exists between log(Hr � H) and log(c):



Fig. 16. Evolution of the Exchange coefficient as function of the width domain H. The
material is representative of HY100 steel, and the material behavior is described by
power law.

Fig. 15. Relative shear band width, central temperature and central shear stress for
different structure sizes (with respect to the reference solution obtained with H ¼ 1.25
mm, V0 ¼ 0.1 m/s).
logðcÞ ¼ aðV0ÞlogðHr � HÞ þ bðV0Þ (51)

with

aðV0Þ ¼ �1; bðV0Þ ¼ 3:9889 for V0 ¼ 0:1 m=s (52)

Calculations performed for different velocities V0 have shown that
the coefficient a and b do not vary with V0. Note that expression
(51) is limited to slab width H such that hr < H < Hr.

Expression (51) with parameter values (52) was successfully
used in numerical simulations of transient evolution of velocity and
temperature profiles (Su, 2012), showing that the above method-
ology actually allows to build a variational model of ASB formation.
DVFðV ;TÞðdVÞ ¼
"

s0�
_g0
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Q
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8. Conclusion

An energy-based variational modeling of steady-state thermo-
mechanical problems is proposed and successfully applied to solve
classical problems such as Couette flow, thermal conduction in a
layer and thermal Couette flow. Based on this approach, the for-
mation of an adiabatic shear band in a slab subject to simple shear
is investigated. The thermo-mechanical solution is obtained by
means of an optimization problem. This continuum theory has
proved its efficiency in deriving steady state solutions for ASB. For a
specific constitutive model, the exact solution of Leroy andMolinari
(1992) has been retrieved. Examples of application to more general
constitutive laws are also proposed in the paper. By comparing to
FEM, it is observed that steady state shear band width and
maximum temperature are predicted with very good accuracy for
various material descriptions (power law, Johnson Cook law). We
also proposed a numerical formula of boundary exchange coeffi-
cient allowing to obtain consistent results for different slab widths.

The main advantage of the proposed method is numerical effi-
ciency. The theory as presented here is restricted to the analysis of
steady state regime while with FEM, the whole localization process
fromhomogeneous strain to strain localization can be simulated. The
analysis of transient regime can be analyzed with a variational
principle similar to the one developed in this paper (Yang et al.,
2006), but these results will be detailed elsewhere, see Su (2012)
or Su and Stainier (2011) for more details. In all cases, the proposed
approach is not aiming at representing the very early stages of shear
band formation and propagation, which would require to model the
ASB tip (Gioia and Ortiz, 1996; Mercier and Molinari, 1998).

Aside of the work on transient regime, further work could focus
on exploiting this tool to explore the effect of material parameters
and constitutive model characteristics on ASB features. In partic-
ular, it would be very interesting to assess the effect of variations in
the TayloreQuinney factor on ASB formation.
Appendix A. Derivation of field equations from the
variational principle

The total power density potential (29) in Section 5 is formulated
for coupled thermo-mechanical problems with rate and tempera-
ture dependent material behavior. Here it will be shown how the
conservation equations of momentum and of energy are obtained
by solving an optimization problemwith respect to the velocity and
the temperature. Taking the variation of (29) with respect to the
velocity field, we obtain:
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(A.1)

where dV is a perturbation in velocity field satisfying dV(�H)¼ 0. By
integration by parts, the previous relation becomes:
This relation reduces to:
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Stationarity requires that this last relation holds for any dV. So one
gets:
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Since Q ¼ T and using the material flow stress definition (28), (A.4)
reduces to:

vs
vy

¼ 0 (A.5)

The conservation of linear momentum is thus retrieved.
Next we treat the variation of (29) with respect to temperature:
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Since dT(�H) ¼ 0, Q ¼ T and previous equation should hold for
any perturbation dT of the temperature field at stationarity, we
have:
DTFtðV ;TÞðdTÞ ¼
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After simplification, this equation provides conservation of energy:
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Appendix B. Heat equation with thermal boundary condition
from the variational principle

Extending the total potential in Appendix A, we consider the
potential Ft with heat exchange on y ¼ �H. Its form is recalled:
Ft ¼
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where Q�1 ¼ Q
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. The variation of Ft with respect to T is:
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Since Q ¼ T and Q�1 ¼ T jy¼�H ¼ Text, we then recover (A.8) once
more, plus boundary conditions:

s0�
_g0
	m exp

�
� b

�
Q

T0
� 1

���
vV
vy

�mþ1

þ l
v2T
vy2

¼ 0 (B.3)
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¼ cðText � T0Þ on y ¼ H (B.4)

l
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¼ cðText � T0Þ on y ¼ �H (B.5)

Appendix C. Finite element formulation of the
unidimensional shear band problem

A detailed description of the incremental variational formula-
tion of general thermo-visco-plasticity can be found in Stainier
(2013), for example. If we particularize to the case of the model
shear band considered here, it reduces to

inf
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with the shear strain g(y)¼U,y(y). A time-discrete incremental finite
element formulation can then be derived in a straightforward
procedure.

Considering the symmetry of the sought solution, wewill define
the numerical model on the unidimensional domain y˛½0;H�, with
boundary conditions

Uð0; tÞ ¼ 0;T;yð0; tÞ ¼ 0 and UðH; tÞ ¼ U0ðtnþ1Þ;TðH; tÞ ¼ T0
(C.3)

where U0(t) and T0 are imposed displacement and temperature at
the shear band boundary. We then introduce finite element type
approximations of the displacement and temperature fields:

Uðy; tÞ ¼
XN
a¼1

UðaÞðtÞNaðyÞ (C.4)

Tðy; tÞ ¼
XN
a¼1

TðaÞðtÞNaðyÞ (C.5)

where U(a) and T(a) are nodal displacements and temperatures, and
Na(y) interpolating shape functions (i.e. with delta-Dirac proper-
ties). In practice, we have considered piecewise linear interpola-
tion. Note also that we have chosen to use the same spatial
discretization and shape functions for both displacement and
temperature fields.
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The variational principle (C.1) then becomes a nonlinear alge-
braic optimization problem:

inf
fUnþ1g

sup
fTnþ1g

FnðfUnþ1g; fTnþ1gÞ (C.6)

where fUnþ1g ¼ fUð1Þðtnþ1Þ;.;UðNÞðtnþ1Þg and fTnþ1g ¼
fTð1Þðtnþ1Þ;.; TðNÞðtnþ1Þg are arrays of nodal displacements and
temperatures. This optimization problem, which has to be solved at
each time step, can be solved by a standard NewtoneRaphson pro-
cedure, complemented with a line-search to improve convergence.
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