Energy-based variational modeling of fully formed adiabatic shear bands - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue European Journal of Mechanics - A/Solids Année : 2014

Energy-based variational modeling of fully formed adiabatic shear bands

Résumé

An energy-based variational modeling approach of adiabatic shear bands (ASB) for thermo-viscoplastic materials is proposed. In the process of derivation of this thermo-mechanical coupled problem, the variational methodology is first applied to classical problems, such as Couette flow, thermal conduction in a fluid layer and thermal Couette flow. The solutions are compared to the corresponding analytical solutions. In a second part, a slab under stationary simple shear is analyzed by a Ritz-Galerkin method combined with an energy-based variational approach of thermo-mechanical problems. The velocity and temperature profiles within an ASB are parameterized by two quantities: the shear band width and central temperature. It is shown that this variational formulation works for various material constitutive models, as illustrated by adopting two popular constitutive models (power law and Johnson-Cook law) and the results are checked by using a variational Finite Element Method. In a last part, mixed heat exchange boundary conditions are introduced to limit the effect of slab width on the solution. The profiles of velocity and temperature in the slab, as well as the influence of material properties on the formation of shear band are evaluated and in good agreement with results from the literature.
Fichier principal
Vignette du fichier
2014-emjsol47B.pdf (730.67 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00983537 , version 1 (06-11-2018)

Identifiants

Citer

Shaopu Su, Laurent Stainier, Sébastien Mercier. Energy-based variational modeling of fully formed adiabatic shear bands. European Journal of Mechanics - A/Solids, 2014, 47, pp.1-13. ⟨10.1016/j.euromechsol.2014.02.010⟩. ⟨hal-00983537⟩
122 Consultations
77 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More