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Abstract

The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of

Weierstrass’ theorem. We show how to extend his result to Müntz spaces on positive intervals. To cite this article:
R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ???? (200?).

Approximation par espaces de Müntz sur un intervalle positif. Résumé

En 1912, les opérateurs dits de Bernstein permirent à S.N. Bernstein de donner une preuve constructive du

théorème de Weierstrass. Nous étendons ce résultat aux espaces de Müntz sur des intervalles positifs. Pour citer
cet article : R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ? ? ? ? (200 ?).

1. Introduction

The famous Bernstein operator Bk of degree k on a given non-trivial interval [a, b], associates with any
F ∈ C0([a, b]) the polynomial function

BkF (x) :=

k
∑

i=0

F

(

(1 −
i

k
)a +

i

k
b

)

Bk
i , x ∈ [a, b], (1)

where (Bk
0 , . . . , Bk

k ) is the Bernstein basis of degree k on [a, b], i.e., Bk
i (x) := (k

i
)
(

x−a
b−a

)i( b−x
b−a

)k−i
. It

reproduces any affine function U on [a, b], in the sense that BkU = U . In [5], S.N. Bernstein proved that,
for all function F ∈ C0([a, b]), limk→+∞ ‖F − BkF‖∞ = 0. In Section 3 we show how this result extends
to the class of Müntz spaces ( i.e., spaces spanned by power functions) on a given positive interval [a, b],
see Theorem 3.1. Beforehand, in Section 2 we briefly remind the reader how to define operators of the
Bernstein-type in Extended Chebyshev spaces.

2. Extended Chebyshev spaces and Bernstein operators

Throughout this section, [a, b] is a fixed non-trivial real interval. For any n > 0, a given (n + 1)-
dimensional space E ⊂ Cn([a, b]) is said to be an Extended Chebyshev space (for short, EC-space) on [a, b]
when any non-zero element of E vanishes at most n times on [a, b] counting multiplicities up to (n + 1).
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Let E be an (n+1)-dimensional EC-space on [a, b]. Then, E possesses bases (B0, . . . , Bn) such that, for
i = 0, . . . , n, Bi vanishes exactly i times at a and (n − i) times at b and is positive on ]a, b[. We say that
such a basis is the Bernstein basis relative to (a, b) if it additionally satisfies

∑n

i=0
Bi = 1I, where 1I is the

constant function 1I(x) = 1, x ∈ [a, b]. Let us recall that E possesses a Bernstein basis relative to (a, b) if
and only if, firstly it contains constants, and secondly the n-dimensional space DE := {DF := F ′ |F ∈ E}
is an EC-space on [a, b]. Note that the second property is not an automatic consequence of the first one,
see [8] and other references therein.

As an instance, given any pairwise distinct λ0, . . . , λk, the so-called Müntz space M(λ0, . . . , λk), spanned
over a given positive interval [a, b] ( i.e., a > 0) by the power functions xλi , 0 6 i 6 k, is a (k + 1)-
dimensional EC-space on [a, b]. If λ0 = 0, since D (M(λ0, . . . , λk)) = M(λ1−1, . . . , λk −1), the space
M(λ0, . . . , λk) possesses a Bernstein basis relative to (a, b).

For the rest of the section we assume that E ⊂ Cn([a, b]) contains constants and that DE is an (n-
dimensional) EC-space on [a, b]. We denote by (B0, . . . , Bn) the Bernstein basis relative to (a, b) in E.

Definition 2.1 A linear operator B : C0([a, b]) → E is said to be a Bernstein operator based on E when,
firstly it is of the form

BF :=
k

∑

i=0

F
(

ζi

)

Bi, for some a = ζ0 < ζ1 < · · · < ζn = b, (2)

and secondly it reproduces a two-dimensional EC-space U on [a, b], in the sense that BV = V for all
V ∈ U.

Any Bernstein operator B is positive ( i.e., F > 0 implies BF > 0) and shape preserving due to the
properties of Bernstein bases in EC-spaces, see [8]. Everything concerning Bernstein-type operators in
EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [8], [9].

Theorem 2.2 Given n > 2, let E ⊂ Cn([a, b]) contain constants. Assume that DE is an n-dimensional
EC-space on [a, b]. For a function U ∈ E, expanded in the Bernstein basis relative to (a, b) as U :=
∑n

i=0
uiBi, the following properties are equivalent:

(i) u0, . . . , un form a strictly monotonic sequence;

(ii) there exists a nested sequence E1 ⊂ E2 ⊂ · · · ⊂ En−1 ⊂ En := E, where E1 := span(1I, U) and where,
for i = 1, . . . , n − 1, Ei is an (i + 1)-dimensional EC-space on [a, b];

(iii) there exists a Bernstein operator based on E which reproduces U .

In [8] it was proved that there exists a one-to-one correspondence between the set of all Bernstein
operator based on E and the set of all two-dimensional EC-spaces U they reproduce. In particular, if (i)
holds, then the unique Bernstein operator based on E reproducing U is defined by (2) with

ζi := U−1(ui), 0 6 i 6 n. (3)

Note that this is meaningful since (i) implies the strict monotonicity of U on [a, b]. Condition (ii) of Th.
2.2 yields the following corollary.

Corollary 2.3 Given an integer n > 1, consider a nested sequence

En ⊂ En+1 ⊂ · · · ⊂ Ep ⊂ Ep+1 ⊂ · · · , (4)

where En contains constants and for any p > n, DEp is a p-dimensional EC-space on [a, b]. Let U ∈ En be
a non-constant function reproduced by a Bernstein operator Bn based on En. Then, U is also reproduced
by a Bernstein operator Bp based on Ep for any p > n.

Remark 2.4 In the situation described in Corollary 2.3, a natural question arises: given F ∈ C0([a, b]),
does the sequence BkF , k > n, converges to F in C0([a, b]) equipped with the infinite norm? Obviously,
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for this to be true for any F ∈ C0([a, b]), it is necessary that ∪k>nEk be dense in C0([a, b]). The example
of Müntz spaces proves that this is not always satisfied.

3. Müntz spaces over positive intervals

Throughout this section we consider a fixed positive interval [a, b], a fixed infinite sequence of real
numbers λk, k > 0, assumed to satisfy

0 = λ0 < λ1 < · · · < λk < λk+1 < · · · , lim
k→+∞

λk = +∞. (5)

We are interested with the corresponding nested sequence of Müntz spaces

M(λ0) ⊂ M(λ0, λ1) ⊂ · · · ⊂ M(λ0, . . . , λk) ⊂ M(λ0, . . . , λk, λk+1) ⊂ · · · (6)

Given any n > 1, for each k > n, we can select a Bernstein operator Bk based on M(λ0, . . . , λk). Assume
the sequence Bk, k > n, to satisfy

lim
k→+∞

‖F − BkF‖∞ = 0 for any F ∈ C0([a, b]). (7)

Then, the union of all spaces M(λ0, . . . , λk), k > 0, is dense in C0([a, b]) equipped with the infinite norm.
As is well-known, this holds if and only if the sequence (5) fulfils the so-called Müntz density condition
below [4], [6],

∑

i>1

1

λi

= +∞. (8)

As an instance, the Müntz condition (8) is satisfied when λk = ℓ+1 for all k > 1. This case was addressed
in [8]. Convergence – in the sense of (7)– was proved there under the assumption that each Bk reproduced
the function xλ1 . This convergence result includes the classical Bernstein operators [5] obtained with
ℓ = 0. Below we extend it to the general interesting situation of sequences of Müntz Bernstein operators
Bk all reproducing the same two-dimensional EC-space (see Remark 2.4).

Theorem 3.1 Given n > 1, let E1 ⊂ M(λ0, . . . , λn) be a two-dimensional EC-space reproduced by a
Bernstein operator Bk based on M(λ0, . . . , λk) for any k > n. Then, if the Müntz density condition (8)
holds, the sequence Bk, k > n, converges in the sense of (7).

Before starting the proof, let us introduce some notations. For k > 1, denote by (Bk,0, . . . , Bk,k) the
Bernstein basis relative to (a, b) in the Müntz space M(λ0, . . . , λk). We consider the functions

U∗(x) = xλ1 , Vp(x) := xλp , p > 2, x ∈ [a, b],

expanded in the successive Bernstein bases as

U∗ =

k
∑

i=0

u∗

k,iBk,i for all k > 1, Vp =

k
∑

i=0

vp,k,iBk,i for all k > p. (9)

With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which
we refer to [2], see also [1].
Lemma 3.2 Assume that the Müntz density condition (8) holds. Then, we have

lim
k→+∞

max
06i6k

∣

∣

∣

∣

(

u∗

k,i

)

λp

λ1 − vp,k,i

∣

∣

∣

∣

= 0 for all p > 2. (10)

Proof of Theorem 3.1: • Let us start with the simplest example n = 1. Then, E1 = span(1I, U∗). For each
k > 1, the unique operator B

∗

k which reproduces E1 is given by

B
∗

kF :=

k
∑

i=0

F
(

ζ∗k,i

)

Bk,i, with, for i = 0, . . . , k, ζ∗k,i :=
(

u∗

k,i

)
1

λ1 (11)
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According to Korovkin’s theorem for positive linear operators [7], we just have to select a function F so
that 1I, U∗, F span a three-dimensional EC-space on [a, b] and prove that limk→+∞ ‖F − B

∗

kF‖∞ = 0 for
this specific F . We can thus choose for instance F := V2. Actually we will more generally prove the result
with F = Vp, for any p > 2. Using (9) and (11), we obtain, for any k > p,

‖B∗

kVp − Vp‖∞ =

∥

∥

∥

∥

∥

k
∑

i=0

(

Vp

(

ζ∗k,i

)

− vp,k,i

)

Bk,i

∥

∥

∥

∥

∥

∞

6 max
06i6k

∣

∣Vp

(

ζ∗k,i

)

− vp,k,i

∣

∣ . (12)

On account of (11), Lemma 3.2 yields the expected result

lim
k→+∞

‖B
∗

kVp − Vp‖∞ = 0 for each p > 2.

• We now assume that n > 1. Select a strictly increasing function U ∈ E1. Condition (ii) of Theorem 2.2
enables us to select a function V ∈ M(λ0, . . . , λn) so that the functions 1I, U, V span a three-dimensional
EC-space on [a, b]. For any k > n, expand U, V as

U =

k
∑

i=0

uk,iBk,i, V =
k

∑

i=0

vk,iBk,i.

We know that, for each k > n, the sequence (uk,0, . . . , uk,k) is strictly increasing, and that the Bernstein
operator Bk is defined by formula (2) with ζk,i := U−1 (uk,i) for i = 0, . . . , k. Via expansions of U and V

in the basis (1I, U∗, V2, . . . , Vn) of the Müntz space M(λ0, . . . , λn), Lemma 3.2 readily proves that

lim
k→+∞

max
06i6k

|U(ζ∗k,i) − uk,i| = 0 = lim
k→+∞

max
06i6k

|V (ζ∗k,i) − vk,i| (13)

The left part in (13) can be written as limk→+∞ max06i6k |U(ζ∗k,i)−U(ζk,i)| = 0. On this account, the uni-

form continuity of the function V ◦U−1 and the right part in (13) prove that limk→+∞ max06i6k |V (ζk,i)−
vk,i| = 0, thus implying that limk→+∞ ‖BkV − V ‖

∞
= 0. By Korovkin’s theorem, (7) is satisfied. ✷

Remark 3.3 Given n > 2, one can apply Theorem 3.1 with E1 := span(1I, Vn) = M(λ0, λn), due to the
nested sequence of Müntz spaces M(λ0, λ1, . . . , λi−1, λn) for 1 6 i 6 n. Note that Theorem 3.1 contains
in particular the Bernstein-type result expected in [3].
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[5] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math.
Kharkov, 13 (1912), 1-2.
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