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Abstract

The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of
Weierstrass’ theorem. We show how to extend his result to Miintz spaces on positive intervals. To cite this article:
R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. 2227 (2007).

Approximation par espaces de Miintz sur un intervalle positif. Résumé

En 1912, les opérateurs dits de Bernstein permirent a S.N. Bernstein de donner une preuve constructive du
théoreme de Weierstrass. Nous étendons ce résultat aux espaces de Miintz sur des intervalles positifs. Pour citer
cet article : R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. 2222 (200 7).

1. Introduction

The famous Bernstein operator By, of degree k on a given non-trivial interval [a, b], associates with any
F € C%a, b]) the polynomial function

k . .
BiF(x):=Y F ((1 - %)a + ;b> BY, z€ab), (1)
=0

where (Bf,...,BF) is the Bernstein basis of degree k on [a,b], i.e., BF(z) := (’f)(”;:g)l(ng)kﬂ It
reproduces any affine function U on [a, b], in the sense that B,U = U. In [5], S.N. Bernstein proved that,
for all function F € C%(a, b)), limg— o0 ||F — BrF|l = 0. In Section 3 we show how this result extends
to the class of Miintz spaces (i.e., spaces spanned by power functions) on a given positive interval [a, ],
see Theorem 3.1. Beforehand, in Section 2 we briefly remind the reader how to define operators of the

Bernstein-type in Extended Chebyshev spaces.

2. Extended Chebyshev spaces and Bernstein operators

Throughout this section, [a,b] is a fixed non-trivial real interval. For any n > 0, a given (n + 1)-
dimensional space E C C™([a, b]) is said to be an Eztended Chebyshev space (for short, EC-space) on [a, b]
when any non-zero element of E vanishes at most n times on [a, b] counting multiplicities up to (n + 1).
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Let E be an (n+ 1)-dimensional EC-space on [a, b]. Then, E possesses bases (By, ..., By,) such that, for
i=0,...,n, B; vanishes exactly 4 times at a and (n — ¢) times at b and is positive on |a, b[. We say that
such a basis is the Bernstein basis relative to (a,b) if it additionally satisfies >, B; = 1, where T is the
constant function I(x) =1, € [a, b]. Let us recall that E possesses a Bernstein basis relative to (a, b) if
and only if, firstly it contains constants, and secondly the n-dimensional space DE := {DF := F' | F € E}
is an EC-space on [a, b]. Note that the second property is not an automatic consequence of the first one,
see [8] and other references therein.

As an instance, given any pairwise distinct A, . . ., Ak, the so-called Miintz space M (X, ..., Ax), spanned
over a given positive interval [a,b] (i.e., a > 0) by the power functions z*, 0 < i < k, is a (k + 1)-
dimensional EC-space on [a,b]. If Ay = 0, since D (M (\g,...,A\x)) = M(A —1,..., x—1), the space
M (Ao, ..., M) possesses a Bernstein basis relative to (a,b).

For the rest of the section we assume that E C C"([a,b]) contains constants and that DE is an (n-
dimensional) EC-space on [a,b]. We denote by (By,..., B;,) the Bernstein basis relative to (a,b) in E.

Definition 2.1 A linear operator B : C°([a,b]) — E is said to be a Bernstein operator based on E when,
firstly it is of the form
k

BF :=Y F(G)Bi, forsomea=(y <G < <(u=Db, (2)
=0

and secondly it reproduces a two-dimensional EC-space U on [a,b], in the sense that BV = V for all
Vel.

Any Bernstein operator B is positive (i.e., F' > 0 implies BF' > 0) and shape preserving due to the
properties of Bernstein bases in EC-spaces, see [8]. Everything concerning Bernstein-type operators in
EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [8], [9].

Theorem 2.2 Given n > 2, let E C C™([a,b]) contain constants. Assume that DE is an n-dimensional
EC-space on [a,b]. For a function U € E, expanded in the Bernstein basis relative to (a,b) as U :=
Z?:o u; B;, the following properties are equivalent:

(i) wo,...,u, form a strictly monotonic sequence;

(ii) there exists a nested sequence By CEy C -+ C B, C E,, := E, where Eq := span(L,U) and where,
fori=1,....,n—1, E; is an (i + 1)-dimensional EC-space on [a,b|;

(iii) there exists a Bernstein operator based on E which reproduces U.

In [8] it was proved that there exists a one-to-one correspondence between the set of all Bernstein
operator based on E and the set of all two-dimensional EC-spaces U they reproduce. In particular, if (i)
holds, then the unique Bernstein operator based on E reproducing U is defined by (2) with

Gi=U(u;), 0<i<n. (3)
Note that this is meaningful since (i) implies the strict monotonicity of U on [a,b]. Condition (ii) of Th.
2.2 yields the following corollary.

Corollary 2.3 Given an integer n > 1, consider a nested sequence
E,CEp1C---CE, CEppqC---, 4)

where E,, contains constants and for any p > n, DE, is a p-dimensional EC-space on [a,b]. Let U € E,, be
a non-constant function reproduced by a Bernstein operator B, based on E,,. Then, U is also reproduced
by a Bernstein operator B, based on E, for any p > n.

Remark 2.4 In the situation described in Corollary 2.3, a natural question arises: given F' € C%([a, b)),
does the sequence By F', k > n, converges to F in C°([a,b]) equipped with the infinite norm? Obviously,
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for this to be true for any F' € C°([a, b)), it is necessary that Uy>,Ej be dense in C°([a, b]). The example
of Miintz spaces proves that this is not always satisfied.

3. Miintz spaces over positive intervals

Throughout this section we consider a fixed positive interval [a,b], a fixed infinite sequence of real
numbers A\, k > 0, assumed to satisfy

0=Ao <A< <A <Aepr <, lim Ap=oo. (5)
k—+4o00

We are interested with the corresponding nested sequence of Miintz spaces

M(AO) - M<)\0a)\1) c---C M()‘Ow"aAk) C M(A07"'7Ak7Ak+1) c-- (6)

Given any n > 1, for each k > n, we can select a Bernstein operator By based on M (g, ..., Ax). Assume
the sequence By, k > n, to satisfy

kligl |F —BiF|l =0 forany F € C°a,b]). (7)

Then, the union of all spaces M (Ao, ..., \x), k = 0, is dense in C°([a,b]) equipped with the infinite norm.
As is well-known, this holds if and only if the sequence (5) fulfils the so-called Miintz density condition

below [4], [6],
1

d — =+c0. (8)

— )\

i1
As an instance, the Miintz condition (8) is satisfied when Ay, = £+1 for all k¥ > 1. This case was addressed
in [8]. Convergence — in the sense of (7)— was proved there under the assumption that each By, reproduced
the function x*t. This convergence result includes the classical Bernstein operators [5] obtained with
¢ = 0. Below we extend it to the general interesting situation of sequences of Miintz Bernstein operators
By all reproducing the same two-dimensional EC-space (see Remark 2.4).

Theorem 3.1 Given n > 1, let E; C M()\g,...,\n) be a two-dimensional EC-space reproduced by a
Bernstein operator By, based on M(Xo, ..., ) for any k = n. Then, if the Miintz density condition (8)
holds, the sequence By, k > n, converges in the sense of (7).

Before starting the proof, let us introduce some notations. For k > 1, denote by (Bk.o,...,Bki) the
Bernstein basis relative to (a, ) in the Miintz space M (A, ..., Ax). We consider the functions
U*(z) =™, Vy(x):=2™, p>2, z¢c]a,b],
expanded in the successive Bernstein bases as
k k
U* = Zuz7in,i forallk>1, V,= va,k,in7i for all k& > p. (9)
i=0 =0

With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which

we refer to [2], see also [1].
Lemma 3.2 Assume that the Miintz density condition (8) holds. Then, we have

lim max

=0 lp>2. 10
k—-Foo 0<i<k for all p (10)

Y
(uk,i) Up, ki

Proof of Theorem 3.1: @ Let us start with the simplest example n = 1. Then, E; = span(1L, U*). For each
k > 1, the unique operator B}, which reproduces E is given by

k

F =S F(Gia) ey with, fori =0,k Gy i= (uf) ™ (11)
=0



According to Korovkin’s theorem for positive linear operators [7], we just have to select a function F so
that I, U*, F span a three-dimensional EC-space on [a,b] and prove that limy_, o ||F — B} F'||s = 0 for
this specific F. We can thus choose for instance F' := V5. Actually we will more generally prove the result
with F' =V, for any p > 2. Using (9) and (11), we obtain, for any k > p,

k

”BZ‘/}) - Vp” z; Ck i Up,kﬂ') By, < Orgag(k |V (Ck z) - Up,k,i| . (12)
o0

On account of (11), Lemma 3.2 yields the expected result
klim IBxVy — Vpll, =0 for each p > 2
— 400

e We now assume that n > 1. Select a strictly increasing function U € E;. Condition (ii) of Theorem 2.2
enables us to select a function V€ M (A, ..., \,) so that the functions I, U,V span a three-dimensional
EC-space on [a,b]. For any k > n, expand U,V as

k k
U= E Ug,iBri, V= E Vk,i Br.i.-
i=0 i=0

We know that, for each k > n, the sequence (uy,. .., ug ) is strictly increasing, and that the Bernstein
operator By, is defined by formula (2) with (g ; := U~" (uy ;) for i = 0,..., k. Via expansions of U and V
in the basis (I,U*, Va,...,V,,) of the Miintz space M (), ..., \,), Lemma 3.2 readily proves that

1 U i|l=0= 1 V — Vki 13
kirfooorgz&g(k' (CEa) = sl ITOOOIE?}k| (Gks) = vl (13)

The left part in (13) can be written as limy_. 4o maxogi<k ‘U(Ck,i)_ (Ck,i)| = 0. On this account, the uni-
form continuity of the function VoU ! and the right part in (13) prove that limy_ 4 oo maxo<i<k |V (Ck.i) —
Ug,i| = 0, thus implying that lims_, 4 [|BxV — V||, = 0. By Korovkin’s theorem, (7) is satisfied. O

Remark 3.3 Given n > 2, one can apply Theorem 3.1 with E; := span(I, V,,) = M (Ao, An), due to the
nested sequence of Miintz spaces M (Ao, A1, ..., Ai—1,An) for 1 < i < n. Note that Theorem 3.1 contains
in particular the Bernstein-type result expected in [3].
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