# Approximation by Müntz spaces on positive intervals

Rachid Ait-Haddou<sup>a</sup>, Marie-Laurence Mazure<sup>b</sup>,

<sup>a</sup> Geometric Modeling and Scientific Visualization Center, KAUST, Saudia-Arabia <sup>b</sup> Laboratoire Jean Kuntzmann Université Joseph Fourier, BP 53, 38041 Grenoble cedex 9, France

#### Abstract

The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of Weierstrass' theorem. We show how to extend his result to Müntz spaces on positive intervals. To cite this article: R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ???? (200?).

#### Approximation par espaces de Müntz sur un intervalle positif. Résumé

En 1912, les opérateurs dits de Bernstein permirent à S.N. Bernstein de donner une preuve constructive du théorème de Weierstrass. Nous étendons ce résultat aux espaces de Müntz sur des intervalles positifs. Pour citer cet article : R. Ait-Haddou and M.-L. Mazure, C. R. Acad. Sci. Paris, Ser. ???? (200?).

### 1. Introduction

The famous Bernstein operator  $\mathbb{B}_k$  of degree k on a given non-trivial interval [a, b], associates with any  $F \in C^0([a, b])$  the polynomial function

$$\mathbb{B}_k F(x) := \sum_{i=0}^k F\left((1 - \frac{i}{k})a + \frac{i}{k}b\right) B_i^k, \quad x \in [a, b],\tag{1}$$

where  $(B_0^k, \ldots, B_k^k)$  is the Bernstein basis of degree k on [a, b], i.e.,  $B_i^k(x) := \binom{k}{i} \left(\frac{x-a}{b-a}\right)^i \left(\frac{b-x}{b-a}\right)^{k-i}$ . It reproduces any affine function U on [a, b], in the sense that  $\mathbb{B}_k U = U$ . In [5], S.N. Bernstein proved that, for all function  $F \in C^0([a, b])$ ,  $\lim_{k \to +\infty} \|F - \mathbb{B}_k F\|_{\infty} = 0$ . In Section 3 we show how this result extends to the class of Müntz spaces (i.e., spaces spanned by power functions) on a given positive interval [a, b], see Theorem 3.1. Beforehand, in Section 2 we briefly remind the reader how to define operators of the Bernstein-type in Extended Chebyshev spaces.

## 2. Extended Chebyshev spaces and Bernstein operators

Throughout this section, [a, b] is a fixed non-trivial real interval. For any  $n \ge 0$ , a given (n + 1)-dimensional space  $\mathbb{E} \subset C^n([a, b])$  is said to be an *Extended Chebyshev space* (for short, EC-space) on [a, b] when any non-zero element of  $\mathbb{E}$  vanishes at most n times on [a, b] counting multiplicities up to (n + 1).

Email addresses: Rachid.AitHaddou@kaust.edu.sa (Rachid Ait-Haddou), mazure@imag.fr (Marie-Laurence Mazure).

Let  $\mathbb{E}$  be an (n+1)-dimensional EC-space on [a,b]. Then,  $\mathbb{E}$  possesses bases  $(B_0,\ldots,B_n)$  such that, for  $i=0,\ldots,n$ ,  $B_i$  vanishes exactly i times at a and (n-i) times at b and is positive on ]a,b[. We say that such a basis is the Bernstein basis relative to (a,b) if it additionally satisfies  $\sum_{i=0}^n B_i = \mathbb{I}$ , where  $\mathbb{I}$  is the constant function  $\mathbb{I}(x)=1$ ,  $x\in [a,b]$ . Let us recall that  $\mathbb{E}$  possesses a Bernstein basis relative to (a,b) if and only if, firstly it contains constants, and secondly the n-dimensional space  $D\mathbb{E}:=\{DF:=F'\mid F\in \mathbb{E}\}$  is an EC-space on [a,b]. Note that the second property is not an automatic consequence of the first one, see [8] and other references therein.

As an instance, given any pairwise distinct  $\lambda_0, \ldots, \lambda_k$ , the so-called Müntz space  $M(\lambda_0, \ldots, \lambda_k)$ , spanned over a given positive interval [a, b] (i.e., a > 0) by the power functions  $x^{\lambda_i}$ ,  $0 \le i \le k$ , is a (k+1)-dimensional EC-space on [a, b]. If  $\lambda_0 = 0$ , since  $D(M(\lambda_0, \ldots, \lambda_k)) = M(\lambda_1 - 1, \ldots, \lambda_k - 1)$ , the space  $M(\lambda_0, \ldots, \lambda_k)$  possesses a Bernstein basis relative to (a, b).

For the rest of the section we assume that  $\mathbb{E} \subset C^n([a,b])$  contains constants and that  $D\mathbb{E}$  is an (n-dimensional) EC-space on [a,b]. We denote by  $(B_0,\ldots,B_n)$  the Bernstein basis relative to (a,b) in  $\mathbb{E}$ .

**Definition 2.1** A linear operator  $\mathbb{B}: C^0([a,b]) \to \mathbb{E}$  is said to be a Bernstein operator based on  $\mathbb{E}$  when, firstly it is of the form

$$\mathbb{B}F := \sum_{i=0}^{k} F(\zeta_i) B_i, \quad \text{for some } a = \zeta_0 < \zeta_1 < \dots < \zeta_n = b,$$
 (2)

and secondly it reproduces a two-dimensional EC-space  $\mathbb{U}$  on [a,b], in the sense that  $\mathbb{B}V=V$  for all  $V\in\mathbb{U}$ .

Any Bernstein operator  $\mathbb{B}$  is positive (i.e.,  $F \ge 0$  implies  $\mathbb{B}F \ge 0$ ) and shape preserving due to the properties of Bernstein bases in EC-spaces, see [8]. Everything concerning Bernstein-type operators in EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [8], [9].

**Theorem 2.2** Given  $n \ge 2$ , let  $\mathbb{E} \subset C^n([a,b])$  contain constants. Assume that  $D\mathbb{E}$  is an n-dimensional EC-space on [a,b]. For a function  $U \in \mathbb{E}$ , expanded in the Bernstein basis relative to (a,b) as  $U := \sum_{i=0}^n u_i B_i$ , the following properties are equivalent:

- (i)  $u_0, \ldots, u_n$  form a strictly monotonic sequence;
- (ii) there exists a nested sequence  $\mathbb{E}_1 \subset \mathbb{E}_2 \subset \cdots \subset \mathbb{E}_{n-1} \subset \mathbb{E}_n := \mathbb{E}$ , where  $\mathbb{E}_1 := \operatorname{span}(\mathbb{I}, U)$  and where, for  $i = 1, \ldots, n-1$ ,  $\mathbb{E}_i$  is an (i+1)-dimensional EC-space on [a,b];
- (iii) there exists a Bernstein operator based on  $\mathbb{E}$  which reproduces U.

In [8] it was proved that there exists a one-to-one correspondence between the set of all Bernstein operator based on  $\mathbb{E}$  and the set of all two-dimensional EC-spaces  $\mathbb{U}$  they reproduce. In particular, if (i) holds, then the unique Bernstein operator based on  $\mathbb{E}$  reproducing U is defined by (2) with

$$\zeta_i := U^{-1}(u_i), \quad 0 \leqslant i \leqslant n. \tag{3}$$

Note that this is meaningful since (i) implies the strict monotonicity of U on [a, b]. Condition (ii) of Th. 2.2 yields the following corollary.

**Corollary 2.3** Given an integer  $n \ge 1$ , consider a nested sequence

$$\mathbb{E}_n \subset \mathbb{E}_{n+1} \subset \dots \subset \mathbb{E}_p \subset \mathbb{E}_{p+1} \subset \dots, \tag{4}$$

where  $\mathbb{E}_n$  contains constants and for any  $p \ge n$ ,  $D\mathbb{E}_p$  is a p-dimensional EC-space on [a,b]. Let  $U \in \mathbb{E}_n$  be a non-constant function reproduced by a Bernstein operator  $\mathbb{B}_n$  based on  $\mathbb{E}_n$ . Then, U is also reproduced by a Bernstein operator  $\mathbb{B}_p$  based on  $\mathbb{E}_p$  for any p > n.

**Remark 2.4** In the situation described in Corollary 2.3, a natural question arises: given  $F \in C^0([a, b])$ , does the sequence  $\mathbb{B}_k F$ ,  $k \ge n$ , converges to F in  $C^0([a, b])$  equipped with the infinite norm? Obviously,

for this to be true for any  $F \in C^0([a,b])$ , it is necessary that  $\bigcup_{k \geqslant n} \mathbb{E}_k$  be dense in  $C^0([a,b])$ . The example of Müntz spaces proves that this is not always satisfied.

#### 3. Müntz spaces over positive intervals

Throughout this section we consider a fixed positive interval [a, b], a fixed infinite sequence of real numbers  $\lambda_k$ ,  $k \ge 0$ , assumed to satisfy

$$0 = \lambda_0 < \lambda_1 < \dots < \lambda_k < \lambda_{k+1} < \dots, \quad \lim_{k \to +\infty} \lambda_k = +\infty.$$
 (5)

We are interested with the corresponding nested sequence of Müntz spaces

$$M(\lambda_0) \subset M(\lambda_0, \lambda_1) \subset \cdots \subset M(\lambda_0, \dots, \lambda_k) \subset M(\lambda_0, \dots, \lambda_k, \lambda_{k+1}) \subset \cdots$$
 (6)

Given any  $n \ge 1$ , for each  $k \ge n$ , we can select a Bernstein operator  $\mathbb{B}_k$  based on  $M(\lambda_0, \dots, \lambda_k)$ . Assume the sequence  $\mathbb{B}_k$ ,  $k \ge n$ , to satisfy

$$\lim_{k \to +\infty} ||F - \mathbb{B}_k F||_{\infty} = 0 \quad \text{for any } F \in C^0([a, b]).$$
 (7)

Then, the union of all spaces  $M(\lambda_0, \ldots, \lambda_k)$ ,  $k \ge 0$ , is dense in  $C^0([a, b])$  equipped with the infinite norm. As is well-known, this holds if and only if the sequence (5) fulfils the so-called *Müntz density condition* below [4], [6],

$$\sum_{i \ge 1} \frac{1}{\lambda_i} = +\infty. \tag{8}$$

As an instance, the Müntz condition (8) is satisfied when  $\lambda_k = \ell + 1$  for all  $k \ge 1$ . This case was addressed in [8]. Convergence – in the sense of (7)– was proved there under the assumption that each  $\mathbb{B}_k$  reproduced the function  $x^{\lambda_1}$ . This convergence result includes the classical Bernstein operators [5] obtained with  $\ell = 0$ . Below we extend it to the general interesting situation of sequences of Müntz Bernstein operators  $\mathbb{B}_k$  all reproducing the same two-dimensional EC-space (see Remark 2.4).

**Theorem 3.1** Given  $n \ge 1$ , let  $\mathbb{E}_1 \subset M(\lambda_0, \ldots, \lambda_n)$  be a two-dimensional EC-space reproduced by a Bernstein operator  $\mathbb{B}_k$  based on  $M(\lambda_0, \ldots, \lambda_k)$  for any  $k \ge n$ . Then, if the Müntz density condition (8) holds, the sequence  $\mathbb{B}_k$ ,  $k \ge n$ , converges in the sense of (7).

Before starting the proof, let us introduce some notations. For  $k \ge 1$ , denote by  $(B_{k,0}, \ldots, B_{k,k})$  the Bernstein basis relative to (a,b) in the Müntz space  $M(\lambda_0, \ldots, \lambda_k)$ . We consider the functions

$$U^*(x) = x^{\lambda_1}, \quad V_p(x) := x^{\lambda_p}, \ p \geqslant 2, \quad x \in [a, b],$$

expanded in the successive Bernstein bases as

$$U^* = \sum_{i=0}^k u_{k,i}^* B_{k,i} \text{ for all } k \geqslant 1, \quad V_p = \sum_{i=0}^k v_{p,k,i} B_{k,i} \text{ for all } k \geqslant p.$$
 (9)

With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which we refer to [2], see also [1].

Lemma 3.2 Assume that the Müntz density condition (8) holds. Then, we have

$$\lim_{k \to +\infty} \max_{0 \leqslant i \leqslant k} \left| \left( u_{k,i}^* \right)^{\frac{\lambda_p}{\lambda_1}} - v_{p,k,i} \right| = 0 \quad \text{for all } p \geqslant 2.$$
 (10)

Proof of Theorem 3.1: • Let us start with the simplest example n = 1. Then,  $\mathbb{E}_1 = \text{span}(\mathbb{I}, U^*)$ . For each  $k \geq 1$ , the unique operator  $\mathbb{B}_k^*$  which reproduces  $\mathbb{E}_1$  is given by

$$\mathbb{B}_{k}^{*}F := \sum_{i=0}^{k} F(\zeta_{k,i}^{*}) B_{k,i}, \quad \text{with, for } i = 0, \dots, k, \ \zeta_{k,i}^{*} := (u_{k,i}^{*})^{\frac{1}{\lambda_{1}}}$$
(11)

According to Korovkin's theorem for positive linear operators [7], we just have to select a function F so that  $\mathbb{I}, U^*, F$  span a three-dimensional EC-space on [a, b] and prove that  $\lim_{k \to +\infty} \|F - \mathbb{B}_k^* F\|_{\infty} = 0$  for this specific F. We can thus choose for instance  $F := V_2$ . Actually we will more generally prove the result with  $F = V_p$ , for any  $p \ge 2$ . Using (9) and (11), we obtain, for any  $k \ge p$ ,

$$\|\mathbb{B}_{k}^{*}V_{p} - V_{p}\|_{\infty} = \left\| \sum_{i=0}^{k} \left( V_{p}(\zeta_{k,i}^{*}) - v_{p,k,i} \right) B_{k,i} \right\|_{\infty} \leqslant \max_{0 \leqslant i \leqslant k} \left| V_{p}(\zeta_{k,i}^{*}) - v_{p,k,i} \right|.$$
 (12)

On account of (11), Lemma 3.2 yields the expected result

$$\lim_{k \to +\infty} \left\| \mathbb{B}_k^* V_p - V_p \right\|_{\infty} = 0 \quad \text{for each } p \geqslant 2.$$

• We now assume that n > 1. Select a strictly increasing function  $U \in \mathbb{E}_1$ . Condition (ii) of Theorem 2.2 enables us to select a function  $V \in M(\lambda_0, \dots, \lambda_n)$  so that the functions  $\mathbb{I}, U, V$  span a three-dimensional EC-space on [a, b]. For any  $k \ge n$ , expand U, V as

$$U = \sum_{i=0}^{k} u_{k,i} B_{k,i}, \quad V = \sum_{i=0}^{k} v_{k,i} B_{k,i}.$$

We know that, for each  $k \ge n$ , the sequence  $(u_{k,0},\ldots,u_{k,k})$  is strictly increasing, and that the Bernstein operator  $\mathbb{B}_k$  is defined by formula (2) with  $\zeta_{k,i} := U^{-1}(u_{k,i})$  for  $i=0,\ldots,k$ . Via expansions of U and V in the basis  $(\mathbb{I},U^*,V_2,\ldots,V_n)$  of the Müntz space  $M(\lambda_0,\ldots,\lambda_n)$ , Lemma 3.2 readily proves that

$$\lim_{k \to +\infty} \max_{0 \le i \le k} |U(\zeta_{k,i}^*) - u_{k,i}| = 0 = \lim_{k \to +\infty} \max_{0 \le i \le k} |V(\zeta_{k,i}^*) - v_{k,i}|$$
(13)

The left part in (13) can be written as  $\lim_{k\to+\infty} \max_{0\leqslant i\leqslant k} |U(\zeta_{k,i}^*) - U(\zeta_{k,i})| = 0$ . On this account, the uniform continuity of the function  $V \circ U^{-1}$  and the right part in (13) prove that  $\lim_{k\to+\infty} \max_{0\leqslant i\leqslant k} |V(\zeta_{k,i}) - v_{k,i}| = 0$ , thus implying that  $\lim_{k\to+\infty} \|\mathbb{B}_k V - V\|_{\infty} = 0$ . By Korovkin's theorem, (7) is satisfied.  $\square$ 

**Remark 3.3** Given  $n \ge 2$ , one can apply Theorem 3.1 with  $\mathbb{E}_1 := \operatorname{span}(\mathbb{I}, V_n) = M(\lambda_0, \lambda_n)$ , due to the nested sequence of Müntz spaces  $M(\lambda_0, \lambda_1, \dots, \lambda_{i-1}, \lambda_n)$  for  $1 \le i \le n$ . Note that Theorem 3.1 contains in particular the *Bernstein-type result* expected in [3].

#### References

- [1] R. Ait-Haddou, Y. Sakane, and T. Nomura, A Müntz type theorem for a family of corner cutting schemes, Comp. Aided Geom. Design, 30 (2013), 240–253.
- [2] R. Ait-Haddou, Dimension elevation in Müntz spaces: a new emergence of the Müntz condition, to appear, arXiv:1309.0938.
- [3] J.M. Aldaz, O. Kounchev, and H. Render, Bernstein Operators for Exponential Polynomials, Constr. Approx., 20 (2009), 345–367.
- J. M. Almira, Müntz type theorems I, Surveys Approx. Theory, 3 (2007), 152–194.
- [5] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkov, 13 (1912), 1-2.
- [6] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, Graduate Texts in Mathematics, Vol. 161, New York, 1995.
- [7] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Corp., 1960.
- [8] M.-L. Mazure, Bernstein-type operators in Chebyshev spaces, Num. Algorithms, 52 (2009), 93–128.
- [9] M.-L. Mazure, Finding all systems of weight functions associated with a given Extended Chebyshev space, J. Approx. Theory, 163 (2011), 363–376.