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The so-called Bernstein operators were introduced by S.N. Bernstein in 1912 to give a constructive proof of Weierstrass' theorem. We show how to extend his result to Müntz spaces on positive intervals.

Introduction

The famous Bernstein operator B k of degree k on a given non-trivial interval [a, b], associates with any F ∈ C 0 ([a, b]) the polynomial function

B k F (x) := k i=0 F (1 - i k )a + i k b B k i , x ∈ [a, b], (1) 
where (B k 0 , . . . Email addresses: Rachid.AitHaddou@kaust.edu.sa (Rachid Ait-Haddou), mazure@imag.fr (Marie-Laurence Mazure).
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Let E be an (n + 1)-dimensional EC-space on [a, b]. Then, E possesses bases (B 0 , . . . , B n ) such that, for i = 0, . . . , n, B i vanishes exactly i times at a and (ni) times at b and is positive on ]a, b[. We say that such a basis is the Bernstein basis relative to (a, b) if it additionally satisfies Note that the second property is not an automatic consequence of the first one, see [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF] and other references therein.

As an instance, given any pairwise distinct λ 0 , . . . , λ k , the so-called Müntz space M (λ 0 , . . . , λ k ), spanned over a given positive interval [a, b] ( i.e., a > 0) by the power functions x λi , 0 i k, is a (k + 1)dimensional EC-space on [a, b]. If λ 0 = 0, since D (M (λ 0 , . . . , λ k )) = M (λ 1 -1, . . . , λ k -1), the space M (λ 0 , . . . , λ k ) possesses a Bernstein basis relative to (a, b).

For the rest of the section we assume that

E ⊂ C n ([a, b]) contains constants and that DE is an (n- dimensional) EC-space on [a, b]. We denote by (B 0 , . . . , B n ) the Bernstein basis relative to (a, b) in E. Definition 2.1 A linear operator B : C 0 ([a, b]) → E is said to be a Bernstein operator based on E when, firstly it is of the form BF := k i=0 F ζ i B i , for some a = ζ 0 < ζ 1 < • • • < ζ n = b, (2) 
and secondly it reproduces a two-dimensional EC-space U on [a, b], in the sense that BV = V for all V ∈ U. Any Bernstein operator B is positive ( i.e., F 0 implies BF 0) and shape preserving due to the properties of Bernstein bases in EC-spaces, see [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF]. Everything concerning Bernstein-type operators in EC-spaces with no Bernstein bases can be deduced from Bernstein operators as defined above [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF], [START_REF] Mazure | Finding all systems of weight functions associated with a given Extended Chebyshev space[END_REF].

Theorem 2.2 Given n 2, let E ⊂ C n ([a, b]) contain constants. Assume that DE is an n-dimensional EC-space on [a, b]. For a function U ∈ E, expanded in the Bernstein basis relative to (a, b) as U := n i=0 u i B i ,
the following properties are equivalent: (i) u 0 , . . . , u n form a strictly monotonic sequence;

(ii) there exists a nested sequence (iii) there exists a Bernstein operator based on E which reproduces U .

E 1 ⊂ E 2 ⊂ • • • ⊂ E n-1 ⊂ E n := E,
In [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF] it was proved that there exists a one-to-one correspondence between the set of all Bernstein operator based on E and the set of all two-dimensional EC-spaces U they reproduce. In particular, if (i) holds, then the unique Bernstein operator based on E reproducing U is defined by (2) with

ζ i := U -1 (u i ), 0 i n. (3) 
Note that this is meaningful since (i) implies the strict monotonicity of U on [a, b]. Condition (ii) of Th. 2.2 yields the following corollary.

Corollary 2.3 Given an integer n 1, consider a nested sequence

E n ⊂ E n+1 ⊂ • • • ⊂ E p ⊂ E p+1 ⊂ • • • , ( 4 
)
where 

F ∈ C 0 ([a, b]), does the sequence B k F , k n, converges to F in C 0 ([a, b]
) equipped with the infinite norm? Obviously, for this to be true for any

F ∈ C 0 ([a, b]), it is necessary that ∪ k n E k be dense in C 0 ([a, b]
). The example of Müntz spaces proves that this is not always satisfied.

Müntz spaces over positive intervals

Throughout this section we consider a fixed positive interval [a, b], a fixed infinite sequence of real numbers λ k , k 0, assumed to satisfy

0 = λ 0 < λ 1 < • • • < λ k < λ k+1 < • • • , lim k→+∞ λ k = +∞. ( 5 
)
We are interested with the corresponding nested sequence of Müntz spaces

M (λ 0 ) ⊂ M (λ 0 , λ 1 ) ⊂ • • • ⊂ M (λ 0 , . . . , λ k ) ⊂ M (λ 0 , . . . , λ k , λ k+1 ) ⊂ • • • (6) 
Given any n 1, for each k n, we can select a Bernstein operator B k based on M (λ 0 , . . . , λ k ). Assume the sequence B k , k n, to satisfy

lim k→+∞ F -B k F ∞ = 0 for any F ∈ C 0 ([a, b]). (7) 
Then, the union of all spaces M (λ 0 , . . . , λ k ), k 0, is dense in C 0 ([a, b]) equipped with the infinite norm.

As is well-known, this holds if and only if the sequence ( 5) fulfils the so-called Müntz density condition below [START_REF] Almira | Müntz type theorems I[END_REF], [START_REF] Borwein | Polynomials and Polynomial Inequalities[END_REF],

i 1

1 λ i = +∞. ( 8 
)
As an instance, the Müntz condition ( 8) is satisfied when λ k = ℓ + 1 for all k 1. This case was addressed in [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF]. Convergence -in the sense of ( 7)-was proved there under the assumption that each B k reproduced the function x λ1 . This convergence result includes the classical Bernstein operators [START_REF] Bernstein | Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités[END_REF] obtained with ℓ = 0. Below we extend it to the general interesting situation of sequences of Müntz Bernstein operators B k all reproducing the same two-dimensional EC-space (see Remark 2.4).

Theorem 3.1 Given n 1, let E 1 ⊂ M (λ 0 , . . . , λ n ) be a two-dimensional EC-space reproduced by a Bernstein operator B k based on M (λ 0 , . . . , λ k ) for any k n. Then, if the Müntz density condition [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF] holds, the sequence B k , k n, converges in the sense of [START_REF] Korovkin | Linear Operators and Approximation Theory[END_REF].

Before starting the proof, let us introduce some notations. For k 1, denote by (B k,0 , . . . , B k,k ) the Bernstein basis relative to (a, b) in the Müntz space M (λ 0 , . . . , λ k ). We consider the functions

U * (x) = x λ1 , V p (x) := x λp , p 2, x ∈ [a, b],
expanded in the successive Bernstein bases as

U * = k i=0 u * k,i B k,i for all k 1, V p = k i=0 v p,k,i B k,i for all k p. (9) 
With these notations, the key-point to prove Theorem 3.1 is the following lemma, for the proof of which we refer to [START_REF] Ait-Haddou | Dimension elevation in Müntz spaces: a new emergence of the Müntz condition, to appear[END_REF], see also [START_REF] Ait-Haddou | A Müntz type theorem for a family of corner cutting schemes[END_REF]. Lemma 3.2 Assume that the Müntz density condition [START_REF] Mazure | Bernstein-type operators in Chebyshev spaces[END_REF] holds. Then, we have

lim k→+∞ max 0 i k u * k,i λp λ 1 -v p,k,i = 0 for all p 2. ( 10 
)
Proof of Theorem 3.1: • Let us start with the simplest example n = 1. Then, E 1 = span(1I, U * ). For each k 1, the unique operator B * k which reproduces E 1 is given by

B * k F := k i=0 F ζ * k,i B k,i , with, for i = 0, . . . , k, ζ * k,i := u * k,i 1 λ 1 (11) 
According to Korovkin's theorem for positive linear operators [START_REF] Korovkin | Linear Operators and Approximation Theory[END_REF], we just have to select a function F so that 1I, U * , F span a three-dimensional EC-space on [a, b] and prove that lim k→+∞ F -B * k F ∞ = 0 for this specific F . We can thus choose for instance F := V 2 . Actually we will more generally prove the result with F = V p , for any p 2. Using ( 9) and (11), we obtain, for any k p,

B * k V p -V p ∞ = k i=0 V p ζ * k,i -v p,k,i B k,i ∞ max 0 i k V p ζ * k,i -v p,k,i . (12) 
On account of (11), Lemma 3.2 yields the expected result

lim k→+∞ B * k V p -V p ∞ = 0 for each p 2.
• We now assume that n > 1. Select a strictly increasing function U ∈ E 1 . Condition (ii) of Theorem 2.2 enables us to select a function V ∈ M (λ 0 , . . . , λ n ) so that the functions 1I, U, V span a three-dimensional EC-space on [a, b]. For any k n, expand U, V as

U = k i=0 u k,i B k,i , V = k i=0 v k,i B k,i .
We know that, for each k n, the sequence (u k,0 , . . . , u k,k ) is strictly increasing, and that the Bernstein operator B k is defined by formula (2) with ζ k,i := U -1 (u k,i ) for i = 0, . . . , k. Via expansions of U and V in the basis (1I, U * , V 2 , . . . , V n ) of the Müntz space M (λ 0 , . . . , λ n ), Lemma 3.2 readily proves that lim k→+∞ max

0 i k |U (ζ * k,i ) -u k,i | = 0 = lim k→+∞ max 0 i k |V (ζ * k,i ) -v k,i | (13) 
The left part in (13) can be written as lim k→+∞ max 0 i k |U (ζ * k,i )-U (ζ k,i )| = 0. On this account, the uniform continuity of the function V •U -1 and the right part in (13) prove that lim k→+∞ max 0 i k |V (ζ k,i )v k,i | = 0, thus implying that lim k→+∞ B k V -V ∞ = 0. By Korovkin's theorem, [START_REF] Korovkin | Linear Operators and Approximation Theory[END_REF] is satisfied. ✷ Remark 3.3 Given n 2, one can apply Theorem 3.1 with E 1 := span(1I, V n ) = M (λ 0 , λ n ), due to the nested sequence of Müntz spaces M (λ 0 , λ 1 , . . . , λ i-1 , λ n ) for 1 i n. Note that Theorem 3.1 contains in particular the Bernstein-type result expected in [START_REF] Aldaz | Bernstein Operators for Exponential Polynomials[END_REF].

  B k k ) is the Bernstein basis of degree k on [a, b], i.e., B k i (x) := ( k i ) . It reproduces any affine function U on [a, b], in the sense that B k U = U . In [5], S.N. Bernstein proved that, for all function F ∈ C 0 ([a, b]), lim k→+∞ F -B k F ∞ = 0. In Section 3 we show how this result extends to the class of Müntz spaces ( i.e., spaces spanned by power functions) on a given positive interval [a, b], see Theorem 3.1. Beforehand, in Section 2 we briefly remind the reader how to define operators of the Bernstein-type in Extended Chebyshev spaces. 2. Extended Chebyshev spaces and Bernstein operators Throughout this section, [a, b] is a fixed non-trivial real interval. For any n 0, a given (n + 1)dimensional space E ⊂ C n ([a, b]) is said to be an Extended Chebyshev space (for short, EC-space) on [a, b] when any non-zero element of E vanishes at most n times on [a, b] counting multiplicities up to (n + 1).

  n i=0 B i = 1I, where 1I is the constant function 1I(x) = 1, x ∈ [a, b]. Let us recall that E possesses a Bernstein basis relative to (a, b) if and only if, firstly it contains constants, and secondly the n-dimensional space DE := {DF := F ′ | F ∈ E} is an EC-space on [a, b].

  where E 1 := span(1I, U ) and where, for i = 1, . . . , n -1, E i is an (i + 1)-dimensional EC-space on [a, b];

  E n contains constants and for any p n, DE p is a p-dimensional EC-space on [a, b]. Let U ∈ E n be a non-constant function reproduced by a Bernstein operator B n based on E n . Then, U is also reproduced by a Bernstein operator B p based on E p for any p > n. In the situation described in Corollary 2.3, a natural question arises: given
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