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L’augmentation du trafic Internet motive une évolution des réseaux WDM traditionnels vers les réseaux optiques

élastiques (Elastic Optical Networks, EON). Les EONs sont conçus pour optimiser l’utilisation des ressources op-

tiques; ils permettent l’attribution de bandes de largeurs quelconques et offrent ainsi plus de souplesse que les réseaux

WDM avec leurs bandes fixes. Cependant, la gestion du spectre dans les EONs devient plus difficile du fait de la

fragmentation. Dans ce papier, nous proposons deux algorithmes qui permettent de résoudre le problème de Routage et

d’Allocation de Spectre d’une nouvelle requête en utilisant une technique de défragmentation non-perturbatrice.
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1 Introduction

Elastic Optical Networks (EONs) [GJLY12] is the new buzzword in the optical community. This new

networking paradigm promises a better utilization of the spectrum in optical networks. In fact, as the

optical transmission spectrum is carved into fixed-length bands in the traditional WDM networks, small bit

rates are over-provisioned and very high bit rates do not fit. EONs are moving away from this fixed-grid

and allow the spectrum to be divided flexibly: each request is allocated exactly the resources it needs.

The flexibility of EONs makes better use of the available spectrum. However, it also makes some of

the spectrum management problems more challenging as it is the case for fragmentation. Fragmentation

is the accumulation of small fragments of spectrum over time due to the dynamic traffic in the network

(like the fragmentation of a computer hard disk). Since those fragments are non-contiguous, a new request

might be blocked even if the available bandwidth in the spectrum could satisfy it. Many techniques have

been proposed to address fragmentation [WM14]. The preventive techniques route and allocate spectrum to

requests in a way to give new requests more opportunities to be accepted. The remedial techniques, on the

other hand, offer a cure to fragmentation after it happens: when a new request cannot be provisioned under

current circumstances, defragmentation is used to consolidate the small fragments and free some space.

Defragmentation can disrupt the system by changing the route of some already provisioned requests or it

can be non-disruptive as the new proposed technique, Push-Pull [CPM+13]. With Push-Pull, requests are

shifted in the spectrum interval and a request does not change its path nor transgresses other established

requests. The delay of insertion of a new request using Push-Pull indicates the duration of the shifting done

to free the needed space. Mukherjee and Wang [WM13] define it as the number of spectrum slots through

which the shifting is done and consider two types of parallelism to compute it as illustrated in Fig. 1.

An algorithm is proposed in [WM13] to route and allocate spectrum to a new request in EONs; it starts

by pre-computing a set of paths for the request and then finds on each path a position that minimizes the

delay using Push-Pull. This algorithm is not exact because it does not ensure that a path and a position are

returned whenever there is a solution. Furthermore, for a given path, the algorithm does not minimize the

delay of insertion over the whole space of possible positions on the path but only over a subset of that space.

†This author is supported by a grant from the ”Conseil régional Provence Alpes-Côte d’Azur”
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Fig. 1: Push-Pull shiftings (a) r3 and r2

are both shifted by 12 spectrum slots in the

same direction. The delay is then δ = 12.

(b) r1 is shifted by δ1 = 5 spectrum slots

and r4 is shifted in the opposite direction by

δ2 = 10 spectrum slots. Since the two op-

erations can be done in parallel the delay is

δ = max{δ1,δ2}= 10

Contributions. We present two exact algorithms to route and allocate spectrum to a new request in an

EON using only Non-Disruptive Defragmentation (Push-Pull). In the first algorithm (Section 3), we find the

shortest routing path for the new request (i.e., the shortest path from source to destination where contiguous

spectrum to satisfy the request can be freed) and then find the position that gives the overall minimum delay

on that path. In the second algorithm (Section 4), we find at the same time a routing path and a position in

the spectrum, that minimize the delay of insertion (over all other paths and positions). Both algorithms are

polynomial in the size of the network, its bandwidth and the number of provisioned requests.

2 Notations and Definitions

We will use some of the notations used in [WM13] for the sake of conformity. G = (V,L) is an optical

network where V is the set of nodes and L is the set of (directed) links. R is the set of provisioned requests.

bwt is the available bandwidth on every link of the network. br is the bandwidth traffic requirement for

request r ∈ R. s(r)/e(r) are the starting/ending spectrum slots of r in the spectrum interval (we start from

slot 0). The △-state (resp. ▽-state) [WM13] is the state of the network after shifting all the requests down

(resp. up) towards slot 0 (resp. slot bwt) until they are blocked. s△(r)/e△(r) (resp. s▽(r)/e▽(r)) are the

starting/ending spectrum slots of r in the △-state (resp. ▽-state), i.e., when all existing requests are shifted

to their lowest (resp. highest) spectrum position. To keep track of the dependency between the requests

we build the Spectrum Dependency Graph D = (V R,ER). It is a DAG with two special nodes f loor and

ceiling and where each node vr of V R \{ f loor,ceiling} is associated with a request r ∈ R. For each node vr,

there exists an arc from ceiling to vr and an arc from vr to f loor . There exists an arc from vr to vr′ if r′ is

assigned the band with the highest top index smaller than the bottom index of r for a given ℓ ∈ L. A request

ri is constrained to be below (resp. above) another request r j if on the spectrum dependency graph, ri is in

a path from r j to f loor (resp. a path from ceiling to r j); the position of ri cannot be bigger (resp. smaller)

than the position of r j, under any shifting.

We call absolute position, a position in the spectrum range, i.e., a value in the interval J0,bwt− 1K. We

call a relative position (A,B), a position between two sets of requests: allocating position (A,B) to a request

r means that r is above the set A of requests, and below the set B of requests in the spectrum range. To

every relative position (A,B) we associate a complete relative position (Ac,Bc) such that Ac contains the

requests in A and all the requests constrained to be below them, and Bc contains the requests in B and all the

requests constrained to be above them. We say that two relative positions (A,B) and (C,D) are conflicting

iff Ac ∩Dc 6= /0 or Cc ∩Bc 6= /0. The absolute position a can be freed for request q on link ℓ if the requests on

ℓ can be shifted to empty the interval [a,a+ bq]. A relative position (A,B) is associated with the absolute

position a for request q if max{e△(r)|r ∈ A} ≤ a and a+bq ≤ min{s▽(r)|r ∈ B}.

3 Dynamic RSA over the Shortest Path

3.1 Routing over the Shortest Path

We solve the problem sequentially. First, we find the shortest path from source to destination where contigu-

ous spectrum to satisfy the new request can be freed (Problem 1) and then we find the position minimizing

the insertion delay on that path (Problem 2).

Problem 1. Given a network G = (V,L), a set of provisioned requests R and a new request q, find the

shortest routing path for q knowing that only Non-Disruptive Defragmentation can be used.
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Idea of the algorithm. There are bwt− bq + 1 possible absolute positions on the spectrum to route q.

For every absolute position, there are many possible relative positions on every link. If for an absolute

position a, there is an st-path P whose links have non-conflicting relative positions corresponding to a, then

q can be routed on P occupying position a in the spectrum range. In our algorithm, if it is possible to free

a ∈ J0,bwt− bqK on link ℓ ∈ L, we color ℓ with color a (a link can receive many colors). Afterwards, we

find the shortest monocolored path (i.e., whose links share a color). We do not keep track of the relative

positions used to free an absolute position thanks to the following lemma.

Lemma 1. If the absolute position a can be freed on a set of links S, then there are valid non-conflicting

relative positions on the links of S, associated with a.

3.2 Minimum Delay Spectrum Assignment over a Path

Problem 2. Given a network G = (V,L), a set of provisioned requests R and a new request q with its

st-path P, find a position with minimum delay in the spectrum for q, knowing that only Non-Disruptive

Defragmentaton can be used.

As in [WM13] , we denote by CS(P) the set of provisioned requests that use paths sharing some links

with P. Let n = |CS(P)|. Every position of the new request q corresponds to a partition A∪ Ā of CS(P)
(requests above and below q). The floors of a position y = (A, Ā) before and after defragmentation are

defined respectively as: f (y) = max{e(x) : x ∈ A} and f ∗(y) = max{e△(x) : x ∈ A}. The ceilings of y are

determined by Ā: c(y) = min{s(x) : x ∈ Ā} and c∗(y) = min{s▽(x) : x ∈ Ā}. The sizes of y before and after

defragmentation are given by b(y) = c(y)− f (y) and b∗(y) = c∗(y)− f ∗(y). To check if we can provision

request q on a position y, it is enough to check if b∗(y)≥ bq and the delay of insertion in position y will be:

Delay(y) = bq −b(y)−min
{

f (y)− f ∗(y),c∗(y)− c(y),(bq −b(y))/2
}

(1)

Let CS(P) be sorted as < r1,r2, . . . ,rn > in the ascending order of the requests spectrum occupancy in the

△-state, i.e., e△(r1) ≤ ·· · ≤ e△(rn). We define the decision-positions of q over P as the n+ 1 positions

marked by † in < †r1 † r2 † · · · † rn† > and denoted by y0,y1, . . . ,yn. Mukherjee and Wang [WM13] have

proven that a request q can be provisioned over a path P if and only if there is i∈ {0,n} such that b∗(yi)≥ bq.

Using this fact, they have designed an algorithm that finds a position for q on P by checking only the n+1

decision-positions. Indeed, whenever it is possible to route q over P, their algorithm chooses among the

n+ 1 decision-positions the one that minimizes the delay of insertion. However, the chosen position is

not necessarily the one that minimizes the delay over all possible positions on P, and examples can be

designed where it is not. Using the following lemma, we have modified their algorithm to find a position

that minimizes the delay on P over all possible positions.

Lemma 2. For every decision-position y = A∪ Ā such that < z1,z2, . . . ,zk > is A sorted in the descending

order of the request spectrum occupancy e(z), we define the following positions yℓ = ({A\{z1,z2, . . . ,zℓ}},
{Ā∪{z1,z2, . . . ,zℓ}}), ℓ ∈ {1, . . . ,k}, and y0 = y. Any position on path P with delay d can be transformed

into a position yl , l ∈ {0, . . . ,k}, with delay d′ ≤ d for some decision-position y.

Idea of the proof. Let x = B∪ B̄ be any valid position with delay d for request q on path P. In the proof

of Theorem 1 of [WM13], x is transformed into one of the decision-positions by shifting down some of the

requests of B̄. This shifting may affect the delay d (see (1)). The idea then is to shift up back some of the

requests that might increase the delay.

Algorithm 1 uses Lemma 2 to solve Problem 2.

4 Dynamic RSA with Minimum Delay

Problem 3. Given a network G = (V,L), a set of provisioned requests R and a new request q, find for

q a routing path and a position in the spectrum, that minimize the delay of insertion, knowing that only

Non-Disruptive Defragmentation can be used.

The delay of freeing position a on link ℓ for request q with relative position (A,B) is given by the formula:

Delayℓ(A,B) = max{0,e(A)−a,a+bq − s(B)} where e(A) = max{e(x) : x ∈ A} and s(B) = min{s(x) : x ∈
B}. The delay of insertion in position a on a path P is DelayP = maxℓ∈P Delayℓ(Aℓ,Bℓ) where (Aℓ,Bℓ) is the

relative position used to free a on link ℓ. The proposed algorithm will be based on the following 2 lemmas.
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Algorithm 1 Finding Position with Minimum Delay on Path P

Require: Network G = (V,L), a set of provisioned requests R and a new request q with a path P

Ensure: The position with minimum delay for q on P

1: pos := /0 and delay := ∞

2: Find CS(P) the set of requests conflicting with q on P and sort it in the ascending order of e△. The

sorted list is < r1,r2, . . . ,rn >. The corresponding decision-positions are y0,y1, . . . ,yn and yi = (Ai, Āi)
3: for all i ∈ {0, . . . ,n} do

4: if b∗(yi)≥ bq then

5: Sort the requests in Ai in the descending order of e(x). The sorted list is < z1,z2, . . . ,zk > and

yl
i = ({Ai \{z1,z2, . . . ,zℓ}}∪{Āi,{z1,z2, . . . ,zℓ}}) for ℓ ∈ {1, . . . ,k} and y0

i = yi

6: for all ℓ ∈ {0, . . . ,k} do if Delay(yℓ)< delay then pos := yℓi and delay := Delay(yℓi )

Lemma 4. For an absolute position a and a link ℓ, there are at most two relative positions freeing a on ℓ
with minimum delay and if there are two such positions they are of the form (A,B) and (A∪{x},B\{x}),
where x is a request using ℓ.

If a can be freed on ℓ with minimum delay using relative positions (A,B) and (A∪ {x},B \ {x}), we

choose (A,B) to be called the relative position freeing a with minimum delay.

Lemma 5. For an absolute position a and two links ℓ and ℓ′, if (A,B) and (C,D) are the relative positions

that free a with minimum delay on ℓ and ℓ′, respectively, then, (A,B) and (C,D) are not conflicting .

Algorithm 2 Dynamic RSA with Minimum Delay

Require: Network G = (V,L), a set of provisioned requests R and a new request q.

Ensure: A path P and a position pos with minimum delay for request q.

1: P := /0, pos := /0 and delay := ∞

2: for ℓ ∈ L do Delayℓ := ∞ ; sort requests using ℓ in the increasing order of their spectrum occupancy;

the sorted list < rℓ1, . . . ,r
ℓ
dℓ
> and the corresponding relative positions < pℓ0, . . . , pℓdℓ

>.

3: for all a ∈ J0,bwt−bqK and ℓ ∈ L and i ∈ J0,dℓK do

4: if [a,a+bq]⊂ [e△(ri),s▽(ri+1)] then

5: if ℓ is not colored with a then Color link ℓ with color a

6: if Delayℓ > Delayℓ(pℓi ) then Delayℓ := Delayℓ(pℓi )
7: Find shortest path Pa colored with a that minimizes DelayPa = max{Delayℓ : ℓ ∈ Pa}
8: if DelayPa < delay then P := Pa, delay := DelayPa and pos := a

5 Conclusion

As future work, we intend to do simulations with our algorithms to measure their performance. We would

like also to examine possible trade-offs between the length of the routing path and the delay of insertion.

References

[CPM+13] F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi, N. Sambo, L. Poti,

and P. Castoldi. Push-pull defragmentation without traffic disruption in flexible grid optical

networks. Journal of Lightwave Technology, 31(1):125–133, Jan 2013.

[GJLY12] O. Gerstel, M. Jinno, A. Lord, and S. J B Yoo. Elastic optical networking: a new dawn for the

optical layer? Communications Magazine, IEEE, 50(2):s12–s20, 2012.

[WM13] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-disruptive de-

fragmentation. Lightwave Technology, Journal of, 31(15):2491–2500, 2013.

[WM14] R. Wang and B. Mukherjee. Spectrum management in heterogeneous bandwidth optical net-

works. Optical Switching and Networking, 11, Part A(0):83 – 91, 2014.


