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Optimization of automated online fabric inspection 
by fast Fourier transform (FFT) and cross-correlation

Abdel Salam Malek1,2, Jean-Yves Drean1, Laurent Bigue3 and Jean-François Osselin1

Abstract
Fabric inspection has an importance to prevent the risk of delivering inferior quality product. Until recently, the 
process was still undertaken offline and manually by humans, which has many drawbacks. The continuous 
development in computer technology introduces the automated fabric inspection as an effective alternative. In our 
work, Fast Fourier Transform and Cross-correlation techniques, i.e. linear operations, are first implemented to 
examine the structure regularity features of the fabric image in the spatial domain. To improve the efficiency of the 
technique and overcome the problem of detection errors, further thresholding operation is implemented using a level 
selection filter. Through this filter, the technique is able to detect only the actual or real defects and highlight its exact 
dimensions. A software package such as Matlab or Scilab is used for this procedure. It is implemented firstly on a 
simulated plain fabric to determine the most important parameters during the process of defect detection and then to 
optimize each of them even considering noise. To verify the success of the technique, it is implemented on real 
plain fabric samples with different colors containing various defects. Several results of the proposed technique for 
the simulated and real plain fabric structures with the most common defects are presented. Finally, a vision-based 
fabric inspection prototype that could be accom-plished on-loom to inspect the fabric under construction with 100% 
coverage is proposed.
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Generally, all companies promote quality as the central

customer value and the critical success factor for

achieving competitiveness. In the textile industry, it is

very difficult to achieve 100% first quality products

while in the weaving process it is an impossible task.

Moreover, it is found that fabric defects are responsible

for nearly 85% of the second quality items found in the

garment industry which represents a loss in revenue for

manufacturers since the second quality product will sell

for only 45–65% of the price of first quality fabric.1

Therefore, fabric inspection is an utmost priority to

prevent delivering inferior quality production. Mainly,

such objects have two distinct possibilities. The first one

is the product or end (offline) inspection in which

the manufactured fabric has to be inspected by a

human using inspection machines. The second possibil-

ity is the process inspection (online) in which the weav-

ing process, or its parameters, can be constantly

monitored for the occurrence of defects. Until recently,

fabric inspection is still undertaken offline and

manually by skilled staff with a maximum accuracy of

only 70–80%.

Because production speeds are faster than ever,

manufacturers must be able to identify defects, locate

their source, and make the necessary corrections in less

time so as to reduce the amount of second quality

fabric. This in turn places a greater strain on the inspec-

tion departments of the manufacturers. In addition,
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due to factors such as tiredness, boredom, and inatten-

tiveness, the staff performance is often unreliable.2

Therefore, the best possibility for objective and consist-

ent evaluation is through the application of an online

automated inspection system. The wider application of

online automated fabric inspection would seem to offer

a number of potential advantages including improved

safety, reduced labor costs, the elimination of human

error and/or subjective judgment, and the creation of

timely statistical product data. Moreover, because they

are computer-based, these systems do not suffer the

drawbacks of human visual inspection.

In the two past decades, interesting research work

relevant to automated fabric inspection has been

reported. All researchers interpreted this task as a tex-

ture analysis problem. Based on the algorithm used,

texture analysis is categorized into six approaches.1

Each one of them has some advantages and, unfortu-

nately, some drawbacks. In our research work, we

chose to implement a Fourier-based technique. On

the one hand, Fourier analysis is simple, fast, and simu-

lates the human visual inspection. While on the other

hand, it has a low computational complexity and is less

sensitivity to noise. Moreover, it corresponds to fabric’s

high degree of periodicity and the speed of the weaving

machine, as well.

Goals

The main goals of our work can be summarized as

follows:

. Improving fabric quality by detecting all fabric

defects immediately during the production to

reduce the cost and meet the manufacturers’ needs.

. Creating timely, statistical product data that enables

the manufacturers to design and improve the future

plans of the factory.

. Developing a methodology to extract defect features

from various fabrics using fast Fourier transform

(FFT) and cross-correlation techniques (CCTs).

. Developing a methodology to optimize the main

important detection parameters.

. Designing a full laboratory prototype to demon-

strate the utility of the combined hardware/software

capabilities as a proof-of-concept.

Technical implementation

Fourier transform

According to the Fourier theorem, any signal can be

represented by the sum of sine and cosine waves with

various amplitudes and frequencies. The tool to do that

is well known as a Fourier transform (FT). The input of

the transformation represents the image spatial domain

while the output of the transformation represents the

image in the Fourier or frequency domain where each

point represents a particular frequency contained in the

spatial domain image. The important property is that

regular spatial pattern information becomes obvious in

Fourier-transformed images.

FT transforms the image encoded as luminance

values of pixels. Because such values are spatially

sampled, we use discrete Fourier transform (DFT), the

digital implementation of Fourier transform. The sam-

pled image does not contain all frequencies forming the

original image before its acquisition. Therefore, to lose

as little information as possible, the Shannon theorem

must be fulfilled as follows: the sample frequency must

be twice as much as the higher frequency of interest.

DFT transforms an M�N image into another

M�N image. Without loss of generality, we will con-

sider square images, of size N�N. In our application,

ƒ(x,y) is the gray level at pixel coordinates (x,y) in the

original image of size N�N (spatial domain). For fre-

quency variables a,b¼ 0, 1, . . . . . . . ,N� 2, N� 1, the

DFT F(a,b) is expressed by

F a, bð Þ ¼
X

N�1

x¼0

X

N�1

y¼0

f x, yð Þ � e�j2� axþbyð Þ=N ð1Þ

where the exponential term is the basis function

corresponding to each point F(a,b) in the Fourier fre-

quency domain. In the frequency domain, the digital

image is described as a periodic function where its

DC component is defined as the mean value of the

waveform. Moreover, the DC component of an image

is the average value of all pixels (the center of the spec-

trum). Thus, 1/N2 F(0,0) represents the DC-component

of the image which corresponds to the average lumi-

nance while F(N-1,N-1) represents the transform at the

highest frequency. It is shown that F(a,b) is periodic,

with period N�N.

An important property of two-dimensional FT is its

ability to restore the processed image from the fre-

quency domain to its spatial domain. This is usually

done using inverse discrete Fourier transform (IDFT).

Thus, in a similar way to the previous equation, the

Fourier image can be re-transformed to the spatial

domain using IDFT as follows

f x, yð Þ ¼
1

N2

X

N�1

a¼0

X

N�1

b¼0

F a, bð Þ � e2j�ðaxþbyÞ=N ð2Þ

Despite its numerous advantages, the long computa-

tional time of DFT is an important drawback. In fact,

one-dimensional DFT has N2 complexity which can be

reduced to N log2 N if we employ FFT. FFT is a DFT

with some reorganization that can reduce the
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complexity of the DFT and save an enormous amount

of time. Similarly, the complexity of two-dimensional

DFT is proportional to 2N3 while using FFT reduces it

to 2N2 log2 N. Therefore, during our application, we

will implement FFT. Figures 1(a) and 1(b) present the

images of the defect-free simulated and real plain fabric

in the spatial domain, while Figures 1(c) and 1(d) show

its Fourier frequency spectrum as intensity functions,

respectively. As it is anticipated, the value of each point

in the frequency spectrum determines the amplitude of

the corresponding frequency. In addition, the vertical

and horizontal lines corresponding to the warp and

weft threads in the original images can be identified.

Cross-correlation technique (CCT)

As mentioned previously, by considering the periodic

nature of woven fabric, it is possible to monitor and

describe the relationship between the regular structure

of the fabric in the spatial domain and its Fourier spec-

trum in the frequency domain. Presence of a defect over

the periodical structure of woven fabric causes changes

in its Fourier spectrum. By comparing the power spec-

trum of an image containing a defect with that of a

defect-free image, the shifts in the normalized intensity

between one spectrum and the other could signify the

presence of a defect.

In our work, the basic principle is to compute a set of

seven textural features in a sliding window (sub-image).

Then, we search for the significant local deviations in the

feature values from the entire image. Such textural fea-

tures are extracted from the weft and warp diagrams

of the Fourier frequency spectrum of the sub-image.3–5

As the information about weft yarns appears in the

vertical direction fy while the information about warp

yarns appears in the horizontal direction fx, the seven

features are extracted as follows

P1 ¼ F 0, 0ð Þ
�

�

�

� ð3; 4Þ

P3 ¼ fx1 ð5; 6Þ

P5 ¼ F 0, fy1
� ��

�

�

� ð7; 8Þ

P7 ¼
X

fy1

fyi¼0

F 0, fyi
� ��

�

�

� ð9Þ

where feature P1 represents the image average light

intensity that characterizes the fabric structure (dens-

ity) irregularity. Features P2, P3, and P4 detect

changes in the vertical or warp direction, whereas P5,

Figure 1. FFT implementation on simulated and real plain fabric images.
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P6, and P7 detect changes in the horizontal or weft

direction. The features P4 and P7 analyze the region

between the central peak, the first harmonic frequency,

and the first peak because higher harmonic frequency

components are significantly distorted in the real

environment.

To obtain the reference figures, the average feature

correlation coefficient of a fabric image free of defects is

calculated. After that, a possibly defective image is

scanned or sampled in sub-images of determined size

and step. Again, the average feature correlation coeffi-

cient of each sub-image is also calculated. If the calcu-

lated value of the sub-image feature correlation

coefficient is smaller than that of the defect-free

image, it means that such sub-image has a defect. For

instance, we can represent it on the original image with

a red overlay.

An image of the simulated fabric containing a defect,

a stain, is chosen to illustrate the variation in the coef-

ficient of feature correlation as shown in Figure 2(a). In

addition, Figure 2(b) shows the defective area inside the

image while it is surrounded by red squares. Each one

represents a sub-image of a smaller average correlation

coefficient than that of the defect-free image.

Important modification

The implementation of all researchers using FFT and

cross-correlation (sliding window) to detect woven

fabric defects was found to be very similar. Throughout

the research, the obtained results were usually poor with

various detection errors. Also, the images of the real

fabric were always of poor quality. In addition, there

are fuzziness and confusion during the mathematical

Figure 2. The implementation of the technique on a simulated plain image exhibiting a stain.
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calculations of some important detection factors such as

the coefficient of feature correlation. Moreover, there was

no answer to different important questions related to the

parameters which should be considered during defect

detection. For instance, what are these parameters? Is it

possible to optimize them? What about noise?

In our work, the major improvement or modification

is that we introduce a comprehensive study for fabric

defect detection using FFT and cross-correlation to

obtain robust detection results, remove any confusion,

and answer the questions raised above. To do that, we

first determine the most important parameters during

the process of defect detection and then optimize each

of them, including noise. Also, a level selection filter is

developed to minimize as much as possible the detec-

tion errors.

Fabric images

As much as possible, good quality images must be used.

Such quality facilitates a correct feature extraction,

which consequently enhances the analysis stage.

Therefore, the acquired images should have high reso-

lution, be of a suitable format, and have a high con-

trast. Moreover, they should be focused with minimum

noise and/or rotation. In addition, it is useful to imple-

ment the detection technique firstly on synthetic (simu-

lated) images to determine and optimize the most

important detection parameters.3,4 The simulated

image we use first is an image free of defects as illu-

strated in Figure 1(a). From this image, we generate the

other images which contain the most major defects. The

chosen major defects are as follows: hole, oil stain,

float, coarse-end, coarse-pick, double-end, double-

pick, irregular-weft density, miss-end, and miss-pick.

These defects represent all possibilities regarding the

expected defect type, size, and direction i.e. warp direc-

tion, weft direction, and/or both (area).

Obviously, after applying the proposed procedure on

simulated fabric images, we should examine it on dif-

ferent images of real plain fabric. Thus, a flat scanner is

used to capture various plain fabric samples containing

different types of defects. As our object is to automate

the visual inspection, the minimum level of resolution

during our work is set to 300 dpi (the actual resolution

limit of human vision).6 Then, it was increased grad-

ually by a step of 200 dpi to 1300 dpi. Finally, the

acquired images are stored in 256 gray levels through

matrices of size 500� 500 pixels.

Strategy of implementation

The procedure of performing our proposed technique

passes through three stages or phases to ensure robust

final results. Within the first (training) stage, an

inspection of the simulated fabric image free of defects

takes place. The main objective here is to calculate the

feature important parameters, for instance, the extreme

values or peaks. Then, these values are used to choose

the first threshold. During the second (testing) stage,

several fabric images having pre-determined defects

are used. The purpose is to highlight the well-known

existing defects. In addition, only the features of inter-

est (the seven features) are calculated. The amount by

which these features lie below the value of the chosen

threshold in the training stage is considered as a defect

measurement. Then, these optimized values are used

(with another fine tuning) for real fabric images to

show the success of the technique. In these two

stages, we use images containing pre-determined

defects. It means that the severity, the dimension, and

the orientation of all defects are well known. But as

fabric defects are distributed randomly and dynamic-

ally, a perfect robust automation of the visual inspec-

tion process requires unsupervised defect detection. It

refers to the detection of unknown class of defects for

which there is no training. Therefore, the objective of

third stage is to detect all types of defects regardless

their size or position inside the fabric. Moreover, the

technique will be examined with plain fabrics of differ-

ent colors. Finally, our proposed algorithm, technique,

and all associated optimizations were accomplished by

implementing several Matlab and Scilab scripts.

Defect detection parameters

This part of our research work helps us to develop an

appropriate method for choosing parameter settings

and fine tuning the performance of the used algorithm.

Such parameters along with their optimization methods

are demonstrated as follows:

Acquisition resolution

It is well known that we cannot obtain high quality

products from poor raw material. The digital image of

the fabric is to be considered as the raw material of our

work. The importance of this parameter stems from:

. It is responsible for demonstrating the statistical fea-

tures differences.

. It determines also the minimum defect size that

could be detected.

. This item with fabric width determines the number

of cameras required for online detection systems.

Sub-image size

This parameter may be considered as the most import-

ant one because it represents the segmentation stage in
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our image processing procedure. The next criteria pre-

sent some critical considerations during optimization of

this parameter:

. Both minimum and maximum size (in pixels).

. The relationship between the size in the warp direc-

tion and the size in the weft direction.

. How can we move between the minimum and max-

imum sizes?

. What about defect type?

In the beginning, we had to start from where others

ended. In Tunák and Linka,4 the size of 50� 50 pixels

was determined to detect fabric defects. Therefore, it is

estimated that this value could be considered as an aver-

age for the sub-image size. In addition, the average equals

(N/10), where N equals 500 pixels. Consequently, both

minimum and maximum values could be considered as

functions of N so that the maximum value is N/5 and the

minimum is N/15. The decision has been made based on

approximately doubling and halving the average value.

Also, when the sub-window size is out of those selected

limits, the performance of defect detection is very poor.

The relation between the size in the warp direction

and the size in the weft direction is another important

factor. In fact, there are two possibilities: either they are

equal or not. During our first trials, we implemented

different sizes in both directions but we obtained many

detection errors rather than a large number of images

with no errors. In addition, the main image should be

sub-imaged so that the difference between sizes is an

equal integer in both the weft and the warp directions.

Finally, the suitable sub-image size will be optimized

for each defect type and then for all types simultan-

eously. Figures 3(a) and 3(b) illustrate the optimization

results (a stain has always been chosen).

Scanning step

Our objective during the scanning of the main fabric

image is to cover the whole area of the image. This

could be achieved for all step values from 1� 1 pixel

to those values when the scanning step is equal to the

sub-image size. Logically, optimization in this case

means the choice of the higher step value to minimize

the total detection time and the intensive overlapping as

well. In addition, the step limits during the optimization

are related to the limits of sub-window size. Therefore,

for each defect type, the scanning step and the

sub-image size will be optimized simultaneously.

Figure 3. Optimization of sub-window size for a simulated image exhibiting a stain.
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In addition, we will study the relationship between the

two parameters to determine mathematically the shape

of this correlation, if possible.

Noise level

In the weaving process, it is expected that during the

running of the weaving machines vibrations will result

in slightly defocus images. It means that the captured

images will be rather noisy and this situation influ-

ences the detection reliability. Thus, the simulation of

such real circumstances (noisy images) increases the

credibility of our implemented technique. Such simula-

tion is obtained through adding four different levels of

Gaussian noise to all (simulated and real) fabric

images. Consequently, defect detection is implemented

on the noisy images. It is absolutely reasonable to opti-

mize the higher level of noise which has no effect on the

detection results. This optimization helps us to adjust

the actual situation during the weaving process.

Feature correlation coefficient value

This parameter assesses how good a set of features is

for implementing our technique. It is estimated that the

maximum used value should be smaller than 1.0 (the

case of exact correlation). Thus, different coefficient

correlation values (0.7, 0.75, 0.8, 0.85, 0.9, 0.95, and

0.99) are used during the optimization of this param-

eter. As it is found that very fine tuning has no effect on

detection credibility, the step between each two

used coefficient values is 0.05. Our object is to define

only one or two values suitable for all detection

circumstances.

Detection time

Feasibility of the considered technique depends on the

time it requires. Although we will implement the tech-

nique for online inspection where fabric production

speeds are slow when compared with those of offline

inspection, detection time still represents an important

parameter in our study. Certainly, the detection time

for each case study is different and depends also on the

computer that is used. Studying the influence of each

detection parameter on the total detection time helps us

to choose one optimum value if several values are

available.

Technique reliability

Technique reliability is very important as it determines

its performance or efficiency. In this work, we will use

the false alarm rate to characterize such reliability. A

false alarm (false positive) occurs when our technique

highlights an image area as a defect when it is not a

defect. Moreover, the false negative occurs when the

technique fails to highlight an existing defect. False

detection rate is calculated as the total number of

images containing false results divided by the total

number of processed images. As it is found that most

detection errors are positive (to reduce false negatives,

we lower the threshold), we developed a level selection

filter to avoid this drawback. For the sake of clarity,

implementation of such a filter will be described con-

sidering the actual graphical output of our program.

During the process of defect detection, as explained

before, if there is a defect, it will be highlighted by over-

lapping red square overlays. Each square corresponds to

the test of one sub-image. In addition, we are supposed

to get redundant information, provided that original

images are sampled with overlapping sub-windows.

With a proper choice of the sample step, each pixel

appears in four sub-images. Our level selection filter

counts in how many defective sub-windows the pixel

appears. It can appear from zero times to four times.

Therefore, we can obtain four levels as follows:

. Level 1: an area is scanned and consequently

counted one time.

. Level 2: an area is scanned and consequently

counted two times.

. Level 3: an area is scanned and consequently

counted three times.

. Level 4: an area is scanned and consequently

counted four times.

Based on the filter, fine tuning takes place to deter-

mine the degree of accuracy for defect detection. For

instance, if level 4 is considered, we are sure that the

area has a defect while level 1 could be considered as a

false alarm. The area in level 3 is to be considered also

as a defect whereas the area in level 2 needs more train-

ing to decide if it will be considered as a defect or not.

Figure 4(a) shows the implementation of the filter on

a simulated fabric image containing a stain while Figure

4(b) illustrates the color map of the filter result. Each

sub-image has a different color. The overlapping

between two or more sub-images results in another dif-

ferent color (usually darker). From Figure 4(c), the

exact highlighting of the defect is obvious.

Results and discussion

Defect detection for simulated fabric

Due to the various factors affecting the results when

implementing our detection technique, a large number

of images are obtained. From these results and dur-

ing the optimization of the procedure when using
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the simulated images, it is found that the sub-window

size and the scanning step are the most important detec-

tion parameters. In fact, for each defect type, it is found

that many values are suitable to detect the defect. What

is important here is to find only one or two values for

each parameter suitable to detect all defect types. It is

found that the detection errors are increased if low and/

or high values of sub-window size and scanning step are

used. Moreover, the suitable values of the these two

parameters are between a 50� 50 to 65� 65 pixel

sub-window size and a 20� 20 to 30� 30 pixel scanning

step. The value of the feature correlation coefficient

threshold plays an important role in the success of the

implemented technique. The use of lower coefficient

values increases the detection errors especially in the

case of low scanning values. Finally, our technique is

able to detect all defects even with noise. Therefore, to

ensure optimum defect detection for all defect types, the

size of the sliding window is set to 60� 60 with a

30� 30 pixel scanning step while the correlation coeffi-

cient is set to a value 0.8. In addition, level 3 is found as

the optimum level when the level selection filter is

implemented. Figure 5 shows the success of the tech-

nique in detecting all defect types in the case of a simu-

lated plain structure.

Defect detection for real fabrics

The optimization results in the previous step are used

here during the implementation of the technique on

real fabric images. It is found that the image acquisition

resolution is another important detection parameter.

The best detection results are obtained at 1000 dpi reso-

lution. The pre-optimized detection parameters are fine

tuned for the real plain structure. It is found that to

obtain the optimum detection results, the size of the

sliding window needs to be set to 50� 50 with a

25� 25 pixel scanning step for some defects and

60� 60 with a 28� 28 pixel scanning step for the other

defects whereas the correlation coefficient value needs to

be set to 0.75 and 0.8. Also, the different added noise

levels have a subtle effect on the detection results espe-

cially in the case of higher levels of noise. During the

implementation of the level selection filter, it is found

that level 3 is the optimum one. Through these results,

our defect detection technique is able to detect each

fabric defect of a 1.5mm size with a 100% detection

rate. Figure 6 shows the success of the technique in

detecting all defect types in the case of real white plain

fabric whereas Figure 7 shows the implementation of the

level selection filter at level 3 on the same fabric images.

Figure 4. The filter applied on a simulated fabric exhibiting a stain.
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Defect detection for real colored fabrics

Rationally, the white plain fabric is chosen in our study

because, on the one hand, the vast part of raw woven

fabric exists in this form. On the other hand, the

real fabric images should resemble the real images.

To prove the utility of the procedure used and as

one step in the unsupervised stage of fabric defect

detection, colored (black) fabric images acquired

under the same optimized resolution (1000 dpi) are

used. Figure 8 illustrates the success of the technique

to detect all defects.

Figure 5. The implementation of the detection technique on various simulated fabric images contain defects.
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Detection time

After the optimization of all the detection parameters

as illustrated above, the detection time is measured as

shown in Figure 9. During the measurement, the max-

imum optimized value for each detection parameter is

considered. It is found that the measured time is

approximately 0.7 seconds for all defect types. During

this time, an image of 500� 500 pixel acquired at

1000 dpi is scanned which is equivalent to 1.27 cm of

fabric (the available cameras acquire up to 30 cm of

fabric width at such resolution). Consequently, the

detection technique is able to inspect at least one

meter of fabric each minute. Industrially, high speed

weaving machines run at 1000 picks/min while most

plain fabrics are produced at 25–30 picks/cm weft

Figure 6. The implementation of the detection technique on real fabric images.
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density. This means that the productivity of the weav-

ing machine is 33–40 cm/min. Therefore, the speed of

the technique is two to three times the machine

productivity.

The proposed prototype

A prototype is proposed to examine the technique in

real-time (on the weaving machine). The fabric images

are acquired under a source of sufficient illumination by

one or more cameras. The camera is synchronized to

the fabric motion and used to acquire high-resolution,

vibration-free images of the fabric under construction.

A central processing unit (computer) is employed for

processing the acquired images using our software. The

results of the processing are used to detect fabric

defects. Also, it is used to take actions for reporting

and correcting these defects to replace or remove

Figure 7. The implementation of the third level selection filter on real fabric images.
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these parts from the production line. The prototype has

to be robust. Thus, it should adapt automatically and

achieve consistently high performance despite irregula-

rities in illumination and accommodate uncertainties in

angles, positions, etc. Figure 10 shows the schematic of

the proposed vision prototype. It takes fabric images

continuously using one line-scan camera that, with the

provided optics, has an ability to acquire a 0.3 meter

wide image at 1000 dpi resolution. In addition, all

detection parameters are set to their optimized values.

Again, it is found that our online automated fabric

inspection prototype is capable of identifying the exist-

ing fabric defects.

Conclusions

This research work introduces a comprehensive study

using FFT and CCTs to detect the structural defects of

plain weaves in gray levels. To obtain robust detection

results, we first use simulated fabric images to

Figure 9. Measured detection time.

Figure 8. The implementation of the detection technique and the filter on real black fabric images.
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determine the most important parameters during the

process of defect detection and then optimize each

one, even in the case when there is noise. In addition,

a level selection filter with four different accuracy levels

is developed to minimize as much as possible the detec-

tion errors and to obtain acceptable results for the pro-

cess. Several results of the proposed technique for the

simulated and real plain fabric structures with the most

common defects are presented. It is found that for

simulated and real fabric images, the optimum defect

detection for all defect types is obtained when each

detection parameter is set to only one or two values.

Such values are approximately the same for both simu-

lated and real fabric images. Also it is found during the

implementation of the level selection filter that level 3 is

the optimum level for both simulated and real fabric

images. Moreover, our proposed detection technique is

able to detect each fabric defect of a 1.5mm size with a

100% detection rate even with the deferent added noise

levels. Finally, as the technique is fast and corresponds

to the speed of the weaving machine, it could be used

for online fabric defect detection. To verify the success

of the technique in real-time, a vision-based fabric

inspection prototype that could be accomplished on-

loom to inspect the fabric under construction with

100% coverage is proposed.
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