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Abstract

With the application of new forming techniques (hydroforming, incremental form-
ing), it is necessary to improve the characterization of the formability of materials
and in particular the influence of strain rate. This paper begins with the charac-
terization of material behavior of an aluminum alloy 5083 at high temperatures. To
describe its visco-plastic behavior, Swift’s hardening law is used and the correspond-
ing parameter values are identified. Then, two different approaches are introduced
to construct FLDs (forming limit diagrams) of this alloy sheet and evaluate the ef-
fect of the rate-sensitivity index on its formability. The first one is theoretical (the
M-K model), and an algorithm is developed to calculate the limit strains by this
model. In the second approach, the Marciniak test is simulated with the commer-
cially available finite-element program ABAQUS. Based on FEM results, different
failure criteria are discussed and an appropriate one is chosen to determine the onset
of localized necking. With the material behavior data corresponding to AA5083 at
150°C', parametric studies are carried out to evaluate the effect of the strain rate
sensitivity index. The comparison of results by these two approaches shows the same
tendency that an improvement of the formability with increasing strain rate sensi-

tivity is observed. Finally, by consideration of the compensating effects of the strain
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hardening and rate sensitivity indices, the FLDs of this sheet at 150°C, 240°C and
300°C are determined and compared. Results show that the formability of AA5083
seems not to be improved up to a certain temperature (between 240°C and 300°C),

above this temperature, the formability is greatly enhanced.

Key words: Forming Limit Diagrams (FLDs); Marciniak test; strain rate

sensitivity

1 Introduction

The sheet metal forming receives more and more application in the domains of
automotive and aeronautics. Especially with the innovative techniques, such
as hydroforming and incremental forming, the manufacture of complex parts
with low tools cost can be realized. These processes are generally performed
in the intermediate range of strain rates (1072 to 500s~"). However, in sheet
metal forming operations, the sheet can be deformed only to a certain limit
that is usually imposed by the onset of localized necking, which eventually
leads to fracture. A well-known method of describing this limit and predicting
the occurrence of necking is the forming limit diagrams (FLDs) introduced
by Keeler and Backofen in the 1960s [Keeler and Backofen(1963)]. In FLDs,
a FLC (forming limit curve) represents a plot of major and minor available
principal strains in the plane of the deformed sheet corresponding to the oc-

currence of the necking.

The determination of FLDs is a complex task, and research on FLDs has
always been the subject of extensive experimental, theoretical and numerical
studies. For experimental determination of FLDs, two main kinds of forming
methods have been developed, the so-called out-of-plane stretching (e.g., the
Nakazima test, the Hecker test) and the in-plane stretching (e.g., the Marciniak

test). By forming a number of sheet specimens with varying widths, different



strain states are obtained. The specimens are deformed to fracture and the
strain state is evaluated just outside the fracture zone by the circle grid method
or the digital image correlation technique. Finally, by connecting all the limit

strain points, the FLC is drawn.

To effectively study plastic instability phenomenon and simplify the deter-
mination of FLDs, research has been mainly focused on development of the
mathematical models for theoretical determination of FLDs. As early as in
1952, Swift [Swift(1952)] developed a criterion for predicting the onset of dif-
fuse necking with the assumption that plastic instability occurs at a maxi-
mum load. However, in industrial stampings, the maximum allowable strain
is determined by the localized necking rather than by diffuse necking. Hill
[Hill(1952)] proposed a localized necking criterion based on the well-known
zero extension assumption (for a negative minor strain), i.e., the localization
band develops normal to the direction of zero extension in a sheet metal. On
the basis of the experimental investigations concerning the strain localization
of some specimens subjected to biaxial stretching, Marciniak and Kuczynski
[Marciniak and Kuczynski(1967)] introduced in 1967 imperfections into sheets
to allow necking to take place (known as the M-K model). The imperfections
can be caused by factors such as local grain size variation, texture, alloys el-
ements, thickness variation, etc. Today, the M-K model has been widely used
to predict FLDs, and the original M-K method has undergone great improve-

ment.

With increasing application of computational techniques, numerical pre-
dictions of FLDs have become more attractive and the finite element
method (FEM) has been selected to simulate the Nakazima and Marciniak
tests. In analyzing the simulation results for the onset of necking, it
is essential to establish a failure criterion. One of the pioneers was
Brun [Brun et al.(1999)Brun, Chambard, Lai, and De Luca] who has ana-

lyzed thinning of sheets in order to determine the onset of necking by the



Nakazima method and construct FLDs for whole range of strain ratios.
Basing on the same test, Geiger and Merklein |Geiger and Merklein(2003)|
considered that the gradient of major strain changed rapidly when lo-
calized necking occurred. Using the limiting dome height (LDH) test,
Narasimhan [Narasimhan(2004)] has predicted the onset of necking by
the thickness strain gradient across neighboring regions. Additionally,
the LDH test was carried out by Zadpoor et al. with ABAQUS into
which an improved M-K model with Storen-Rice’s analysis was imple-
mented [Zadpoor et al.(2007)Zadpoor, Sinke, and Benedictus|. Predicted re-
sults showed that while the original M-K model considerably misspredicts the
limit strains, a combination of the M-K model and Storen-Rice’s analysis can
predict the dome height with good accuracy. Based on the Marciniak test,
Petek et al. [Petek et al.(2005)Petek, Pepelnjak, and Kuzman| put forward a
new method for the evaluation of the thickness strain as a function of time
as well as the first and second time derivative of the thickness strain. They
proposed that the maximum of the second temporal derivative of thickness
strain corresponds to the onset of necking. Volk [Volk(2006)| proposed a new
approach for identifying the onset of localized necking by experimental and
numerical methods. With calculated strain rates, the identification was carried
out with the two following main effects: increase of points number with high
strain rate (in the localization area) and decrease of the strain rate outside
the localization bands. From the above literature, it is observed that FLDs
strongly depend on the criteria chosen, therefore, an appropriate failure crite-

rion is a key to numerical determination of FLDs.

Although FLDs have been successfully used and proved to be a powerful tool
in sheet metal forming analysis, there are still shortcomings to be overcome.
Firstly, to this day, there is not precise standard for the determination of FLDs.
Moreover, it has been found that such forming limits change significantly with

alterations in the strain path [Arrieux(1990)]. To remove this limitation, a



stress-based FLD as an alternative has proposed [Stoughton(2001)].

Additionally, relatively little attention has been paid to the models of FL.Ds
taking the strain rate sensitivity into account. Strain hardening and strain rate
sensitivity have been identified as important factors for determining forma-
bility of sheet metal and alter substantially the level and shape of FLCs.
Experimentally, Laukonis and Ghosh [Laukonis and Ghosh(1978)| found that
strain rate effect is very sensitive for AK steel, especially for the deformation
mode near biaxial stretching, while aluminum seems to be insensitive to strain
rate. Percy [Percy(1980)]| analyzed the influence of strain rate on FLDs by ex-
plosive forming and concluded that FLDs level was dependent on the strain
state and forming rates. Broomhead et al. [Broomhead and Grieve(1982)] per-
formed bulge forming over a range of strain rates from 1073 to 70s~! and con-
cluded that the position of FLDs under biaxial tensile conditions decreased
with increasing strain rate. These contradictory experimental results under-
line the difficulty in determining the onset of necking in the case of dynamic
experiments. Hence, it is necessary to establish a rigorous procedure and carry
out more experimental investigations about forming behavior at corresponding

strain rates.

Theoretically, research on the rate sensitivity on FLDs has been car-
ried out by several authors using the M-K model. Hutchinson et
al. [Hutchinson et al.(1978)Hutchinson, Neale, and Needleman| predicted the
FLDs with von Mises’ yield function taking rate sensitivity into
account. Their work has given important contributions to the in-
sight into the influence of constitutive equations and plasticity the-
ories on FLDs. Lee and Zaverl |[Lee and Zaverl(1982)] computed en-
tire FLD based on the rate-dependent flow theory under proportional
loading with the assumption of zero extension. Barata Da Rocha et
al. [Barata da Rocha et al.(1984-1985)Barata da Rocha, Barlat, and Jalinier]
predicted the strain path-dependent FLDs by considering rate sensitivity and



using Hill’s theory of plastic anisotropy. Nie and Lee [Nie and Lee(1991)] cal-
culated FLDs for rate sensitive materials by applying the isotropic hardening
model of the flow theory for the anisotropic sheet metals. Graf and Hosford
[Graf and Hosford(1990)] analyzed the effect of rate sensitivity on the right-
hand side of FLDs with the Logan’s and Hosfords’ anisotropy yield criterion.
Today, for the right-hand side of the FLDs, the analysis has been quite suc-
cessful, whereas to the left-hand side, because of the complex algorithms and

lengthy calculations, relatively little attention has been paid.

Therefore, FLD’s standardized determination, its new representations, its sen-
sitives to strain paths and strain rate are still today’s research points. Exper-
imental results by tensile test at elevated temperatures (150°C', 240°C and
300°C') show a strain rate dependence of aluminum alloy 5083 on tempera-
ture. In this paper, we are interested in the effect of this strain rate dependence
on its formability. This effect is investigated by theoretical and numerical ap-
proaches. Firstly, an algorithm is developed to calculate the limit strains with
the M-K model. Then, the Marciniak test is simulated for this rate-dependent
material with the commercially available finite-element program ABAQUS.
Finally, based on the above two methods, the effect of rate sensitivity index
on formability is evaluated and FLDs of AA5083 sheet at various temperatures

are determined.

2 Strain rate sensitivity of aluminum alloy 5083

Increased interest in the production of lightweight vehicles to improve
fuel economy has resulted in an interest in utilization of aluminum al-
loys. In particular, because of its relatively good formability and corro-
sion resistance, the aluminum-magnesium alloy 5083 receives more and more
application in automotive and aerospace industry. Previous studies have

shown the strain rate dependence of the alloy at elevated temperature



[Diot et al.(2006)Diot, Guines, Gavrus, and Ragneau|. Hence in this paper,

the multiplicative Swift law
7= K(z +8)"z" (1)

has been chosen to describe the visco-plastic behavior of this AA5083 alloy,
where € and Z are the equivalent plastic strain and the equivalent plastic
strain rate, respectively. Here, n and m are the strain hardening and strain

rate sensitivity indices, and K and g, are material parameters.

To characterize the high temperature deformation behavior of AA5083, tensile
tests have been performed on a high-speed servo-hydraulic testing machine
(DARTEC, 20kN capacity) at temperatures of 150°C', 240°C" and 300°C' and
the constant crosshead speeds of 1.56, 15.6 and 156 mm/s (corresponding to

intermediate strain rates from approximately 1072 up to 10 s~'), respectively.

By the tensile tests, the true stress-true strain curves at 150°C', 240°C' and
300°C" are obtained as shown in Fig.1, Fig.2 and Fig.3, respectively. With the
least squares method, the corresponding parameter values of above constitu-
tive material model have been identified to fit experimental data as shown in
Tab.1. Here, K, n and m are considered to be constant for a given temper-
ature and m is determined basing on the stress-strain curves with the three
speeds at this temperature. One can observe that AA5083 exhibits little strain
rate sensitivity at 150°C' (m = 0.0068), while this sensitivity clearly augments
with increase of temperature. On the contrary, with increasing temperature
the work hardening index n decreases. The corresponding fitting curves are
compared with experimental stress-strain curves in Fig.1, Fig.2 and Fig.3,

respectively.

At 150°C', it is observed that the curves identified with Swift’s law are in
good agreement with experimental data. On the contrary, at higher tem-

peratures, some divergences between experimental and identified curves can



be observed, especially for lower forming speeds. The experimental curves
decline from the peak as strain proceeds, while Swift’s fitting curves al-
ways give increasing trends. The declination of flow stress with strain af-
ter reaching the peak stress is mainly attributed to material softening
[Lee et al.(2004)Lee, Sohn, Kang, Suh, and Lee|. Of particular interest for us
here is the effect of strain rate sensitivity on the forming capacity of sheets,

therefore, in this work, softening effect is not considered.

3 M-K theoretical model

3.1  Brief description of the M-K model

The typical M-K geometrical model is shown in Fig.4. The imperfection is
geometrically represented by a long groove which is characterized by an initial

imperfection factor

fU = <1, (2)
where e and ej) are the initial sheet thicknesses in zone a and zone b, and

throughout the analysis the indices a and b are used to designate the zones

outside and inside the groove, respectively.

In the M-K original model introduced by Marciniak and Kuczyn-
ski  [Marciniak and Kuczynski(1967)], the groove is  perpendicu-
lar to the principal stress, i.e.,Wy, = 0. Later, Hutchinson et al.
[Hutchinson et al.(1978)Hutchinson, Neale, and Needleman)] extended
this model to strain paths in the negative minor strain region based
on a groove inclined at an angle W, with respect to the princi-
pal axis-2 (Fig.4). They put forward that the limit strains un-

der uniaxial tension varied with initial groove orientation, as well



as current orientation. For anisotropic materials, Barata Da Rocha
[Barata da Rocha et al.(1984-1985)Barata da Rocha, Barlat, and Jalinier|

also concluded that in most cases the critical strains were achieved for initial
groove orientations different from zero. For the right side of FLDs, many
researchers achieved critical strains with the simplistic model ¥4 = 0. Banabic
and Dannenmann [Banabic and Dannenmann(2001)| applied Hill’s 1993 yield
criterion in the M-K model and analyzed the influence of the yield curve shape
upon the right-hand side of FLDs. Avila and Vieira [Avila and Vieira(2003)]
developed an algorithm for prediction of the right-hand side of FL.Ds based
on the M-K model. Five different yield criteria (von Mises’, Hill’s 1948, Hill’s
1979, Hosford’s and Hill’s 1993) were implanted into this algorithm to analyze

their influence on FLDs.

In the following work, the numerical analysis of the M-K model for both cases
(¥y = 0 and ¥, # 0) is illustrated. For the left-hand side of FLDs, the case
Uy # 0 (general case) is considered, while ¥y = 0 (particular case) is for the

right-side of FLDs.

Thanks to the sheet plane quasi-isotropy of AA5083, von Mises’s yield function
under plane stress assumption (of; = ob; = 0% = 0) can be used to model

this sheet behavior
(Ek)2 = (U]f1)2_01f10§2+ (052)2+3(U]f2)2, (3)

where @ is the equivalent stress, 0¥, 0%, and o¥, are stress tensor components,

k =a (orb).

The sheet metal obeys Levy-Mises’ flow rule, which can be expressed in the

form
. 0oF
Agj; = 20—
doy;

where Aef; and Az* are the strain component increments and the equivalent

AzF (i,j=1,2) , (4)

plastic strain increments, respectively, and A refers to a change correspond-



ing to a small time increment At¢. In addition, incompressibility condition is

assumed during this analysis.

In the M-K model, the same force in the direction-n (Fig. 4) is transmitted

across zones a and b. Therefore, the equilibrium equations are
o? e =00 e, ole® = ol e, (5)

b

where €%, €’ are the current sheet thicknesses.

The strain in zone b, parallel to the groove, is constrained by the uniform zone

a so that the compatibility condition is

Aej, = Asi’t. (6)

3.2 Particular case (positive minor strain)

The initial imperfection is assumed to be perpendicular to the principal axis-
1,¥, = 0, in the particular case considered here. The groove reference and

main axes system coincide for both zones. The egs.(5) and (6) reduce to

ofe’ = ‘711)161) (7)

and

Aghy = Achy, (8)

For the sake of convenience, the notations

PAYC: O afy 2041
P Agk.’ k 2 k
£l o1 +p (9)
ol AzF 20"
k [ ]_ — Qk + Qk 2 (bk - -
==V (@ "= =5

10



related to von Mises’ yield function are introduced.

The equivalent, strain rate can be expressed in terms of the strain and time

increments as
-k Agk

N (10)

With Swift’s hardening law (1), the flow rule (4) and the eqgs.( 8-10), the eq.(7)
can be expressed as
m— p)™ !

(o + 2 + ®*Act,)" 7(2(;;7:)_ 1;m =f (Eo +zb+ @bAs’{l)" 7(2(;;)_ e (11)
where f is the current imperfection factor. Equation (11) shows that with
the disappearance of time increment, the level of strain rate has no effect in
the M-K model. Therefore, only the rate-sensitivity vis-a-vis the parameter m

could be analyzed for a given strain rate.

Under the assumption of proportional loading in zone a, the strain path is
characterized by a constant strain ratio p®. The parameter Ac{; is known.
Therefore the terms QF, ¢* and ®* are constant for a certain p® and can
be easily calculated. For zone b the corresponding quantities vary with the
strain increments but all can be expressed as functions of Ae%, by use of the

compatibility condition.

To calculate Ag?,, the function

b — —a a a \n 20" -1 " — —b b b\ (Pb m
F (A&H) = (60 +e"+ P A&H) m _f (50 +e + @ A511) E

(12)
is used. To numerically solve the equation F (Ae'{l) = 0, Newton-Raphson’s
method is used. The (i + 1)th iteration step is

F((aeh)")

Acb, ) _ Aeb, W__ . 13
(Ach)™ = (Aeh) (o)) (13)

When absolute values of the increment (Ae’{l)(z) become less than an error

11



E, the solution of A, is achieved. Then Az’ is calculated. Thus, for every
increment Ag?, a strain increment Az’ is obtained iteratively. Before perform-
ing the next step of the computations, the strains associated with the zone a
and b are updated by adding the corresponding increments. The computation
is stopped when the failure criterion is satisfied (Ag°/Az® > 7) and the corre-
sponding strains €§; and €, at this moment are retained as the limit strains.
This point corresponds to a particular strain path defined by the coefficient p®.
In order to obtain other points on FLDs, the computations described above

must be performed in a loop controlled by this parameter.

3.3 General case (negative minor strain)

In the general case, the initial imperfection is inclined at an angle ¥, with
respect to the principal axis-2. As the inherent model equations are based on

the groove reference system, the calculation of AZ® is more complicated for

\IJO 7£ 0 than for \IJO = 0.

The groove rotation is also updated with the increment of the plastic strain
[Butuc et al.(2003)Butuc, Gracio, and Barata da Rochal, which is described
by

1+ Acy

tan (\Ij + A\I]) = ]_-}-Tga
22

tan . (14)

Using the transformation matrix, the stress and strain states in the main axes
system are changed to the groove system of coordinates. In zone a, there are
not shear stress and strain components, i.e. o, = 0 and Acf, = 0. With
the notation § = 0%, /a?,, the equilibrium conditions (5) and compatibility

equation (6) can be written as

12



(Fo +E* + AFY)"

. (Fo + 2° + A" (Agb)m

(Ag)™ ((:os2 T + Q% sin? \IJ) =f >

. ((3052 ¥ + Qb sin2 W + 2§ sin ¥ cos \IJ)

(Bo + &% + AB%)™ (Agb)m

= =a =a\n
Gotet + A" (AE")™ (2% —1)sinTcos¥ = f >

P ®
- ((Q“ —1)sinWcos ¥ + 4§ (cos2 ¥ — sin? \IJ))
Agb

AN (Sin2 U + p* cos” \IJ) = 250 ((2 — Q”) sin® ¥ 4 (29” - 1) cos® ¥ — 128 sin ¥ cos \IJ) .

There are three unknowns Az%, Q° and § in above three equations, which form

the non-linear system

(

Fy (A2,Q0,5) =0
By (AZ,0Q,6) =0 (15)

Fy (A2,00,6) =0.

\
To solve this system of equations (15), Newton-Raphson’s method is used.
When the absolute values of the increments Az, Q” and § become less than
an error F, the solution corresponding to this increment is achieved. As soon
as the failure criterion is satisfied, the corresponding strain ¢, and ¢4, are
identified as the limit strains. The analysis is repeated for different values of
U, between 0° and 90°, and the limit point on the FLDs is obtained after
minimization of £{, with respect to ¥,. Repeatition of the above procedure

for other strain paths give corresponding points on the FLCs.

The results based on this approach will be discussed in the last section of this
paper. To validate this approach, the numerical simulation of Marciniak test

will be carried out in the following.
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4 Numerical method

4.1  FFE model

In this part, the Marciniak test is chosen to numerically analyze the formability
of sheet metal. The finite-element model for the Marciniak test is composed of
a rigid cylindrical punch with a flat bottom, a die and a deformable sheet. In
addition, a pressure load is directly applied on the sheet as the blank-holder
force (Fig.5). Here, the use of a pressure rather than simply fixing the blank

edge is to be as a counterpart in future experiments.

To assure the occurrence of maximal strains on the central part of the blank,
the specimens are designed especially with a reduced central thickness (1 mm),

compared to the thickness of the sheet (2.0 mm) as shown in Fig.6.

The Marciniak test requires the application of various specimen geometries
for the determination of different strain states, ranging from uniaxial through
plane strain to balanced biaxial. In the present paper, the geometry and di-

mensions of specimen are shown in Fig.7 and Tab.2.

The analysis is carried out with the commercially available finite-element pro-
gram ABAQUS with shell linear elements S4R. Due to symmetrical boundary
conditions, only the quarter of the entire model is simulated. The elasticity of
the specimen is defined with a Young’s modulus of 70000 MPa and a Poisson’s
ratio of 0.3. The constitutive law (1) is implemented into ABAQUS by using
an UHARD user subroutine.

The contact interaction is modeled using Coulomb’s law: friction coefficient
for punch-blank is 0.05; while blank-die friction value is chosen to 0.5. The
speed of the punch during the stamping procedure is 5 m/s.

14



4.2 Failure criterion

Hereafter, we take the specimen No.2 in Tab.2 as an example to illustrate
the analysis process. The rheological parameter values used in this simulation
correspond to the material behavior data of AA5083 at 150°C" with m = 0.01.

These values serve also as a basis for the following parametric studies.

Because the occurrence of the plastic instabilities is determined by localized
necking whose size is of the order of the sheet thickness, the thickness strain
can be used in a local criterion to evaluate the occurrence of necking (CRIT1).
If the necking occurs, a sharp change of thickness strain can be observed, then
sheet metal will suffer drastic deformation (Fig.8). This plastic instability
corresponds to a bifurcation point, i.e. the intersection point of two bifur-
cation branches. When a sharp change of thickness strain cannot be clearly
observed, as shown in Fig.9, a polynomial curve fitting method is employed.
Here, fi(t) and f>(¢) are two 3rd-degree polynomial functions and represent
the fitting curves of the two branches, respectively. Then time coordinate ¢;
of the intersection point is calculated. Based on the FEM results, the major
and minor strains at this moment are obtained by linear interpolation of the
closer calculated strain values. Due to the reduced thickness of the central
part, the maximum thickness strain generally first occurs at the center of the
sheet (Fig.10). Moreover, after the onset of necking, the level of strain remains

constant in the other adjacent elements.

In order to choose an appropriate criterion for the detection of necking,
two additional local criteria are evaluated: maximum second strain derivative
(CRIT2) and equivalent plastic strain increment ratio (CRIT3). For CRIT2,
the occurrence of the sharp variation of thickness strain is considered as
the onset of localized necking and then the second temporal derivative of
thickness strain must present a peak at this moment. According to Petek’s

method [Petek et al.(2005)Petek, Pepelnjak, and Kuzman|, the second tem-

15



poral derivatives of thickness strain are calculated for whole forming time,
and its peak vis-a-vis the process time is evidently defined as the onset of
necking. For CRIT3, the same method as the M-K model is used. First the
average equivalent plastic strain is calculated over all five integration points in
the sheet thickness. When the equivalent plastic strain increment ratio in the
localized element and its adjacent one attains 7, the major and minor strains
in the adjacent one are noted as the limit strains. The same procedure is re-
peated for different geometries and the corresponding limit strains describe
the forming limit curve. The limit strains determined based on these three lo-
cal criteria are represented in Fig.11. The comparison reveals good agreement
between these three approaches. Due to its ease of use, in this paper, CRIT3

is chosen to analyze the onset of localized necking.

In Fig.12, strain paths corresponding to several deformation modes are plotted.
These numerical paths are quasi-linear, which is in accordance with the linear

strain path hypothesis in the theoretical M-K model.

5 Results and discussion

5.1 Determination of an appropriate imperfection factor f

As it is well known, the M-K model is sensitive to the initial imperfection
factor fy. Generally, the value of the initial imperfection factor f; is chosen to
make the best fit between the theoretical results and experimental or numerical
results. Here, in order to choose an appropriate factor, the FLCs by the M-K
model with various f; and by FEM are shown in Fig.13. As it is seen from this
figure, fo has a great influence on the determination of FLCs. By comparison,
when f;=0.998, there is the best agreement between the FLCs determined by

the theoretical and numerical approaches. The detail comparison is displayed

16



in Fig.14. Hence, for the studied material, f, is set to 0.998.

5.2 Effect of the strain rate sensitivity index m on FLCs

To evaluate the effect of the strain rate sensitivity index on FLCs, a study is
performed with a changed value of m in Swift’s hardening law. For the M-K
model, five different values of m are used while for FEM we choose m = 0.01

and m = 0.04.

As illustrated in Fig.15, the influence of the strain rate sensitivity (m) on
FLCs determined by the M-K model can be clearly observed: a high m value
produces a high level of FLC. However, the left-hand side is more sensitive to
the parameter m than the right-hand side of FL.Cs. For example, in comparison
with m=0.01, the formability for m=0.04 is enhanced by 73%, 67% and 12%

under uniaxial tension, plane strain and equi-biaxial stretching, respectively.

Numerical FLDs determined by FEM in Fig.16 display the same tendency as
the M-K model: increase of the strain rate sensitivity coefficient improves the
formability of the modelled material. Moreover, the comparison shows good
agreement in FLDs of various values of m determined by FEM and by the

M-K model with the identified imperfection factor fy (0.998).

5.8 Effect of the strain hardening index n on FLCs
To investigate the effect of hardening index n, Swift’s hardening law with
various values of n is employed by the M-K model.

Fig.17 presents the effect of the hardening index n on FLCs. The comparison
indicates that the index n has a profound influence on the level of FLDs.

As seen in this figure, the material formability is improved with increasing

17



value of n. For example, in comparison with n—0.1, an increase of 134.9% in

formability under plane strain condition can be observed for n—0.25.

5.4 Determination of FLDs for the AA5083 sheet

From the above analysis, both the strain hardening and rate sensitivity in-
dices improve the formability of sheet metals. However, for AA5083, Tab.1
demonstrates that with increasing temperature, the strain hardening index
decreases while the rate sensitivity index increases. Hence, at elevated tem-
peratures, the effect of the rate sensitivity on the formability will compensate
that of the strain hardening index. Taking these compensating effects into
account, we investigate the formability of AA5083 sheet by theoretical and

numerical approaches.

Figure 7?7 shows the FLCs determined by these two approaches. Because of
the compensating effects of the two indices, there is no clear difference in the
left-hand side of theoretical FL.Cs between 150°C' and 240°C', while for the
right-hand side, FLC at 150°C is slightly higher than that at 240°C". On the
contrary, FLC at 300°C' is always higher than those at other temperatures in
the whole range of strain path. For example, in comparison with the formabil-
ity at 150°C, there are increases of 55%, 33% and 3% under uniaxial tension,

plane strain and equi-biaxial stretching at 300°C', respectively.

Hence, for this alloy, the formability seems not to be improved up to a cer-
tain temperature (between 240°C' and 300°C'), above this temperature, the

formability is greatly enhanced.
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6 Conclusion

In this paper, the sheet formability is investigated by the theoretical M-K
model and by a numerical method. For the numerical method, the difficulty
is to establish a pertinent criterion for detecting the onset of necking. The
proposed criterion, similarly to that in the M-K model, is based on the equiv-
alent plastic strain increment ratio in the localized element and its adjacent
one. Moreover, this criterion predicts the onset of localized necking with the
principal strains, therefore it is easy to use for experimental determination of
FLDs. Then from the comparison between the theoretical and numerical re-
sults, an appropriate initial imperfection factor of the M-K model is identified
(fo = 0.998). By means of parametric studies based on the above two ap-
proaches, the effect of strain hardening index n and the rate sensitivity index
m on FLCs are observed: the formability is increased with increase of n and
m. Finally, by consideration of the compensating effects of the strain harden-
ing and rate sensitivity indices, FLDs of AA5083 sheet are constructed by the
M-K model and by FEM. Results show that the formability of this alloy seems
not to be improved up to a certain temperature, above this temperature, the

formability is greatly enhanced.

The results must be experimentally validated in order to determine accurate
FLDs necessary and optimize the forming processes in which the strain rate
sensitivity should be considered. This validation is in progress by means of
a dynamic Marciniak test associated with a high speed camera and the dig-
ital image correlation technique to detect the onset of localized necking and

construct FLDs.
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T(°C) | K(MPa) Bl n m
150 500.870 | 0.00044 | 0.2307 | 0.0068
240 328.062 | 0.00126 | 0.1275 | 0.0280
300 207.207 | 0.00035 | 0.0614 | 0.0657
Table 1
Constitutive model parameter values
SpecimenNo. | 1 | 2 | 3 |4 | 5|6 |78 9|10
W(mm) 10 1 30 | 35|40 | 45 | 48 | 50 | 60 | 80 | 100
R(mm) 50
Re(mm) 70
Re(mm) 10
Table 2
Specimen dimensions used in simulation
350
300
250 -
s
< 200 -
g
® 150 ~ i
v o 1.56 mm/s_EXP - 1.56 mm/s_Fitting
= 100 - o 15.6 mm/s_EXP —15.6 mm/s_Fitting
50 a 156 mm/s_EXP — 156 mm/s_Fitting
0 T T T
0 0.05 0.1 0.15 0.2

True strain

Figure 1. Experimental and fitting stress-strain curves at 150°C
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300
250 -
=200 -
(o9
=3
2]
é 150
§ 100 o 1.56 mm/s_EXP ~-1.56 mm/s_Fitting
E o 15.6 mm/s_EXP —~15.6 mm/s_Fitting
50 4 a 156 mm/s_EXP —156 mm/s_Fitting
0 T T T T T
0 0.05 0.1 0.15 0.2 0.25 03

True strain

Figure 2. Experimental and fitting stress-strain curves at 240°C

200 -
=150 1
o
=
@
& 100 1
e o 1.56 mm/s_EXP -+-1.56 mm/s_Fitting
=1
& o 15.6 mm/s_EXP —15.6 mm/s_Fitting
50 -
a 156 mm/s_EXP —~156 mm/s_Fitting
O T T T T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

True strain

Figure 3. Experimental and fitting stress-strain curves at 300°C
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Figure 4. M-K model with an inclined groove ()

Figure 5. FE model of the Marciniak test

Figure 6. A blank with the reduced section thickness
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Figure 7. Specimen geometry in the Marciniak test
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Figure 8. Evolution of thickness strain of central element and detection of the onset

of necking
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Figure 9. Determination of bifurcation point by the polynomial fitting method
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Figure 10. Thickness strain distribution of the specimen No.2 (Tab.2)
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Figure 11. Limit strains determined by FEM with various failure criteria
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Figure 12. Strain paths corresponding to different deformation modes by FEM
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Figure 13. Comparison of FLDs by the M-K model with various initial imperfection
factors and by FEM
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Figure 14. FLDs determined by the M-K model and by FEM (fy = 0.998) for m=0.01
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Figure 15. Effect of rate sensitivity index m on FLCs by the M-K model
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Figure 16. Comparison of effect of the rate sensitivity index on FLCs by the M-K
model and by FEM
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Figure 17. Effect of the strain hardening index n on FLCs by the M-K model
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Figure 18. FLCs of AA5083 determined by the M-K model and by FEM
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