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Shortest-Path Constraints for 3D Multiobject
Semiautomatic Segmentation via Clustering and

Graph Cut

Razmig Kéchichian, Sébastien Valette*, Michel Desvignes, and Rémy Prost, Member, IEEE

Abstract—We derive shortest-path constraints from graph
models of structure adjacency relations and introduce them
in a joint centroidal Voronoi image clustering and Graph Cut
multiobject semiautomatic segmentation framework. The vicinity
prior model thus defined is a piecewise-constant model incurring
multiple levels of penalization capturing the spatial configuration
of structures in multiobject segmentation. Qualitative and quanti-
tative analysis and comparison with a Potts prior-based approach
and our previous contribution on synthetic, simulated and real
medical images show that the vicinity prior allows for the correct
segmentation of distinct structures having identical intensity
profiles and improves the precision of segmentation boundary
placement while being fairly robust to clustering resolution.
The clustering approach we take to simplify images prior to
segmentation strikes a good balance between boundary adaptivity
and cluster compactness criteria furthermore allowing to control
the trade-off. Compared to a direct application of segmentation
on voxels, the clustering step improves the overall runtime and
memory footprint of the segmentation process up to an order of
magnitude without compromising the quality of the result.

Index Terms—Image segmentation, image clustering, Markov
random field, spatial prior, Graph Cut.

EDICS categories—TEC-BIP, SMR-SMD, SMR-STM.

I. INTRODUCTION

COMPUTER-AIDED medical image analysis has tradi-

tionally focused on single- organ or pathology appli-

cations. Recent technological and algorithmic advances have

brought increasing interest in simultaneous analysis and seg-

mentation of multiple anatomical structures for comprehensive

diagnosis and preoperative planning [1]–[4]. Moreover, the

creation of full-body patient-specific models for the semantic

navigation of anatomy is becoming a popular application [5].

Clinical practice, especially whole-body Computed Tomog-

raphy (CT) scanning, often generates large numbers of high-

resolution images, which makes tasks of efficient data access,

transfer, analysis and visualization challenging, especially in
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today’s distributed computing environments which have seen

increasing use of handheld terminals for interactive data access

and visualization of anatomy.

CT and Magnetic Resonance (MR) images have intrin-

sic characteristics that render automatic analysis particularly

difficult. In theory, they are regarded as piecewise-constant

intensity maps over a number of tissue classes. However,

contrast between tissue class intensities, which facilitates

segmentation, depends on imaging conditions which are sel-

domly ideal. In practice, the piecewise-constance property is

considerably degraded by various noise sources and the partial

volume effect (multiple tissue-class occupancy within a voxel)

which creates diffuse edges making it difficult to identify true

structure boundaries. MR images may, in addition, suffer from

spatial distortion of tissue intensity due to main magnetic

field inhomogeneity. Regardless of the imaging modality and

related artifacts, many anatomically and functionally distinct

structures can have similar intensity levels in images and,

furthermore, blend into surrounding tissues having intensities

close to their own. It is impossible to identify and segment

such structures on the basis of intensity information only.

Semiautomatic segmentation methods are usually resorted to

in order to alleviate prohibitive time and effort requirements

of manual delineation and as an alternative to fully-automatic

methods when the latter are not applicable, for example due

to the singularity of the studied case or the lack of training

sets. Furthermore, automatic methods which rely on image and

anatomical features learned beforehand from presegmented

data, while effective in many cases, are prone to be bound

to the characteristics of the training set and its variabilities,

and may therefore have difficulty in accounting for previously

unencountered but possible pathological cases and photometric

characteristics of images acquired under different conditions.

A wide variety of semiautomatic segmentation approaches

relying on different interaction paradigms have been proposed

(see references in [6], [7]) where a reasonable amount of

user input can initialize and steer the segmentation process

refining its result by resolving erroneous decisions made by

the algorithm. In particular, when segmentation is formulated

as a voxel labeling problem where each segmented object is

represented by a label class, user interaction can be carried out

by the attribution of “seed” labels to voxels inside targeted

structures. This provides clues on what the user intends to

segment and can be used, for example, to collect intensity
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statistics of targeted objects and their relative positions, and

to constrain the solution space of the algorithm by prohibiting

the attribution of other labels to seed-marked voxels.

A. Graph Cut in segmentation and its complexity

A fundamental problem of image processing and computer

vision, image segmentation is the back-bone of many appli-

cations, especially in medical imaging. Graph Cut methods,

which have been widely applied to single-object segmentation

problems [8], rely on a maximum-flow binary global opti-

mization scheme capable of finding the optimal solution in

mathematical sense [9]. With few exceptions [10], multiobject

generalizations of this approach do not, in general, have such

optimality properties due to the NP-hardness of the underlying

problem, but some algorithms [11] are nevertheless capable

of finding a local solution optimal within a known factor of

the global optimum. Simultaneous multiobject segmentation

approaches, on the other hand, are superior to their sequential

counterparts in that they raise questions neither on the best

segmentation sequence to follow nor on how to avoid the

propagation of errors on individual segmentations [2].

Graph Cut algorithms usually employ rectangular grid

graphs for data structure. In applications on high-resolution

3D medical images where several tens of millions of voxels

are common, such graphs have to be defined on a number of

vertices equal to the number of image voxels and a number

of edges at least five times as much. With data structure size

touching on the limit or exceeding the storage capacity of com-

puter memory, numerical optimization becomes impractical.

Approaches which address the complexity of Graph Cut

methods on high-resolution data can be broadly classified into

two categories; algorithm parallelization and image simplifi-

cation. Parallel versions of some maximum flow algorithms

have been devised for multiprocessor architectures [12] and

graphics processing units [13]. While these methods attain

good speedups, they do not reduce memory footprint since

they operate on the entire image. Image simplification ap-

proaches address this problem directly observing that the

pixel representation is often redundant because objects usually

comprise many similar pixels that could be grouped. In [14],

Graph Cut segmentation is applied to a low-resolution image

propagating the solution to the full resolution where Graph

Cut segmentation is applied in a narrow band surrounding the

projected object boundary. In order to accelerate user feedback

in interactive segmentation, [15] oversegment the image via

the Watershed algorithm. Graph Cut segmentation is then

formulated according to the watershed regions graph. Starting

from a grid partition, [16] cluster image pixels by an iterative

k-means algorithm augmented by color similarity and shape

compactness criteria. The cluster graph is then partitioned

based on color information yielding a coarse segmentation

of the image. Recent conditional random field-based (CRF)

segmentation approaches such as [17], [18] rely on image

clustering not only to reduce memory overhead but also to

collect image features from clusters and their neighborhood.

B. Prior information in Graph Cut segmentation

Most successful segmentation methods usually incorporate

some image or domain-specific prior information. Medical

image segmentation methods should ideally be able to in-

corporate a wide range of anatomical and physiological prior

information to ensure the consistency of the result with respect

to anatomical properties and variabilities thereof. From the

standpoint of Graph Cut optimization, prior information can be

regarded as a set of constraints defined by a reference model.

Many forms of prior information have been introduced

in Graph Cut segmentation for different applications. We

broadly classify the most relevant of such approaches in three

categories according to the nature of the introduced prior.

a) Location prior, where spatially-varying prior probability

maps of structure locations, also called probabilistic atlases,

are used to guide segmentation [4], [19]. In simplest cases,

these are defined as distance maps [20]. Such probabilistic

maps need to be learned in advance and most have to be

registered to an image before it is segmented. Registration

cannot trivially handle topological changes, due to pathologies

for example, and is often computationally intensive.

b) Shape prior, where explicit or implicit shape constraints

are used to match the segmented object with predefined or

learned shapes, such as in [21] where an affine-invariant shape

similarity measure is used in sequential multiobject Graph Cut

segmentation, and in [22] where a statistical model for a shape

and its variabilities is learned from a set of training shapes via

kernel principal component analysis. Shape-prior segmentation

approaches entail shape location initialization and alignment

mechanisms, and often require model learning.

c) Spatial configuration prior, the use of which arises in the

context of multiobject segmentation, where (usually pairwise)

relations define interobject geometric and spatial relationships.

It has appeared in scene layout estimation and segmentation

where spatial relationships are predefined on a limited number

of classes [23], and in part-based object detection and seg-

mentation where such relationships are learned from annotated

training data [18], [24]. [25] segment multiple or compound

objects encountered in relative positions of containment and

exclusion, also introducing constraints on preferred distances

between the boundaries of regions. Some useful configurations

however cannot be represented by definitions therein, such as

the inclusion of an adjacent pair of objects in a third.

There are a number of prior introduction approaches closely

related to our work which have appeared outside Graph

Cut segmentation literature. [26] use a simple three-level

piecewise-constant prior model for tissue classification in brain

MR images. According to a brain tissue model, it encourages

the identical classification of pairs of neighboring pixels, al-

lowing different class adjacency patterns which are consistent

with the model while penalizing adjacencies which are not. We

use a similar prior for Graph Cut multiobject segmentation in

our earlier work [27]. In [1], pairwise geometric relationships

are defined by an anatomical network on easily detectable

body landmarks and used in the organ detection phase of a

sequential segmentation framework for thoracic and abdominal

organs in whole-body CT scans. [3] address the same problem
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with an automatic two-stage method whereby once relatively

stable organs are identified and segmented, organ interrelations

are used to proceed with the segmentation of variable organs

by fitting previously learned statistical organ atlases and shape

models. Organ interrelations are defined according to canon-

ical correlation analysis and represented by a directed graph.

Intuitively, these relations represent the degree of influence

of an organ’s surface upon another. A generic, graph-based

scene model representing spatial information explicitly is also

used by [2] in the problem of segmenting multiple subcortical

structures in brain MR images. Fuzzy representations of dis-

tance, adjacency and spatial directionality relations are used

to account for model imprecisions and variabilities. However,

the segmentation algorithm is sequential and requires error

detecting and segmentation order rearranging strategies.

C. Contribution

We propose a piecewise-constant prior model incurring mul-

tiple levels of penalization capturing the spatial configuration

of structures in multiobject segmentation. The vicinity prior,

as we term it, is defined as shortest-path pairwise constraints

on a graph model of interobject adjacency relations.

We introduce the vicinity prior, along with user-supplied

constraints, into a joint centroidal Voronoi image clustering

and Graph Cut multiobject semiautomatic segmentation frame-

work. The clustering method itself we use to simplify images

prior to segmentation provides a good balance between the

conflicting goals of boundary adaptivity and cluster compact-

ness furthermore allowing to control the trade-off. Compared

to a direct application of segmentation on voxels, the clustering

step improves overall runtime and memory footprint of the

segmentation process up to an order of magnitude without

compromising the quality of segmentation in practice.

Qualitative and quantitative analysis and comparison with a

standard Potts prior-based approach and our previous method

[27] on synthetic, simulated and real medical images confirm

the advantages of the vicinity prior particularly in the correct

segmentation of distinct structures having similar intensities,

the accurate placement of segmented structure boundaries even

with coarsely clustered images subject to high levels of noise,

and the robustness of segmentation to clustering resolution.

D. Paper organization

Section II outlines the image-adaptive centroidal Voronoi

tessellation and compares it with two closely-related algo-

rithms [28], [29]. The statistical segmentation approach is de-

scribed in Section III. In Section III-A, we present our graph-

based vicinity prior model followed by data-cost definition in

Section III-B. We briefly describe the numerical optimization

method we employ in Section III-C and establish the necessary

condition of its applicability. Results of qualitative and quan-

titative evaluation on synthetic, simulated and real medical

images are given in Section IV. In Section IV-A we present

evaluation results on a dataset generated from our synthetic

phantom (Fig. 3a). Next, in Section IV-B1 we give quantitative

evaluation results on the BrainWeb simulated MRI dataset [30]

and compare them to brain tissue classification results reported

(a) (b)

Fig. 1. A CVT clustering and its dual graph for a circle image.

in [31]. Finally, in Section IV-B2 we present a segmentation

case study comprising 34 thoracic and abdominal structures in

a CT image and conclude the paper in Section V with a brief

discussion outlining future venues of research.

II. IMAGE CLUSTERING BY CENTROIDAL VORONOI

TESSELLATION

Several image clustering algorithms have been developed

by vision and pattern analysis communities for image clas-

sification and segmentation. Of special interest is a class

of algorithms which produce a dense oversegmentation of

compact clusters, often called superpixels, having relatively

uniform size and shape, which furthermore adapt to local

intensity edges. Two recent examples are the TurboPixels

algorithm of [28] and the Graph Cut superpixels algorithm

of [29] which achieve a better balance between the conflicting

goals of compactness and boundary adherence than some well-

known image partitioning algorithms which produce segments

of highly variable shape and size, like Watershed [32] and

Mean-shift [33] algorithms. A large segment of irregular shape

is more likely to span more than one object, especially in

the absence of boundary cues with insufficient contrast. On

the other hand, a compact regular shape is less likely to

cross object boundaries unless they are too wiggly. However,

compactness comes at the expense of boundary adherence, it

is therefore desirable to be able to control the trade-off.

Before presenting our clustering approach, let us define a

grayscale image I as a mapping I : V 7→ I from a voxel

domain V = {v | v = (x, y, z)} to a set of gray levels I ⊂ R.

To simplify notation, we shall write v ∈ I, and denote the

gray-level of a voxel by Iv .

Given a grayscale image I and n sites ci ∈ I such that

1 ≤ i ≤ n, a Voronoi tessellation partitions the image I into

n disjoint clusters Ci associated with each site ci:

Ci = {v ∈ I | d(v, ci) < d(v, cj); 1 ≤ j ≤ n, j 6= i}. (1)

In a centroidal Voronoi tessellation (CVT), each site ci
corresponds to the mass centroid of the associated cluster, and

the tessellation minimizes the following energy:

E(v; ci) =

n
∑

i=1

(

∑

v∈Ci

ρ(v)‖v − ci‖
2

)

(2)

where ρ(v) is a density function defined below.
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Fig. 2. Left column: quantitative evaluation of clustering algorithms on
the Berkeley segmentation dataset. Right column: qualitative comparison of
their output with 300 clusters on a single photo from the dataset. Boundary
recall and undersegmentation error are respectively (b) CVT: 0.59, 1.53
(d) TurboPixels: 0.52, 2.01 (f) GC superpixels: 0.59, 2.76.

We extend the cluster geometry compactness property ex-

pressed by (2) by adding an intensity-space norm as well:

F (v; ci) =

n
∑

i=1

(

∑

v∈Ci

ρ(v)
(

‖v − ci‖
2 + α‖Iv − Ii‖

2
)

)

(3)

were α is a positive scalar and Ii is the gray-level of the

cluster Ci defined as the mean intensity of its voxels. Intu-

itively, minimizing (3) now corresponds to maximizing cluster

compactness in terms of both geometry and gray-level.

In (3), we define ρ(v) as a linear function of intensity-

gradient magnitude at voxel v, ρ(v) = m|∇Iv| + b. This

encourages the alignment of clusters with intensity edges

in the image and the formation of relatively small clusters

nearby, thus allowing fine-grained placement of segmenta-

tion boundaries. In all results reported in this paper, we set

α = m = b = 1. Refer to Fig. 1b for an illustration in 2D.

To minimize (3), we use a variant of the clustering algorithm

in [34] which approximates a CVT in a computationally-

efficient manner, involving only local queries on voxels located

on boundaries of pairs of clusters. To assess its runtime

performance and output quality, we have compared it with

the TurboPixels and Graph Cut superpixels algorithms, both

of which have similar cluster compactness criteria, on the

Berkeley segmentation dataset [35]. This dataset comprises

300 generic photos of size 321× 481 segmented by different

human subjects. In quantitative analysis, we evaluate runtime,

boundary recall and undersegmentation error on 80 grayscale

images from the dataset, choosing, for each such image, one

ground-truth segmentation that does not contain small seg-

ments of few pixels. Such segments can produce large outliers

and disrupt mean undersegmentation error measurements.

Boundary recall is defined as the fraction of ground-truth

boundary pixels which fall within a small distance from at

least one cluster boundary. We use a distance of one pixel since

we seek high precision in segmentation boundary placement

in medical applications. Given a CVT clustering of an image

C = {C1, . . . , Cn} and a ground-truth partition of it T =
{g1, . . . , gk}, the undersegmentation error for segment gj is:

segerr
j

(C, T ) =

(

∑

i:Ci∩gj 6=∅ |Ci|
)

− |gj|

|gj |
(4)

For a given clustering, we average (4) over all segments of the

corresponding ground-truth partition and give the mean error.

Figs. 2a, 2c and 2e present results of quantitative evaluation

of the CVT clustering algorithm, the TurboPixels algorithm

and the Graph Cut superpixels algorithm variant using cluster

intensity homogeneity constraints. For a given clustering reso-

lution, we report mean performance measures over all images.

We can see from the graphs that the CVT clustering algorithm

outperforms both TurboPixels and Graph Cut superpixels algo-

rithms in terms of runtime and produces output of comparable

quality to the best performing algorithm of the remaining two.

Qualitative comparison of the output of the three clustering

algorithms on a Berkeley dataset photo is given in Figs. 2b,

2d and 2f. We note that evaluations were conducted on a 4-core

processor running at 2.84 GHz using software implementations

provided by respective authors of the three algorithms.

For discussion purposes in subsequent sections, we define

the dual graph of a CVT, illustrated in Fig. 1b. In 2D, denote

the boundary (the surface, in 3D) of a cluster Ci by ∂Ci.

Given a CVT clustering C where clusters are indexed by S,

let G = 〈S, E〉 be an undirected graph on cluster centroids

where pairs of clusters having nonzero length (area) common

boundary (surface) define the set of edges E =
{

{i, j} | i, j ∈
S, |∂Ci ∩ ∂Cj | 6= 0

}

. Consequently, the neighborhood of a

node i ∈ S is defined as Ni =
{

j | j ∈ S, ∃ {i, j} ∈ E
}

.

III. MULTIOBJECT SEGMENTATION AS BAYESIAN

LABELING

We shall formulate segmentation as a labeling problem,

defined as the assignment of a label from a set of m labels

L = {l1, . . . , lm} representing objects to be segmented to

each of the variables in a set of n variables corresponding

to the clusters of a CVT-clustered image C = {C1, . . . , Cn}
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indexed by S. Assume furthermore that each variable i ∈ S
is associated with the corresponding node in the dual graph G
of the CVT defined at the end of Section II.

An assignment of labels to all variables is called a config-

uration, and is denoted by ℓ ∈ L, where L = Ln is the space

of all possible configurations. The assignment of a label to a

single variable i ∈ S is denoted by ℓi. The space of admissible

configurations, which corresponds to possible segmentations,

can be identical to L or, if user-specified constraints are taken

into account, to a subset of L. Let X = {X1, . . . , Xn} be

a set of random variables on S taking its values in L. A

configuration ℓ can also be expressed in probabilistic terms as

the joint event X1 = ℓ1, . . . , Xn = ℓn, abbreviated as X = ℓ.
The “best” segmentation is defined as the configuration

corresponding to the highest mode of the posterior probability

distribution of configurations Pr(X = ℓ | O) conditional on

some image-derived observation O. According to the Bayes

rule, the posterior probability can be stated in terms of a

likelihood distribution Pr(O | X = ℓ) and a prior distribution

of configurations Pr(X = ℓ). If the latter can be expressed as a

first-order Markov random field (MRF) for label configurations

with respect to G and image-derived likelihood densities can be

defined for each label l ∈ L from user-supplied evidence, then

the maximum probability configuration can be equivalently

found by minimizing the following energy function [36]:

E(ℓ) = t
∑

i∈S

Di(ℓi) +
∑

i∈S

∑

j∈Ni

Vi,j(ℓi, ℓj) (5)

where t is a hyperparameter called the temperature and Ni

is the neighborhood of the variable i ∈ S. Pairwise terms of

(5) encode prior information on interactions between labels

assigned to pairs of neighboring sites encouraging the spatial

consistency of labeling with respect to a reference model.

Unary terms, also called data terms, are negative log-likelihood

functions derived from observed data and measure the cost of

assigning a label to respective variables.

A. The vicinity prior

For image segmentation, the pairwise interaction prior in

(5) has to encourage piecewise-constant labeling, partitioning

the image into several regions where voxels within a region

are identically labeled. Furthermore, it has to be discontinuity

preserving, in that it should attribute identical labels only to

image regions which do not contain intensity edges.

The earliest discontinuity-preserving piecewise-constant

prior model is the Ising model in binary labeling where

|L| = 2 [37]. It is defined as Vi,j(ℓi, ℓj) = 1 − δ(ℓi, ℓj),
where δ is the Kronecker delta. Its generalization for multiple

labels where |L| > 2 is called the Potts model, which has

widely been used in image segmentation and continues to

enjoy popularity in recent CRF-based approaches [17], [38].

We can see that this model incurs a single level of penalization

corresponding to the attribution of different labels to pairs of

neighboring variables and incurs no penalty for the identical

labeling of such pairs. This penalization scheme stems from

the very nature of binary labeling where only a single type of

boundary exists between regions labeled by either label.

(a) (b)

Fig. 3. (a) Synthetic phantom and (b) the graph model for adjacency relations
of its structures.

We extend the definition of the Potts prior model to account

for multiple types of boundaries in multiobject segmenta-

tion, incurring multiple levels of penalization. To motivate

our approach, let us first give an illustration on a synthetic

example. Consider the image in Fig. 3a. It is further described

in Section IV-A where we give evaluation results that use it as

ground-truth estimate. Notice how the structure labeled “9” is

nested in structure “4” which, in turn, is adjacent to structure

“6”. Due to this adjacency pattern, it makes perfect sense

to encourage the assignment of the pair of labels {9, 4} to

neighbor variables in a segmentation task while penalizing the

attribution of the pair {9, 6}. Hence, ∀i, j ∈ S, Vi,j(9, 6) >
Vi,j(9, 4). Furthermore, since the structure “8” is farther still,

we can say Vi,j(9, 8) > Vi,j(9, 6) > Vi,j(9, 4). By contrast,

the simple structure adjacency prior models employed in our

earlier work [27] and in [26] penalize nonadjacent pairings

{9, 6} and {9, 8} equally implying that they are equally unfit.

Recall that the set of labels L represents the objects to be

segmented. Let R be the set of symmetric binary relations on

pairs of distinct labels, R = {r | lar lb, la, lb ∈ L, a 6= b},

representing such relations as adjacency, distance, area of

common surface, etc. Assume that each relation r ∈ R
has a corresponding characteristic function r̂ which gives a

quantitative measure for r; r̂ : L × L \ {(la, la)} 7→ R
+.

R can be equivalently represented by a weighted undirected

graph A = 〈L,W 〉 on labels L with the set of edges

W =
{

{la, lb} | ∃r ∈ R, lar lb, a 6= b
}

where edge

weights are defined by w ({la, lb}) = r̂ (la, lb), such that

w ({la, lb}) = ∞, 6 ∃r ∈ R, lar lb.
Given the graph A, we define the pairwise term in (5) as

Vi,j

(

ℓi, ℓj
)

= ̟
(

la, lb
)

, ℓi = la, ℓj = lb. (6)

where ̟
(

la, lb
)

is the shortest-path weight from la to lb in A.

At present, we let relations r ∈ R represent structure

adjacency. A structure is considered to be adjacent to another

in 2D if they share a boundary (a surface, in 3D). For two

such structures a and b, the obvious definition of the adjacency

relation’s characteristic function is r̂ = 1 when ∃r ∈ R, lar lb.
This results in a connected undirected graph A with unit-

weight edges between adjacent vertices. Shortest paths from a

vertex to all others, conveniently calculated by an application

of breadth-first search to the graph A, define the vicinity of the

associated structure with respect to all other structures, which

is introduced in the energy function of segmentation (5) via

pairwise interaction terms (6). Clearly, the graph A constitutes
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a prior model of explicit spatial configuration of objects. As

an example, the graph prior model for the image structures in

Fig. 3a is given in Fig. 3b.

Note that the graph A is not limited to unit-weight edges. It

can encode any other quantity that accumulates linearly along

a path that we would want to minimize.

In 2D, we weigh (6) by the length (area, in 3D) of the

common boundary (surface) of adjacent clusters |∂Ci ∩ ∂Cj |
so that the sum of pairwise energies in (5) for any pair

of labels la, lb ∈ L is equal to the length (area) of the

common boundary (surface) between the corresponding pair

of objects multiplied by V (la, lb). Along with our data energy

definition (7), this ensures that the energies of identical label

configurations on CVT clusterings of different resolution are

equal. Due to limited space, we cannot give the formal proof.

Nevertheless, we establish the advantage of this weighting

scheme in Section IV-A by quantitative comparison with the

inverse distance weighting method frequently encountered in

MRF-based segmentation, for example in [8] and [26].

B. Likelihood-based data cost

The likelihood probability for a variable i ∈ S given the

label assignment ℓi is given by Pr(Oi = Ii | Xi = ℓi), where

the observation O constitutes the spatially distinct records of

image intensity levels for each variable. Given user-supplied

“seeds”,1 we estimate the conditional probability distribution

of intensity Pr(I | L = l) for every label l ∈ L as a Gauss-

smoothed and normalized intensity histogram.

To facilitate the understanding of different cases, we define

the data term Di(ℓi) of the energy (5) as follows:

Di(ℓi) =















0, ∃sk ∈ Ci, k = ℓi (7a)

∞, ∃sk ∈ Ci, k 6= ℓi (7b)

− ln
∏

v∈Ci

Pr(Iv | ℓi), 6 ∃sk ∈ Ci, ∀k ∈ L (7c)

where sk represents a voxel marked with a seed of label type

k ∈ L. Note that (7) is a continuous function where (7a) and

(7b) correspond to negative log-likelihood values at maximum

and zero probability respectively. We represent the infinite

cost in (7b) by a large constant several orders of magnitude

(109–1012) greater than the value of (7c) corresponding to

the smallest estimated likelihood probability, so that, for

practical settings of t > 0, (7a) and (7b) amount to imposing

hard constraints for acceptable configurations. By comparison,

[8] avoid multiplying (7b) by t in (5) and define a constant

representing its cost such that prior terms do not accidentally

impose a labeling decision on corresponding variables. In our

formulation, as t greatly decreases, (7b) approaches the order

of magnitude of prior terms until the data sum of (5) vanishes

at t = 0, which is hardly an interesting setting in practice.

In subsequent refinements of an initial segmentation, we

allow the user to introduce additional “corrective” seeds to

constrain the label preference of incorrectly segmented image

regions. In order not to disrupt initial appearance statistics, we

do not take such seeds into account for likelihood estimation.

1Recall that seeds are label attributions to voxels inside targeted structures.

C. Multilabel optimization via Graph Cut

Having defined the prior model and data-cost terms, we

now turn our attention to the numerical optimization of the

energy function of segmentation (5). We do not give the details

of the optimization algorithm itself, but establish a necessary

and sufficient condition of its applicability for optimizing the

aforementioned energy function using our prior definition (6).

In [11], it has been shown that the multilabel minimization

of (5) is NP-hard even with the simple discontinuity-preserving

Potts prior model. In binary labeling with |L| = 2 using

this model, the global minimum of (5) can be computed in

polynomial time by a maximum flow algorithm [9]. In general,

however, and in our multiobject segmentation problem with

|L| > 2, efficient approximation algorithms must be resorted

to. We use the Expansion Moves multilabel Graph Cut algo-

rithm described in [11], which has been shown to outperform

popular multilabel optimization algorithms on benchmarks in

terms of both speed and quality of obtained solutions [39].

The Expansion Moves algorithm produces a label-

ing locally-optimal within a known factor of the global

minimum equal to 2 × maxVi,j(la, lb)/minVi,j(la, lb),
∀i, j ∈ S, la, lb ∈ L, a 6= b. For example, this factor is equal

to two for the Potts model. According to [40], the algorithm

can minimize (5) if the pairwise term is submodular, that is,

if the following condition holds ∀i, j ∈ S, ∀la, lb, lc ∈ L:

Vi,j(la, la) + Vi,j(lb, lc) ≤ Vi,j(la, lc) + Vi,j(lb, la). (8)

The vicinity prior (6) is submodular by definition. This can

be easily verified by observing that the shortest-path distance

between any three vertices on the graph A satisfies the

triangle inequality. By comparison, the adjacency prior in

[27] is essentially limited to definitions where the penalty

of nonadjacency has to be twice the penalty of adjacency so

that the prior is submodular. In other words, it is impossible

to penalize nonadjacencies by some large constant without

penalizing adjacencies half as severely.

IV. EVALUATION RESULTS AND APPLICATIONS

This section presents the results of qualitative validation

and quantitative analysis of our vicinity prior-based Graph

Cut segmentation approach. In all evaluations, comparisons are

drawn with the Potts prior-based approach, and in some cases

with our earlier adjacency prior [27]. We note that our software

implementation uses the multilabel energy optimization library

developed by the authors of [11], [40], [41].

In all evaluations, we measure the quality of segmentation

with respect to ground-truth via the well-known Dice similar-

ity metric (DSM), which measures the overlap between the

segmentation and the ground-truth. Let Sl and Tl represent

the sets of voxels labeled with l ∈ L in the segmented I and

the ground-truth T images respectively, and denote the DSM

for label class l ∈ L by dsml(I, T ). We define an “overall”

segmentation quality metric, calculated from mean weighted

DSM measures for all labels in L as:

dsm
L

(I, T ) =

∑

l∈L dsml(I, T ) |Tl|

|T |
. (9)
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(a) (b) (c) (d) (e)

Fig. 4. (a) Image generated from the phantom in Fig. 3a with additive Gaussian noise σ = 0.09 along with “seeds” used in all evaluations (b) Potts prior
(DSM = 0.937) and (c) vicinity prior (DSM = 0.994) segmentations on pixels of the image (d) Potts prior (DSM = 0.938) and (e) vicinity prior (DSM =
0.986) segmentations on a 10% clustering of the image. Results correspond to best temperature settings. Refer to color code in Fig. 3b

In order to understand how reliable the segmentation algo-

rithm is with either prior in attaining a given overall DSM

value d, we evaluate a reliability function of DSM over the

interval [0, 1] on a set of segmented images I. Define the subset

of images attaining an overall DSM level superior to d as

Id = {I ∈ I | dsmL(I, T ) > d}, and let D be a random

variable on [0, 1]. The reliability at DSM value d is given by:

rel(d) = Pr(D > d) =
|Id|

|I|
. (10)

For the purpose of evaluating the precision of segmen-

tation boundary placement on the medical case study in

Section IV-B2, we use an error metric to measure the Eu-

clidean distance of each point on the surface of a segmented

structure from the surface of the corresponding ground-truth

structure. Let M l
S and M l

T be respectively the triangle meshes

representing isosurfaces of structure volumes labeled by l ∈ L
in the segmented I and the ground-truth T image. We obtain

such meshes by applying the Marching Cubes algorithm to

labeled volumes [42]. The error at x ∈ M l
S is defined as:

err(x) = inf {d(x, y) | y ∈ M l
T }. (11)

A. Synthetic images

We have generated a dataset from a synthetic phantom

we have created, inspired by the Shepp-Logan phantom [43],

for the purposes of quantitative and qualitative evaluation of

segmentation with vicinity prior. Due to the small number of

structures and their simplistic spatial arrangement, the Shepp-

Logan phantom is not well-suited for such evaluation. The

layout of the 10 structures our phantom features (Fig. 3a) mim-

ics the spatial configuration of some thoracic and abdominal

organs in a coronal cross-section of a CT scan. In fact, the

intensity levels of these structures were derived from mean

intensity values of corresponding structures in a CT image.

Graph Cut segmentation with either prior was applied to

the pixels2 as well as to CVT clusterings of 512×512 images

generated from the phantom in Fig. 3a by the introduction

2We have performed some of the evaluations on image pixels (voxels)
for comparison purposes with clustered image segmentation. The theoretical
framework outlined in Section III still applies by letting variables i ∈ S
correspond to image pixels (voxels) v ∈ I and defining a 4-connected (6-
connected) neighborhood Ni for each variable (respectively in 3D).

of additive zero-mean Gaussian noise with standard deviation

σ ∈ [0, 0.2], image intensity values being clamped to the range

[0, 1]. 40 images were generated for each noise level. Of ranges

swept by the hyperparameter t of (5), we report results in the

representative window [0, 1]. We report clustering resolution as

a percentage of the number of image pixels. The set of “seeds”

used in likelihood estimation and to impose constraints is given

in Fig. 4a. The number of seed-marked pixels for each label

is in the range [32, 160] and roughly proportional to the size

of the corresponding structure, otherwise constraints of equal

support for all labels would create uneven bias of segmentation

ease for smaller structures, such as “9” and “10”.

Fig. 4 gives a qualitative comparison of best results pro-

duced by Potts and vicinity prior-based Graph Cut segmenta-

tion applied to the pixels and a 10% clustering of an image

generated from the phantom with σ = 0.09, which can be

considered a relatively high noise level. The vicinity prior was

defined according to the graph model presented in Fig. 3b.

Improvements brought by the vicinity prior are obvious on

both segmentations, especially on thin structures “2” and “9”.

In the remaining of this section as well as in Fig. 4, 5 and 6,

any reference to DSM is actually to overall DSM measures for

all structures as defined by (9). Mean overall DSM values are

calculated on segmentations corresponding to best temperature

settings for all 40 images generated at a given noise level.

In Fig. 5a we give mean DSM maps for segmentation with

either prior applied to pixels. We calculate mean DSM values

for segmentations corresponding to a temperature setting on

all images generated at a given noise level. Improvements

brought by the vicinity prior are remarkable, particularly for

noise levels up to σ = 0.1. Note that low mean DSM

values corresponding to low temperature settings are due to

high regularization by the prior since data terms would not

contribute as much at that level. Also recall that the vicinity

prior incurs higher regularization than the Potts prior since

its highest penalty in this case is four times greater than its

Potts counterpart. To observe the difference between the two

priors on a finer scale, we give a magnified view of DSM

maps on the low temperature range [0.005, 0.05]. We do not

give mean DSM maps for segmentation applied to clustered

images which display similar performance patterns.

Fig. 5b and 6c give mean DSM comparisons of Potts,

adjacency and vicinity prior segmentations on pixels and clus-
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Fig. 5. Quantitative evaluation and comparison of Potts, adjacency and vicinity prior-based pixel segmentation on the synthetic phantom dataset.
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Fig. 6. Quantitative evaluation and comparison of Potts, adjacency and vicinity prior-based clustered image segmentation on the synthetic phantom dataset.

ters with respect to increasing noise levels at the temperature

setting yielding the best segmentation for each image. Fig. 5c

and 6d compare reliability curves of segmentation with these

priors on pixels and clusters respectively. Since evaluations

with other clustering resolutions display similar behavior, we

present the results of those corresponding to the level 10%.
We also evaluate the robustness of Potts, adjacency and

vicinity prior segmentation to clustering resolution. Due to

limited space, results corresponding to a single noise level are

given in Fig. 6b. We can see that vicinity prior segmentation

is quite robust to clustering resolution. This means that similar

segmentations can be obtained using lower clustering resolu-

tions thus improving both runtime and memory footprint.
Overall, on evaluations with respect to varying noise and

clustering resolution, we notice that the vicinity prior outper-

forms the Potts prior, and the adjacency prior to a lesser extent.
Lastly, we present the results of evaluating prior weighting

schemes for varying clustering resolution. Results correspond-

ing to clustering level 5% are given in Fig. 6a. Let Ci and Cj

be a pair of clusters sharing a common boundary (a surface in

3D) with centroids ci and cj respectively. We compare the fol-

lowing four weighting schemes: 1) cluster common-boundary

length weighting, where pairwise terms (6) are weighted by

|∂Ci ∩ ∂Cj |, 2) inverse centroid-distance weighting, where

pairwise terms are weighted by 1/d(ci, cj), 3) both weighting

schemes applied together, and 4) no weighting. Fig. 6a shows

that the first weighting scheme is a clear winner.

B. Simulated and real medical images

1) BrainWeb simulated MRI dataset: We have performed a

comprehensive quantitative evaluation and comparison on the

BrainWeb simulated MRI dataset [30]. In the creation of this

dataset, a semirealistic anatomical head and brain phantom

was used by an MRI simulator of T1-, T2- and PD-weighted

modalities to generate images according to MR acquisition

physics with 6 noise levels (0%, 1%, 3%, 5%, 7% and 9%)

and 3 intensity inhomogeneity levels (0%, 20% and 40%).

For evaluation purposes, we have used 18 images from the

T1-weighted modality covering the entire noise and inhomo-

geneity ranges. Image volumes are of size 217 × 181 × 217
voxels with isotropic 1 mm voxel size. The phantom itself used

to generate images comprises 10 structure and tissue classes,

of which we use 9 classes3 listed in Table I.

It should be noted that the phantom exhibits certain anatom-

ical inconsistencies. For example, some structures correspond-

ing to tissue classes “muscle” and “skin” are located inside the

skull within the volume of tissue class “cerebrospinal fluid”

and adjacent to “gray matter” structures. Therefore, we have

defined our graph-based anatomical model as a compromise

between phantom imprecisions and true anatomical properties.

In Table I, we give means and standard deviations for overall

as well as individual-class DSM measures calculated on voxel

and 10%-clustered image segmentations corresponding to best

temperature settings for all images in the dataset. The vicinity

prior is defined according to the graph model in Fig. 8a. It is

easy to observe in Table I that Graph Cut segmentation attains

better average performance levels with the vicinity prior on the

BrainWeb dataset. It also performs slightly better on clusters.

Improvements significant at level α = 0.05 are highlighted.

3We have merged the tissue class “glial matter” into the class “gray matter”
without affecting anatomical consistency.
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Fig. 7. Quantitative comparison of brain tissue segmentation with [31] on the BrainWeb simulated MRI dataset.

Fig. 8. Graph-based anatomical models of structure adjacency relations
for (a) BrainWeb simulated MRI dataset phantom: AIR. background, CNT.
connective tissue, CSF. cerebrospinal fluid, FAT. fat, GM. gray matter, MSC.
muscle, SKL. skull, SKN. skin, WM. white matter (b) 3D-IRCADb thoracic-
abdominal CT image: 1. air 3. bone 4. heart 5. lung (R) 6. lung (L) 7. liver 8.
spleen 9. gallbladder 10. pancreas 13. kidney (R) 14. kidney (L) 15. adrenal
gland (R) 16. adrenal gland (L) 18. hyperplasia 19. aorta 20. vena cava 21.
portal vein 22. skin 23. fat 24. visceral fat 25. muscle 26. marrow 27. renal
pyramids (R) 28. renal pyramids (L) 29. digestive tract tissue 30. digestive
tract cavity 31. pulmonary arteries (R) 32. pulmonary arteries (L) 33. bronchi
(R) 34. bronchi (L) 35. intervertebral discs 36. hepatic arteries 37. hepatic
vena cava 38. hepatic portal veins.

Mean runtime and memory footprint figures for voxel and

10%-clustered image segmentations are given in Table III.

We have compared our results on the BrainWeb dataset with

those reported in [31] which is the only recent work we are

aware of that evaluates the Expansion Moves algorithm on

brain tissue classification using the Potts prior model. There

are, however, some differences between the segmentation

approach in [31] and ours. Firstly, it uses Gaussian likelihood

functions the parameters of which are learned during an itera-

tive application of the algorithm. Secondly, it discards all but

brain structures i.e. cerebrospinal fluid, gray and white matters,

which exhibit good contrast in images in general [44]. Thus,

computational complexity is reduced and the segmentation

task is made easier. In our evaluation, we have used the same

subset of the BrainWeb dataset as [31] corresponding to the 12

T1-weighted images generated with inhomogeneity levels 20%

and 40% and all noise levels. In Fig. 7, we compare means

and standard deviations for DSM, sensitivity and specificity

measures4 for the 3 brain structures from full-image vicinity

prior segmentations with corresponding measures in [31].

Unsurprisingly, results we report are not superior. Specialized

methods are expected to, and indeed should, produce better

results. Therefore, the present comparison is an indication of

how close a generic approach can come to a specialized one

on this problem instance. Nevertheless, a practical advantage

of our approach is that no manual tissue removal is required

to segment the brain volume.

2) Thoracic-abdominal CT image: Lastly, we present a

segmentation case study of in vivo acquired data on a thoracic-

abdominal 3D CT-scan realized during the arterial phase in

inhaled position. The image comes from the 3D-IRCADb

dataset [45] and is accompanied by a manual segmentation of

21 structures created by clinical experts of which we use 16 in

evaluation. The image volume we use is of size 480×370×167
voxels with 0.961 × 0.961 × 1.8 mm voxel size. We have

segmented all visible structures in this image, including those

for which no ground-truth estimate was available. The vicinity

prior is defined according to the graph model of 34 structures

given in Fig. 8b. Seeds were input by a user through a

graphical interface by marking few dozens of pixels of any

target structure visible in every tenth axial cross-section.

Table II gives overall and individual-class DSM measures for

Potts and vicinity prior-based Graph Cut segmentation applied

to the 5%-clustered image at t = 0.5. The statistical test

shows that the improvement brought by vicinity prior on mean

DSM is significant at level α = 0.05. Qualitative comparison

is given in Fig. 9 on coronal cross-sections of ground-truth,

vicinity prior and Potts prior-segmented images. Note that

the ground-truth can be relied on for qualitative inspection

only for the structures listed in Table II. Fig. 10 gives 3D

views of simplified surface meshes generated from different

structure volumes via the mesh simplification method in [46].

4Sensitivity and specificity are defined respectively as the true-positive and
the true-negative rates for individual label classes.
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(a) (b) (c)

Fig. 9. Qualitative comparison of Potts and vicinity-prior based segmentations of the 5%-clustered 3D-IRCADb thoracic-abdominal CT image. Coronal
cross-sections are for (a) ground-truth (b) vicinity prior and (c) Potts prior-segmented images. Refer to color code in Fig. 8b. Ellipses on (c) indicate erroneous
segmentations of right lung (top left), muscle (top right), air (center left), right and left renal pyramids (center) and bone marrow (bottom). Notice how right
and left lungs are correctly segmented as distinct organs with vicinity prior.

(a) (b) (c)

Fig. 10. 3D views of surface meshes for selected structures generated from 3D-IRCADb thoracic-abdominal CT image segmentation via vicinity prior.

Runtime and memory footprint figures for voxel and 5%-

clustered image segmentations are given in Table III.

We conclude this section with surface error measurements

for Potts and vicinity prior-based segmentations of the 5%-

clustered thoracic-abdominal CT image. In Fig. 11, we trace

the cumulative histograms of error (11) for 6 representative

structures from both segmentations. Presented graphs indicate

the percentage of segmented surface lying within a given

distance from the true surface. We can see that for reasonably

low error levels of 0–1 cm, vicinity prior segmentation has

retrieved a considerably larger fraction of structure boundaries

than its Potts prior counterpart suffering much lower maximum

error. However, it has produced some noticeable outliers,

notably for the heart and right lung volumes. Such outliers

constitute a small percentage of the structure, and can be

corrected via “corrective” seeds as mentioned in Section III-B.

V. DISCUSSION AND FUTURE WORK

Unlike the Potts prior model, the vicinity prior model we

propose is a piecewise-constant model incurring multiple lev-

els of penalization capturing the explicit spatial configuration

of objects in multiobject segmentation problems. Compared to

shape prior-based segmentation approaches, structural models

capturing such spatial configurations are quite robust to shape

deformations, because relative positions of objects remain

largely stable. Furthermore, such models are relatively easy to

define at an arbitrary level of detail out of simple specifications

of spatial relationships on pairs of objects, and may also
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Fig. 11. Surface error measurements for (a) Potts and (b) vicinity prior seg-
mentations of the 5%-clustered 3D-IRCADb thoracic-abdominal CT image.

be generated from existing anatomical models for medical

applications as we have seen in Section IV.

The shortest-path formulation produces a prior that is

submodular which allows us to optimize (5) via the effi-

cient Expansion Moves Graph Cut algorithm. Pairwise priors

learned from training sets might not satisfy this property.

Therefore some authors truncate nonsubmodular terms in order

to optimize with Graph Cut algorithms [24], and others resort

to arbitrary energy minimizers [18].

Qualitative validation and quantitative analysis on synthetic,

simulated and real medical images in Section IV confirmed

the advantages of our vicinity prior model over the standard

Potts model for Graph Cut segmentation, particularly for the
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segmentation of distinct objects having identical intensities,

the accurate placement of structure boundaries in addition

to robustness to clustering resolution. However, like most

Graph Cut approaches, our segmentation method is prone to

a shrinking bias. This is especially true for thin, elongated

structures, like vasculature, where the sum of pairwise costs

along the boundary of a vessel is higher than the cost of a

shortcut through its thin structure, especially when data-cost

terms do not incur a sufficiently strong preference for the

vessel’s class. We can notice the fragmentary segmentation of

abdominal and hepatic arteries and portal veins in Fig. 10b.

A number of solutions have been proposed to overcome

this problem. For example, [47] improves an initial single-

object Graph Cut segmentation with connectivity constraints

introduced by the user via markings on image regions which

need to be connected to the principal object. [48] proposes

a Hessian-based “vesselness” likelihood approach for Graph

Cut segmentation of hepatic blood vessels and portal veins in

CT images, which could be applied to similar structures such

as bronchi and pulmonary arteries.

We are currently investigating the extension of the graph-

based prior model to express other types of relations, notably

spatial directionality. Since the shortest-path weight formu-

lation on a directed graph would produce asymmetric pair-

wise prior definitions, such extensions would understandably

require revisiting some of the fundamental aspects of the

underlying theory of Bayesian labeling.

Another interesting venue for future research is the intro-

duction of uncertainty into the graph-based prior model. As

noted in Section III-A, graph models we use to define the

vicinity prior are not limited to unit or discrete edge weights.

Continuous weighs might be used, for example, to express

degrees of adjacency, which might be learned from several

model variants and thus capture possible variabilities.

TABLE I
MEAN AND STANDARD DEVIATIONS FOR OVERALL AND

INDIVIDUAL-CLASS DSM MEASURES FOR VOXEL AND 10%-CLUSTERED

SEGMENTATIONS OF BRAINWEB SIMULATED MRI DATASET WITH POTTS

AND VICINITY PRIORS. HIGHLIGHTED VALUES CORRESPOND TO

IMPROVEMENTS SIGNIFICANT AT α = 0.05.

voxels clusters 10%

Structures Potts vicinity Potts vicinity

Air 0.98± 0.01 0.98± 0.01 0.98± 0.01 0.99± 0.00
Cerebrospinal fluid 0.25± 0.16 0.65± 0.06 0.29± 0.11 0.67± 0.05
Gray matter 0.79± 0.09 0.82± 0.08 0.80± 0.08 0.85± 0.06
White matter 0.86± 0.08 0.88± 0.07 0.87± 0.07 0.88± 0.06
Fat 0.89± 0.05 0.84± 0.08 0.87± 0.04 0.85± 0.06
Muscle 0.73± 0.06 0.74± 0.12 0.73± 0.07 0.79± 0.09
Skin 0.70± 0.07 0.75± 0.09 0.69± 0.07 0.75± 0.07
Skull 0.76± 0.07 0.79± 0.05 0.76± 0.05 0.80± 0.04
Connective tissue 0.71± 0.14 0.69± 0.21 0.73± 0.12 0.75± 0.15

Overall 0.81± 0.03 0.85± 0.04 0.82± 0.03 0.87± 0.04
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