
HAL Id: hal-00983240
https://hal.science/hal-00983240

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The time singular limit for a fourth-order damped wave
equation for MEMS

Philippe Laurencot, Christoph Walker

To cite this version:
Philippe Laurencot, Christoph Walker. The time singular limit for a fourth-order damped wave
equation for MEMS. J. Escher, E. Schrohe, J. Seiler, Ch. Walker. Elliptic and Parabolic Equations.
Hannover September 2013, 119, Springer, pp.233–246, 2015, Springer Proceedings in Mathematics and
Statistics. �hal-00983240�

https://hal.science/hal-00983240
https://hal.archives-ouvertes.fr


THE TIME SINGULAR LIMIT FOR A FOURTH-ORDER

DAMPED WAVE EQUATION FOR MEMS

PHILIPPE LAURENÇOT AND CHRISTOPH WALKER

ABSTRACT. We consider a free boundary problem modeling electrostatic microelectromechanical systems.

The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled

to an elliptic equation for the electrostatic potential. We first review some recent results on existence and non-

existence of steady-states as well as on local and global well-posedness of the dynamical problem, the main

focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the

solutions in the time singular limit when the ratio between inertial and damping effects tends to zero.

1. INTRODUCTION

An idealized electostatically actuated microelectromechanical system (MEMS) consists of a fixed hori-

zontal ground plate held at zero potential above which an elastic plate (or membrane) held at potential V

is suspended, see Figure 1. A Coulomb force is generated by the potential difference across the device

and results in a displacement of the elastic plate, thereby converting electrostatic energy into mechanical

energy, see [4,19] for a more detailed account and further references. After a suitable scaling and assuming

homogeneity in the transversal horizontal direction (i.e. no y-dependence in Figure 1), the ground plate is

assumed to be located at z =−1 and the plate displacement u = u(t,x) ∈ (−1,∞) evolves according to

γ2∂ 2
t u+∂tu+β∂ 4

x u− τ∂ 2
x u

=−λ
(

ε2 |∂xψ(t,x,u(t,x))|2+ |∂zψ(t,x,u(t,x))|2
)

(1)

for t > 0 and x ∈ I := (−1,1) with clamped boundary conditions

(2) u(t,±1) = ∂xu(t,±1) = 0 , t > 0 ,

FIGURE 1. Sketch of an idealized electrostatic MEMS device.
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and initial conditions

(3) u(0,x) = u0(x) , γ2∂tu(0,x) = γ2u1(x) , x ∈ I .

In (1), γ2 ≥ 0 measures the ratio of inertial and damping forces which are given by the second and first

order time derivatives, respectively, while β∂ 4
x u with β ≥ 0 and −τ∂ 2

x u with τ ≥ 0 account for bending

and stretching of the elastic plate, respectively. The right hand side of (1) reflects the electrostatic forces

exerted on the elastic plate, where the parameter λ > 0 is proportional to the square of the voltage difference

between the two components, and the parameter ε > 0 denotes the aspect ratio of the device (that is, the ratio

height/length). The boundary conditions (2) describe an elastic plate being clamped at its fixed boundary.

Finally, the electrostatic potential ψ = ψ(t,x,z) satisfies a rescaled Laplace equation in the time-varying

region

Ω(u(t)) := {(x,z) ∈ I × (−1,∞) : −1 < z < u(t,x)}

between the ground plate and the elastic plate which reads

ε2 ∂ 2
x ψ +∂ 2

z ψ = 0 , (x,z) ∈ Ω(u(t)) , t > 0 ,(4)

ψ(t,x,z) =
1+ z

1+u(t,x)
, (x,z) ∈ ∂Ω(u(t)) , t > 0 .(5)

Note that, when γ > 0, equation (1) is a hyperbolic nonlocal semilinear fourth-order equation for the plate

displacement u, which is coupled to the second-order elliptic equation (4) in the moving domain Ω(u(t)) for

the electrostatic potential ψ . If damping effects dominate over inertia effects one may set γ = 0 in (1)-(3)

and thus obtains a parabolic equation for u.

A noteworthy feature of the above model is that it is only meaningful as long as the elastic plate does not

touch down on the ground plate, that is, the deflection u satisfies u > −1. From a physical point of view

it is expected that above a certain critical threshold of λ , the elastic plate “pulls in” and smashes down on

the ground plate. Obviously, the stable operating conditions of a given MEMS device heavily depend on

the possible occurrence of this so-called “pull in” instability. Mathematically, the touchdown singularity

manifests in the definition of Ω(u(t)) which becomes disconnected if u(t,x) reaches the value −1 at some

point x, but also in the right hand side of (1) as ∂zψ becomes singular at such points since ψ = 1 along z = u

while ψ = 0 along z =−1.

1.1. State of the Art. According to the previous discussion, the mathematical investigation aims at show-

ing that the parameter λ indeed governs the dynamics of (1)-(5), in particular the touchdown behavior and

the closely related issues of global well-posedness and existence of steady states. More precisely, above a

certain threshold value of λ it is conjectured that solutions to (1)-(5) cease to exist globally in time and that

there are no steady-states, while for λ below this critical value, solutions are global and there are at least

two steady states. Moreover, if solutions do not exist globally, then the elastic plate pulls in at some finite

time Tc < ∞, i.e.,

(6) lim
t→Tc

min
x∈I

{u(t,x)}=−1 .

In the special situation of the so-called small aspect ratio model which corresponds to setting ε = 0 in (1)-

(5), it turns out that the electrostatic potential ψ is explicitly given by ψ(t,x,z) = (1+ z)/(1+ u(t,x)) in
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Ω(u(t)) and the full system (1)-(5) reduces to a singular evolution equation only involving u. In this case, a

quite complete characterization of the expected dynamics – confirming almost all of these conjectures – is

obtained in [8, 16], see also [7, 17] for further information as well as [4] and the references therein for the

small aspect ratio model in general.

In contrast, due to the present coupling, the free boundary problem with ε > 0 turns out to be even more

involved and the literature is far more sparse in this case. A series of recent papers, however, addresses these

questions for the free boundary problem when γ = β = 0: see [12] for steady-state solutions, [1] for the

corresponding parabolic problem, and [2, 3] for a quasilinear version thereof. The fourth-order case β > 0

with γ ≥ 0 is investigated in [13] and we shall review its main results below (see also [14] for a quasilinear

version for β > 0 and γ = 0).

In all the just cited references on the free boundary problem, a very crucial ingredient in the analysis is the

understanding of the elliptic problem (4)-(5) in the domain Ω(u) in dependence of a given (free) boundary

described by a function u : [−1,1] → (−1,∞) for a fixed time t (being suppressed for the moment). In

particular, precise information on the gradient trace of the potential ψ = ψu on the elastic plate is required

as a function of u. For this, one can transform the Laplace equation (4)-(5) for ψu to an elliptic problem in

the fixed rectangle I × (0,1) (with coefficients depending on u and its x-derivatives up to second order and

being singular in case that u approaches −1) for a transformed electrostatic potential φu given by

(7) φu(x,η) := ψu

(

x,(1+u(x))η −1
)

, (x,η) ∈ I × (0,1) .

Using then elliptic regularity theory and pointwise multiplications in Sobolev spaces, the following key

result can be shown [1, Proposition 5]:

Proposition 1.1. Given 2α ∈ (0,1/2) and κ ∈ (0,1) define an open subset of H2+2α(I) by

Sα(κ) :=
{

v ∈ H2+2α(I) ;v(±1) = ∂xv(±1) = 0 , ‖v‖H2+2α (I) < 1/κ ,

and v(x)>−1+κ for x ∈ I
}

.

Then, for each u ∈ Sα(κ), there is a unique solution ψ = ψu ∈ H2(Ω(u)) to (4)-(5) and

(8) ‖ψu‖H2(Ω(u)) ≤C0(κ) , u ∈ Sα(κ) ,

with

(9) ‖φu1
−φu2

‖H2(I×(0,1)) ≤C0(κ)‖u1 −u2‖H2+2α (I) , u1,u2 ∈ Sα(κ) ,

for some positive constant C0(κ) depending on κ and also on α , β , τ , and ε , but not on u ∈ Sα(κ).
Moreover, the mapping

g : Sα(κ)→ H2α(I) , u 7→ ε2|∂xψu(x,u(x))|
2+ |∂zψu(x,u(x))|

2

is analytic, bounded, and uniformly Lipschitz continuous.

In fact, estimate (8) follows from [1, Lemma 6] while (9) is shown in [1, Eq. (38)]. Importantly, the

minimal regularity required in order to control the potential ψu in terms of suitable norms of u appears to

be that the latter belongs to W 2
q (I) for some q > 2, whence necessarily 2α > 0 above (see [1, Proposition 5]
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for a more precise result). The regularity properties of the map g are stated in this form for simplicity but

are still sufficient in the fourth-order case β > 0 considered in the following.

As pointed out above, this case is investigated in [13]. In particular, existence and non-existence of steady

states are derived in [13] in dependence of the voltage value λ . While the former is a rather immediate

consequence of the implicit function theorem (once Proposition 1.1 is established), the latter is based on a

nonlinear version of the eigenfunction method which involves a positive eigenfunction in H4(I) associated

to a positive eigenvalue of the fourth-order operator β∂ 4
x − τ∂ 2

x subject to clamped boundary conditions

[6, 15, 18]. The result reads [13, Theorem 1.7]:

Theorem 1.2 (Steady States). (i) Existence: There is λs > 0 such that for each λ ∈ (0,λs), there exists

an asymptotically stable steady state (Uλ ,Ψλ ) to (1)-(5) with Uλ ∈ H4(I) satisfying −1 <Uλ < 0

in I and Ψλ ∈ H2(Ω(Uλ )).
(ii) Non-Existence: There is λc ≥ λs such that there is no (sufficiently smooth) steady state (u,ψ) to

(1)-(5) for λ > λc.

Yet open problems are whether λc = λs and whether there is a second (unstable) steady state for λ < λs

as in the small aspect ratio model, see [8, 16].

In [13] also the well-posedness of the dynamical problem is addressed. Due to Proposition 1.1 one may

write (1)-(5) as a single semilinear Cauchy problem for the plate displacement u (and its time derivative)

that one can then solve by means of semigroup theory. We recall here the main statements from [13,

Propositions 3.1 & 3.2, Corollaries 5.7 & 5.10] and indicate an explicit dependence on the parameter γ for

future purposes:

Theorem 1.3 (Well-Posedness). Let γ ≥ 0 and 2α ∈ (0,1/2). Consider an initial condition (u0,u1) in

H4+2α(I)×H2+2α(I) satisfying u0(±1) = ∂xu0(±1) = u1(±1) = ∂xu1(±1) = 0 and such that u0 > −1

in I. Then the following hold:

(i) Local Existence: For each λ > 0, there is a unique solution (uγ ,ψγ) to (1)-(5) on the maximal

interval of existence [0,Tγ) in the sense that

uγ ∈C
(

[0,Tγ),H
2+2α(I)

)

∩C1
(

[0,Tγ),H
2α(I)

)

if γ > 0 ,

u0 ∈C
(

[0,Tγ),H
4(I)

)

∩C1
(

[0,Tγ),L2(I)
)

if γ = 0 ,

with

∂ k
t uγ ∈ L1

(

(0,T ),H4+2α−2k(I)
)

, k = 0,1,2 , T ∈ (0,Tγ) , γ > 0 ,

satisfies (1)-(3) together with

uγ(t,x)>−1 , (t,x) ∈ [0,Tγ)× I ,

while ψuγ (t) ∈ H2
(

Ω(uγ(t))
)

solves (4)-(5) in Ω(uγ(t)) for each t ∈ [0,Tγ).
(ii) Touchdown: There is γ1 > 0 such that, if γ ∈ [0,γ1], then the solution (uγ ,ψγ) to (1)-(5) obeys the

following criterion for global existence: if for each T > 0 there is κ(T ) ∈ (0,1) such that

uγ(t)≥−1+κ(T ) in I

for t ∈ [0,Tγ)∩ [0,T ], then Tγ = ∞.
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(iii) Global Existence: Given κ ∈ (0,1), there are numbers λ∗ = λ∗(γ,κ)> 0 and N∗ = N∗(γ,κ)> 0

such that Tγ = ∞ provided that

‖(u0,u1)‖H4+2α (I)×H2+2α (I) ≤ N∗ , u0 ≥−1+κ in I ,

and λ ≤ λ∗. In this case, uγ ∈ L∞

(

(0,∞),H2+2α(I)
)

with

inf
(t,x)∈[0,∞)×I

uγ(t,x)>−1 .

Actually, in case of the damping dominated limit γ = 0, less regularity on the initial data is required

while more regularity on the solution (u0,ψ0) may be obtained, see [13, Propositions 3.1 & 3.6] for details.

The global existence result for small λ values stated in part (iii) of the above theorem is based on the

exponential decay of the associated semigroup which stems from the damping term. This fact will be

exploited further in Section 2. Note that for small voltage values λ , touchdown is impossible, even in

infinite time. An interesting, but still lacking salient feature of the physical model is a relation between

λc ≥ λs from Theorem 1.2 and (an optimally chosen) λ∗.

The probably most important contribution to be brought forward by Theorem 1.3 is the global existence

criterion stated in part (ii) which implies that touchdown is the only singularity preventing global existence.

This is in clear contrast to the second-order case β = 0 considered in [1–3], where – in principle – a finite

existence time Tγ may also be due to a blowup of some Sobolev norm of uγ(t, ·) as t → Tγ . Roughly

speaking, this physically most relevant feature is achieved by fully exploiting the additional information

coming from the fourth-order term as well as the underlying gradient flow structure of (1)-(5), the latter

seeming to have been unnoticed so far though being inherent in the model derivation. Indeed, introducing

the total energy

E (uγ) := Em(uγ)−λEe(uγ)

involving the mechanical energy

Em(uγ) :=
β

2
‖∂ 2

x uγ‖
2
L2(I)

+
τ

2
‖∂xuγ‖

2
L2(I)

and the electrostatic energy

(10) Ee(uγ) :=
∫

Ω(uγ )

[

ε2|∂xψuγ (x,z)|
2+ |∂zψuγ (x,z)|

2
]

d(x,z) ,

the following energy equality holds [13, Propositions 1.3 & 1.6]:

Proposition 1.4 (Energy Equality). Under the assumptions of Theorem 1.3 (i),

(11) E (uγ(t))+
γ2

2
‖∂tuγ(t)‖

2
L2(I)

+
∫ t

0
‖∂tuγ(s)‖

2
L2(I)

ds = E (u0)+
γ2

2
‖u1‖2

L2(I)

for t ∈ [0,Tγ).

Note, however, that the energy E is the sum of terms with different signs and is thus not coercive. The

main difficulty in the proof of Proposition 1.4 is the computation of the derivative of Ee(uγ) with respect

to uγ since its dependence on uγ is somehow implicit and involves the domain Ω(uγ). Nevertheless, the
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derivative can be interpreted as the shape derivative of the Dirichlet integral of ψγ = ψuγ , which can be

computed and shown to be equal to the right hand side of (1) – except for the sign – by shape optimization

arguments [13]. An additional difficulty stems from the fact that the time regularity of uγ as stated in part

(i) of Theorem 1.3 is not sufficient for a direct computation and one rather has to use an approximation

argument.

To prove then the significant criterion for global existence from part (ii) of Theorem 1.3, one may proceed

as follows: As long as uγ(t, ·) stays away from −1, one may control the electrostatic energy Ee(uγ(t)) by

the mechanical energy Em(uγ(t)) and then derives from the time decrease of E (uγ(t)) implied by Propo-

sition 1.4 first a bound on the H2(I)- norm of uγ(t) and subsequently also on higher Sobolev norms by a

bootstrapping argument which yields global existence.

1.2. The Time Singular Limit. In many research papers – mostly dedicated to the small aspect ratio model

with ε = 0 – inertial effects are neglected from the outset as damping effects may be predominant, a few

exceptions being [7, 10]. In this note we now shall investigate the behavior of the solutions in the damping

dominated limit γ2 → 0. Obviously, considering such a time singular limit from a mathematical point of

view requires in particular a common interval of existence, independent of γ , that is, a lower bound on the

maximal existence time Tγ . This is provided by the first result of this paper:

Proposition 1.5 (Minimal Existence Time). Let 2α ∈ (0,1/2), γ ∈ (0,γ1], λ > 0. Consider an initial condi-

tion (u0,u1)∈ H4+2α (I)×H2+2α(I) such that u0 ∈ Sα(κ) for some κ ∈ (0,1) and u1(±1) = ∂xu1(±1) = 0.

Let (uγ ,ψγ) be the unique solution to (1)-(5) defined on the maximal interval of existence [0,Tγ). There are

γ̂ := γ̂
(

κ ,γ1,‖u1‖H2α
D (I)

)

∈ (0,γ1], N := N(κ ,γ1)> 0, and Λ := Λ(κ ,γ1)> 0 such that:

(i) There is T̂ := T̂
(

λ ,κ ,γ1,‖u0‖H4+2α (I)

)

∈ (0,∞) such that, for all γ ∈ (0, γ̂), Tγ > T̂ and uγ(t) ∈

Sα(κ/2) for t ∈ [0, T̂ ].
(ii) If λ ∈ (0,Λ) and ‖u0‖H4+2α (I) ≤ N, then Tγ = ∞ and uγ(t) ∈ Sα(κ/2) for t ≥ 0 and γ ∈ (0, γ̂).

The proof of this proposition is given in Section 2. It relies on an exponential decay of the energy

associated to the damped wave equation being independent of γ ∈ [0,γ1].
As a consequence we are in a position to investigate the damping dominated limit and prove that (uγ ,ψγ)

converges toward (u0,ψ0) in a suitable sense as γ2 → 0.

Theorem 1.6 (Damping Dominated Limit). Under the assumptions of Proposition 1.5 (i) and as γ2 −→ 0,

(12) uγ −→ u0 in C
(

[0, T̂ ],H2+2ξ (I)
)

for each ξ ∈ (0,α) and

(13) φuγ −→ φu0
in C

(

[0, T̂ ],H2(I × (0,1))
)

,

where φuγ is the transformed electrostatic potential given by (7) (with u replaced by uγ). In addition, if

u0 = u1 = 0, then

(14) ∂tuγ −→ ∂tu0 in Lp

(

0, T̂ ;H2α(I)
)
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for each p ∈ (1,∞). Under the assumptions of Proposition 1.5 (ii), statements (12)-(14) are true for each

T > 0 instead of T̂ .

The proof of Theorem 1.6 is performed in Section 3. It is based on compactness properties of (uγ ,ψγ)γ∈(0,γ1)

being provided by the energy functional E .

2. A LOWER BOUND ON THE MAXIMAL EXISTENCE TIME

In order to prove Proposition 1.5, we consider an initial condition (u0,u1) belonging to H4+2α
D (I)×

H2+2α
D (I) and such that u0 ∈ Sα(κ) for some κ ∈ (0,1) and 2α ∈ (0,1/2), where

Hθ
D(I) :=























{

v ∈ Hθ (I) ; v(±1) = ∂xv(±1) = 0
}

, θ >
3

2
,

{

v ∈ Hθ (I) ; v(±1) = 0
}

,
1

2
< θ <

3

2
,

Hθ (I) , θ <
1

2
.

We fix γ ∈ (0,γ1] with γ1 > 0 introduced in Theorem 1.3 (ii) and let (uγ ,ψγ) with

uγ ∈C
(

[0,Tγ),H
2+2α
D (I)

)

∩C1
(

[0,Tγ),H
2α
D (I)

)

and

∂ k
t uγ ∈ L1

(

(0,T ),H4+2α−2k
D (I)

)

, k = 0,1,2 , T ∈ (0,Tγ) ,

be the unique solution to (1)-(5) on the maximal interval of existence [0,Tγ) as provided by Theorem 1.3.

Then, introducing the operator

Aα := β∂ 4
x − τ∂ 2

x ∈ L
(

H4+2α
D (I),H2α

D (I)
)

we have

γ2 d2

dt2
uγ +

d

dt
uγ +Aαuγ =−λg(uγ) , t ∈ (0,Tγ) ,

in H2α
D (I), the function g being defined in Proposition 1.1.

We want to control a suitable norm of uγ(t) for which we basically use an idea from [9, Section 2], the

difference mainly being the focus on estimates which are uniform with respect to γ ∈ (0,γ1]. To this end,

define

v(t) := uγ(t)−u0 and f (t) :=−λg(uγ(t))−Aαu0

for t ∈ [0,Tγ). Then v solves the equation

(15) γ2 d2

dt2
v+

d

dt
v+Aαv = f , t ∈ (0,Tγ) ,

in H2α
D (I) with initial condition (v(0),∂tv(0)) = (0,u1). Recall that there are real numbers c2 ≥ c1 ≥ c0 ≥ 1

such that

(16) ‖z‖2
H2α

D (I)
≤ c0‖z‖2

H2+2α
D (I)

≤ c1‖A
1/2
α z‖2

H2α
D (I)

≤ c2‖z‖2

H2+2α
D (I)
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for all z ∈ H2+2α
D (I). Then, defining

E(t) :=
∥

∥

∥
A

1/2
α v(t)

∥

∥

∥

2

H2α
D (I)

+ γ2 ‖∂tv(t)‖
2
H2α

D (I) , t ∈ (0,Tγ) ,

and

F(t) := γ 〈v(t) , ∂tv(t)〉H2α
D (I) , t ∈ (0,Tγ) ,

we deduce from (15), (16), and the self-adjointness of A
1/2
α in H2α

D (I) that

(17)
d

dt
E(t) =−2‖∂tv(t)‖

2
H2α

D (I)+2〈 f (t) , ∂tv(t)〉H2α
D (I)

and

(18) |F(t)| ≤
c1

2
E(t)

for a. e. t ∈ (0,Tγ). Next, let

b := min

{

2

2γ2
1 + c1 +1

,
1

2c1
,

1

γ1c1

}

and introduce G(t) := E(t)+bγF(t) for t ∈ (0,Tγ). According to (16)-(18) and Young’s inequality,

d

dt
G(t) =

(

−2+bγ2
)

‖∂tv(t)‖
2
H2α

D (I)−b〈v(t) , ∂tv(t)+Aαv(t)− f (t)〉H2α
D (I)

+2〈 f (t) , ∂tv(t)〉H2α
D (I)

≤
(

−2+bγ2
)

‖∂tv(t)‖
2
H2α

D (I)−b

∥

∥

∥
A

1/2
α v(t)

∥

∥

∥

2

H2α
D (I)

+b

(

1

4c1
‖v(t)‖2

H2α
D (I)

+ c1 ‖∂tv(t)‖
2
H2α

D (I)

)

+
b2

2
‖v(t)‖2

H2α
D (I)

+
1

2
‖ f (t)‖2

H2α
D (I)

+b‖∂tv(t)‖
2
H2α

D (I)+
1

b
‖ f (t)‖2

H2α
D (I)

≤
(

−2+bγ2 +bc1 +b
)

‖∂tv(t)‖
2
H2α

D (I)−
b

2

∥

∥

∥
A

1/2
α v(t)

∥

∥

∥

2

H2α
D (I)

+
b

2

((

1

2c1
+b

)

‖v(t)‖2
H2α

D (I)−
∥

∥

∥
A

1/2
α v(t)

∥

∥

∥

2

H2α
D (I)

)

+

(

1

2
+

1

b

)

‖ f (t)‖2
H2α

D (I)

for a. e. t ∈ (0,Tγ). Since the choice of b ensures that

1

2c1
+b ≤

1

c1
and −2+b(γ2 + c1 +1)≤−bγ2 ,
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the third term in the right hand side is non-positive by (16) and we obtain

d

dt
G(t)≤−

b

2
E(t)+

b+2

2b
‖ f (t)‖2

H2α
D (I)

for a.e. t ∈ (0,Tγ) .

Observe that (18) and the choice of b also ensure

1

2
E(t)≤

(

1−
c1bγ

2

)

E(t)≤ G(t)≤

(

1+
c1bγ

2

)

E(t)≤

(

1+
c1bγ1

2

)

E(t)

for t ∈ (0,Tγ), whence

d

dt
G(t)≤−

b

2+ c1bγ1
G(t)+

b+2

2b
‖ f (t)‖2

H2α
D (I)

for a.e. t ∈ (0,Tγ) .

Consequently, setting ω := b/(2+ c1bγ1),

E(t)≤ 2G(t)≤
b

ω
e−ωtE(0)+

b+2

bω

(

1− e−ωt
)

sup
s∈(0,t)

{

‖ f (s)‖2
H2α

D (I)

}

for t ∈ (0,Tγ). Now, owing to (16) and the definitions of E(t) and f (t), there is a constant M := M(γ1)> 0

such that

‖uγ(t)−u0‖2

H2+2α
D (I)

≤ Mγ2‖u1‖2
H2α

D (I)
+M

(

1− e−ωt
)

[

λ 2 sup
s∈(0,t)

{

‖g(uγ(s))‖
2
H2α

D (I)

}

+‖u0‖2

H4+2α
D (I)

]

for t ∈ (0,Tγ). Since u0 belongs to Sα(κ), it follows from its time continuity in H2+2α
D (I) and the continuous

embedding of H2+2α
D (I) in L∞(I) that

T̂γ := sup
{

t0 ∈ (0,Tγ) ; uγ(t) ∈ Sα(κ/2) for all t ∈ [0, t0)
}

> 0 .

Then, by Proposition 1.1,

‖g(uγ(t))‖H2α
D (I) ≤ c3(κ) := sup

w∈Sα (κ/2)

{

‖g(w)‖H2α
D (I)

}

, t ∈ [0, T̂γ) ,

and we conclude that

‖uγ(t)−u0‖2

H2+2α
D (I)

≤ Mγ2‖u1‖2
H2α

D (I)

+M
[

λ 2c3(κ)
2 +‖u0‖2

H4+2α
D (I)

]

(

1− e−ωt
)

for t ∈ [0, T̂γ). Therefore, since u0 ∈ Sα(κ) and since H2+2α
D (I) embeds continuously in L∞(I) with constant,

say, c4 ≥ 1, the previous inequality ensures that

‖uγ(t)‖H2+2α
D (I) ≤ ‖uγ(t)−u0‖

H2+2α
D (I)+‖u0‖

H2+2α
D (I) <

2

κ
as soon as

Mγ2‖u1‖2
H2α

D (I)
+M

[

λ 2c3(κ)
2 +‖u0‖2

H4+2α
D (I)

]

(

1− e−ωt
)

<
1

κ2
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and

uγ(t)≥ u0 −‖uγ(t)−u0‖L∞(I) ≥ κ −1− c4‖uγ(t)−u0‖
H2+2α

D (I) >
κ

2
−1

as soon as

Mγ2‖u1‖2
H2α

D (I)
+M

[

λ 2c3(κ)
2 +‖u0‖2

H4+2α
D (I)

]

(

1− e−ωt
)

<
κ2

4c2
4

.

Thus, since κ2/(4c2
4) ≤ 1 ≤ 1/κ2, we deduce from the above analysis that uγ(t) belongs to Sα(κ/2) pro-

vided t ∈ [0, T̂γ) and γ ∈ (0,γ1] satisfy

(19) γ2‖u1‖2
H2α

D (I)
<

κ2

8Mc2
4

and

(20)
[

λ 2c3(κ)
2+‖u0‖2

H4+2α
D (I)

]

(

1− e−ωt
)

<
κ2

8Mc2
4

.

Therefore, there are

γ̂ := γ̂
(

κ ,γ1,‖u1‖H2α
D (I)

)

∈ (0,γ1) and T̂ := T̂
(

λ ,κ ,γ,‖u0‖
H4+2α

D (I)

)

> 0

such that

uγ(t) ∈ Sα(κ/2) for t ∈ [0, T̂γ)∩ [0, T̂ ] and γ ∈ (0, γ̂)

Recalling the definition of T̂γ , the previous statement implies in particular that T̂γ ≥ T̂ . Finally, owing to the

positivity of ω , it is clear that if one requires that

λ 2c3(κ)
2 +‖u0‖2

H4+2α
D (I)

<
κ2

8Mc2
4

instead of (20), there are Λ := Λ(κ ,γ1)> 0 and N :=N(κ ,γ1)> 0 such that uγ(t) belongs to Sα(κ/2) for all

t ∈ [0,Tγ) and γ ∈ (0, γ̂) provided that λ ∈ (0,Λ) and ‖u0‖
H4+2α

D (I) ≤ N, whence Tγ = ∞ by Theorem 1.3 (ii).

This proves Proposition 1.5.

3. THE TIME SINGULAR LIMIT γ2 −→ 0

In order to prove Theorem 1.6 we stick to the notation from the previous section. Recall that

(21) uγ(t) ∈ Sα(κ/2) , t ∈ [0, T̂ ] , γ ∈ (0, γ̂) .

It then follows from (8) that

‖ψuγ (t)‖H2(Ω(uγ (t))) ≤C0(κ) , t ∈ [0, T̂ ] , γ ∈ (0, γ̂) .

This gives a uniform bound on the electrostatic energy Ee(uγ(t)) defined in (10) so that (11) implies

(22)
γ2

2
‖uγ(t)‖

2
L2(I)

+

∫ t

0

∥

∥∂tuγ(s)
∥

∥

2

L2(I)
ds ≤ c(κ) , t ∈ [0, T̂ ] , γ ∈ (0, γ̂) .
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Now, let ξ ∈ (0,α). Owing to (21) and (22), the set {uγ ; γ ∈ (0, γ̂)} is bounded in L∞(0, T̂ ;H2+2ξ (I)) with

{∂tuγ(t) ; γ ∈ (0, γ̂)} bounded in L2

(

(0, T̂ )× I
)

. We then infer from the compactness of the embedding of

H2+2ξ (I) in H2+2α(I) and [20, Corollary 4] that there are subsequence of γ2 −→ 0 (not relabeled) and ū0

in C
(

[0, T̂ ],H
2+2ξ
D (I)

)

such that

(23) uγ −→ ū0 in C
(

[0, T̂ ],H
2+2ξ
D (I)

)

.

Clearly, ū0(t) ∈ Sα(κ/4) for t ∈ [0, T̂ ] by (21) and (23). The latter and (9) also imply

‖φuγ (t)−φū0(t)‖H2(I×(0,1)) ≤C0(κ/4)‖uγ(t)− ū0(t)‖H2+2ξ (I)

for t ∈ [0, T̂ ] and γ ∈ (0, γ̂). Consequently, Theorem 1.6 follows if we can show that ū0 and u0 coincide.

To this end recall that the function g : S(κ/4)→ H2α
D (I), defined in Proposition 1.1, is uniformly Lipschitz

continuous. In particular, from (23) we deduce that for each p ∈ (1,∞),

(24) g(uγ)−→ g0 := g(ū0) in Lp

(

0, T̂ ;H2α
D (I)

)

.

Thus, if vγ denotes the solution to the linear Cauchy problem

γ2 d2

dt2
v+

d

dt
v+Aαv = −λg(uγ) , t ∈ [0, T̂ ] ,

subject to zero initial conditions

v(0) = γ2∂tv(0) = 0 ,

for γ ∈ (0, γ̂) (with v0 denoting accordingly the solution with γ = 0), it follows from (24), the fact that

−Aα generates a strongly continuous cosine family in H2α
D (I) as pointed out in [13, Section 3.2], and [5,

VI.Theorem 7.6] that

(25) vγ −→ v0 in C
(

[0, T̂ ],H2α
D (I)

)

, ∂tvγ −→ ∂tv0 in Lp

(

0, T̂ ;H2α
D (I)

)

.

On the other hand, if wγ denotes the solution to the homogeneous Cauchy problem

γ2 d2

dt2
w+

d

dt
w+Aαw = 0 , t > 0 ,

subject to the initial conditions

w(0) = u0 , γ2∂tw(0) = γ2u1 ,

for γ ∈ (0, γ̂) (with w0 denoting accordingly the solution with γ = 0), then

(26) wγ −→ w0 in C
(

[0, T̂ ],H2α
D (I)

)

owing to [11, Theorem 3.2]. Clearly, by uniqueness of solutions to linear wave equations, we have uγ =
vγ +wγ , and consequently, from (23), (25), and (26) we derive that ū0 = v0 +w0 solves

d

dt
ū0 +Aα ū0 =−λg(ū0) , t ∈ (0, T̂ ] , ū0(0) = u0 .
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Since the above Cauchy problem has a unique solution according to Theorem 1.3, namely u0 (restricted to

[0, T̂ ]), we conclude that ū0 = u0 and since this limit is independent of the subsequence γ2 −→ 0, Theo-

rem 1.6 is proven.
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[2] J. Escher, Ph. Laurençot, and Ch. Walker. Dynamics of a free boundary problem with curvature modeling electrostatic

MEMS. Trans. Amer. Math. Soc., to appear.
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