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THE TIME SINGULAR LIMIT FOR A FOURTH-ORDER DAMPED WAVE EQUATION FOR MEMS

We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential. We first review some recent results on existence and nonexistence of steady-states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit when the ratio between inertial and damping effects tends to zero.

INTRODUCTION

An idealized electostatically actuated microelectromechanical system (MEMS) consists of a fixed horizontal ground plate held at zero potential above which an elastic plate (or membrane) held at potential V is suspended, see Figure 1. A Coulomb force is generated by the potential difference across the device and results in a displacement of the elastic plate, thereby converting electrostatic energy into mechanical energy, see [START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF][START_REF] Pelesko | Modeling MEMS and NEMS[END_REF] for a more detailed account and further references. After a suitable scaling and assuming homogeneity in the transversal horizontal direction (i.e. no y-dependence in Figure 1), the ground plate is assumed to be located at z = -1 and the plate displacement u = u(t, x) ∈ (-1, ∞) evolves according to γ 2 ∂ 2 t u + ∂ t u + β ∂ 4 x u -τ∂ 2 x u = -λ ε 2 |∂ x ψ(t, x, u(t, x))| 2 + |∂ z ψ(t, x, u(t, x))| 2 [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] for t > 0 and x ∈ I := (-1, 1) with clamped boundary conditions [START_REF] Escher | Dynamics of a free boundary problem with curvature modeling electrostatic MEMS[END_REF] u(t, ±1) = ∂ x u(t, ±1) = 0 , t > 0 , (3) u(0, x) = u 0 (x) , γ 2 ∂ t u(0, x) = γ 2 u 1 (x) , x ∈ I .

In (1), γ 2 ≥ 0 measures the ratio of inertial and damping forces which are given by the second and first order time derivatives, respectively, while β ∂ 4

x u with β ≥ 0 and -τ∂ 2 x u with τ ≥ 0 account for bending and stretching of the elastic plate, respectively. The right hand side of (1) reflects the electrostatic forces exerted on the elastic plate, where the parameter λ > 0 is proportional to the square of the voltage difference between the two components, and the parameter ε > 0 denotes the aspect ratio of the device (that is, the ratio height/length). The boundary conditions [START_REF] Escher | Dynamics of a free boundary problem with curvature modeling electrostatic MEMS[END_REF] describe an elastic plate being clamped at its fixed boundary. Finally, the electrostatic potential ψ = ψ(t, x, z) satisfies a rescaled Laplace equation in the time-varying region Ω(u(t)) := {(x, z) ∈ I × (-1, ∞) : -1 < z < u(t, x)} between the ground plate and the elastic plate which reads

ε 2 ∂ 2 x ψ + ∂ 2 z ψ = 0 , (x, z) ∈ Ω(u(t)) , t > 0 , (4) ψ(t, x, z) = 1 + z 1 + u(t, x) , (x, z) ∈ ∂ Ω(u(t)) , t > 0 . (5)
Note that, when γ > 0, equation ( 1) is a hyperbolic nonlocal semilinear fourth-order equation for the plate displacement u, which is coupled to the second-order elliptic equation ( 4) in the moving domain Ω(u(t)) for the electrostatic potential ψ. If damping effects dominate over inertia effects one may set γ = 0 in (1)-( 3) and thus obtains a parabolic equation for u.

A noteworthy feature of the above model is that it is only meaningful as long as the elastic plate does not touch down on the ground plate, that is, the deflection u satisfies u > -1. From a physical point of view it is expected that above a certain critical threshold of λ , the elastic plate "pulls in" and smashes down on the ground plate. Obviously, the stable operating conditions of a given MEMS device heavily depend on the possible occurrence of this so-called "pull in" instability. Mathematically, the touchdown singularity manifests in the definition of Ω(u(t)) which becomes disconnected if u(t, x) reaches the value -1 at some point x, but also in the right hand side of (1) as ∂ z ψ becomes singular at such points since ψ = 1 along z = u while ψ = 0 along z = -1.

1.1. State of the Art. According to the previous discussion, the mathematical investigation aims at showing that the parameter λ indeed governs the dynamics of (1)- [START_REF] Fattorini | Second Order Linear Differential Equations in Banach Spaces[END_REF], in particular the touchdown behavior and the closely related issues of global well-posedness and existence of steady states. More precisely, above a certain threshold value of λ it is conjectured that solutions to (1)-( 5) cease to exist globally in time and that there are no steady-states, while for λ below this critical value, solutions are global and there are at least two steady states. Moreover, if solutions do not exist globally, then the elastic plate pulls in at some finite time T c < ∞, i.e., [START_REF] Grunau | Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem[END_REF] lim

t→T c min x∈I {u(t, x)} = -1 .
In the special situation of the so-called small aspect ratio model which corresponds to setting ε = 0 in (1)- [START_REF] Fattorini | Second Order Linear Differential Equations in Banach Spaces[END_REF], it turns out that the electrostatic potential ψ is explicitly given by ψ(t, x, z) = (1 + z)/(1 + u(t, x)) in Ω(u(t)) and the full system (1)-( 5) reduces to a singular evolution equation only involving u. In this case, a quite complete characterization of the expected dynamics -confirming almost all of these conjectures -is obtained in [START_REF] Guo | Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions[END_REF][START_REF] Laurenc | A fourth-order model for MEMS with clamped boundary conditions[END_REF], see also [START_REF] Guo | Dynamical solutions of singular wave equations modeling electrostatic MEMS[END_REF][START_REF] Lindsay | Multiple quenching solutions of a fourth order parabolic PDE with a singular nonlinearity modeling a MEMS capacitor[END_REF] for further information as well as [START_REF] Esposito | Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS[END_REF] and the references therein for the small aspect ratio model in general.

In contrast, due to the present coupling, the free boundary problem with ε > 0 turns out to be even more involved and the literature is far more sparse in this case. A series of recent papers, however, addresses these questions for the free boundary problem when γ = β = 0: see [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF] for steady-state solutions, [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF] for the corresponding parabolic problem, and [START_REF] Escher | Dynamics of a free boundary problem with curvature modeling electrostatic MEMS[END_REF][START_REF] Escher | Finite time singularity in a free boundary problem modeling MEMS[END_REF] for a quasilinear version thereof. The fourth-order case β > 0 with γ ≥ 0 is investigated in [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF] and we shall review its main results below (see also [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: II. Nonlinear bending effects[END_REF] for a quasilinear version for β > 0 and γ = 0).

In all the just cited references on the free boundary problem, a very crucial ingredient in the analysis is the understanding of the elliptic problem (4)- [START_REF] Fattorini | Second Order Linear Differential Equations in Banach Spaces[END_REF] in the domain Ω(u) in dependence of a given (free) boundary described by a function u : [-1, 1] → (-1, ∞) for a fixed time t (being suppressed for the moment). In particular, precise information on the gradient trace of the potential ψ = ψ u on the elastic plate is required as a function of u. For this, one can transform the Laplace equation ( 4)- [START_REF] Fattorini | Second Order Linear Differential Equations in Banach Spaces[END_REF] for ψ u to an elliptic problem in the fixed rectangle I × (0, 1) (with coefficients depending on u and its x-derivatives up to second order and being singular in case that u approaches -1) for a transformed electrostatic potential φ u given by [START_REF] Guo | Dynamical solutions of singular wave equations modeling electrostatic MEMS[END_REF] φ u (x, η) := ψ u x, (1 + u(x))η -1 , (x, η) ∈ I × (0, 1) .

Using then elliptic regularity theory and pointwise multiplications in Sobolev spaces, the following key result can be shown [1, Proposition 5]:

Proposition 1.1. Given 2α ∈ (0, 1/2) and κ ∈ (0, 1) define an open subset of H 2+2α (I) by S α (κ) := v ∈ H 2+2α (I) ; v(±1) = ∂ x v(±1) = 0 , v H 2+2α (I) < 1/κ, and v(x) > -1 + κ for x ∈ I .
Then, for each u ∈ S α (κ), there is a unique solution ψ = ψ u ∈ H 2 (Ω(u)) to (4)-( 5) and

(8) ψ u H 2 (Ω(u)) ≤ C 0 (κ) , u ∈ S α (κ) , with (9) φ u 1 -φ u 2 H 2 (I×(0,1)) ≤ C 0 (κ) u 1 -u 2 H 2+2α (I) , u 1 , u 2 ∈ S α (κ) ,
for some positive constant C 0 (κ) depending on κ and also on α, β , τ, and ε, but not on u ∈ S α (κ). Moreover, the mapping

g : S α (κ) → H 2α (I) , u → ε 2 |∂ x ψ u (x, u(x))| 2 + |∂ z ψ u (x, u(x))| 2
is analytic, bounded, and uniformly Lipschitz continuous.

In fact, estimate (8) follows from [1, Lemma 6] while ( 9) is shown in [1, Eq. ( 38)]. Importantly, the minimal regularity required in order to control the potential ψ u in terms of suitable norms of u appears to be that the latter belongs to W 2 q (I) for some q > 2, whence necessarily 2α > 0 above (see [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]Proposition 5] for a more precise result). The regularity properties of the map g are stated in this form for simplicity but are still sufficient in the fourth-order case β > 0 considered in the following. As pointed out above, this case is investigated in [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF]. In particular, existence and non-existence of steady states are derived in [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF] in dependence of the voltage value λ . While the former is a rather immediate consequence of the implicit function theorem (once Proposition 1.1 is established), the latter is based on a nonlinear version of the eigenfunction method which involves a positive eigenfunction in H 4 (I) associated to a positive eigenvalue of the fourth-order operator β ∂ 4

x -τ∂ 2 x subject to clamped boundary conditions [START_REF] Grunau | Positivity, change of sign and buckling eigenvalues in a one-dimensional fourth order model problem[END_REF][START_REF] Laurenc | Sign-preserving property for some fourth-order elliptic operators in one dimension or in radial symmetry[END_REF][START_REF] Owen | Asymptotic first eigenvalue estimates for the biharmonic operator on a rectangle[END_REF]. The result reads [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF]Theorem 1.7]:

Theorem 1.2 (Steady States).
(i) Existence: There is λ s > 0 such that for each λ ∈ (0, λ s ), there exists an asymptotically stable steady state

(U λ , Ψ λ ) to (1)-(5) with U λ ∈ H 4 (I) satisfying -1 < U λ < 0 in I and Ψ λ ∈ H 2 (Ω(U λ )).
(ii) Non-Existence: There is λ c ≥ λ s such that there is no (sufficiently smooth) steady state (u, ψ) to

(1)-( 5)

for λ > λ c .
Yet open problems are whether λ c = λ s and whether there is a second (unstable) steady state for λ < λ s as in the small aspect ratio model, see [START_REF] Guo | Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions[END_REF][START_REF] Laurenc | A fourth-order model for MEMS with clamped boundary conditions[END_REF].

In [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF] also the well-posedness of the dynamical problem is addressed. Due to Proposition 1.1 one may write (1)-( 5) as a single semilinear Cauchy problem for the plate displacement u (and its time derivative) that one can then solve by means of semigroup theory. We recall here the main statements from [13, Propositions 3.1 & 3.2, Corollaries 5.7 & 5.10] and indicate an explicit dependence on the parameter γ for future purposes: 1 (±1) = 0 and such that u 0 > -1 in I. Then the following hold:

Theorem 1.3 (Well-Posedness). Let γ ≥ 0 and 2α ∈ (0, 1/2). Consider an initial condition (u 0 , u 1 ) in H 4+2α (I) × H 2+2α (I) satisfying u 0 (±1) = ∂ x u 0 (±1) = u 1 (±1) = ∂ x u
(i) Local Existence: For each λ > 0, there is a unique solution (u γ , ψ γ ) to (1)-( 5) on the maximal interval of existence [0, T γ ) in the sense that 5) obeys the following criterion for global existence: if for each T > 0 there is κ(T ) ∈ (0, 1) such that

u γ ∈ C [0, T γ ), H 2+2α (I) ∩C 1 [0, T γ ), H 2α (I) if γ > 0 , u 0 ∈ C [0, T γ ), H 4 (I) ∩C 1 [0, T γ ), L 2 (I) if γ = 0 , with ∂ k t u γ ∈ L 1 (0, T ), H 4+2α-2k (I) , k = 0, 1, 2 , T ∈ (0, T γ ) , γ > 0 , satisfies (1)-(3) together with u γ (t, x) > -1 , (t, x) ∈ [0, T γ ) × I , while ψ u γ (t) ∈ H 2 Ω(u γ (t)) solves (4)-(5) in Ω(u γ (t)) for each t ∈ [0, T γ ). (ii) Touchdown: There is γ 1 > 0 such that, if γ ∈ [0, γ 1 ], then the solution (u γ , ψ γ ) to (1)-(
u γ (t) ≥ -1 + κ(T ) in I for t ∈ [0, T γ ) ∩ [0, T ], then T γ = ∞.
(iii) Global Existence: Given κ ∈ (0, 1), there are numbers λ * = λ * (γ, κ) > 0 and

N * = N * (γ, κ) > 0 such that T γ = ∞ provided that (u 0 , u 1 ) H 4+2α (I)×H 2+2α (I) ≤ N * , u 0 ≥ -1 + κ in I , and λ ≤ λ * . In this case, u γ ∈ L ∞ (0, ∞), H 2+2α (I) with inf (t,x)∈[0,∞)×I u γ (t, x) > -1 .
Actually, in case of the damping dominated limit γ = 0, less regularity on the initial data is required while more regularity on the solution (u 0 , ψ 0 ) may be obtained, see [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF]Propositions 3.1 & 3.6] for details. The global existence result for small λ values stated in part (iii) of the above theorem is based on the exponential decay of the associated semigroup which stems from the damping term. This fact will be exploited further in Section 2. Note that for small voltage values λ , touchdown is impossible, even in infinite time. An interesting, but still lacking salient feature of the physical model is a relation between λ c ≥ λ s from Theorem 1.2 and (an optimally chosen) λ * .

The probably most important contribution to be brought forward by Theorem 1.3 is the global existence criterion stated in part (ii) which implies that touchdown is the only singularity preventing global existence. This is in clear contrast to the second-order case β = 0 considered in [START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF][START_REF] Escher | Dynamics of a free boundary problem with curvature modeling electrostatic MEMS[END_REF][START_REF] Escher | Finite time singularity in a free boundary problem modeling MEMS[END_REF], where -in principle -a finite existence time T γ may also be due to a blowup of some Sobolev norm of u γ (t, •) as t → T γ . Roughly speaking, this physically most relevant feature is achieved by fully exploiting the additional information coming from the fourth-order term as well as the underlying gradient flow structure of ( 1)-( 5), the latter seeming to have been unnoticed so far though being inherent in the model derivation. Indeed, introducing the total energy

E (u γ ) := E m (u γ ) -λ E e (u γ ) involving the mechanical energy E m (u γ ) := β 2 ∂ 2 x u γ 2 L 2 (I) + τ 2 ∂ x u γ 2 L 2 (I)
and the electrostatic energy

(10) E e (u γ ) := Ω(u γ ) ε 2 |∂ x ψ u γ (x, z)| 2 + |∂ z ψ u γ (x, z)| 2 d(x, z) ,
the following energy equality holds [13, Propositions 1.3 & 1.6]:

Proposition 1.4 (Energy Equality). Under the assumptions of Theorem 1.3 (i),

(11) E (u γ (t)) + γ 2 2 ∂ t u γ (t) 2 L 2 (I) + t 0 ∂ t u γ (s) 2 L 2 (I) ds = E (u 0 ) + γ 2 2 u 1 2 L 2 (I) for t ∈ [0, T γ ).
Note, however, that the energy E is the sum of terms with different signs and is thus not coercive. The main difficulty in the proof of Proposition 1.4 is the computation of the derivative of E e (u γ ) with respect to u γ since its dependence on u γ is somehow implicit and involves the domain Ω(u γ ). Nevertheless, the derivative can be interpreted as the shape derivative of the Dirichlet integral of ψ γ = ψ u γ , which can be computed and shown to be equal to the right hand side of (1) -except for the sign -by shape optimization arguments [START_REF] Laurenc | A free boundary problem modeling electrostatic MEMS: I. Linear bending effects[END_REF]. An additional difficulty stems from the fact that the time regularity of u γ as stated in part (i) of Theorem 1.3 is not sufficient for a direct computation and one rather has to use an approximation argument.

To prove then the significant criterion for global existence from part (ii) of Theorem 1.3, one may proceed as follows: As long as u γ (t, •) stays away from -1, one may control the electrostatic energy E e (u γ (t)) by the mechanical energy E m (u γ (t)) and then derives from the time decrease of E (u γ (t)) implied by Proposition 1.4 first a bound on the H 2 (I)norm of u γ (t) and subsequently also on higher Sobolev norms by a bootstrapping argument which yields global existence.

1.2. The Time Singular Limit. In many research papers -mostly dedicated to the small aspect ratio model with ε = 0 -inertial effects are neglected from the outset as damping effects may be predominant, a few exceptions being [START_REF] Guo | Dynamical solutions of singular wave equations modeling electrostatic MEMS[END_REF][START_REF] Kavallaris | A hyperbolic non-local problem modelling MEMS technology[END_REF]. In this note we now shall investigate the behavior of the solutions in the damping dominated limit γ 2 → 0. Obviously, considering such a time singular limit from a mathematical point of view requires in particular a common interval of existence, independent of γ, that is, a lower bound on the maximal existence time T γ . This is provided by the first result of this paper: Proposition 1.5 (Minimal Existence Time). Let 2α ∈ (0, 1/2), γ ∈ (0, γ 1 ], λ > 0. Consider an initial condition (u 0 , u 1 ) ∈ H 4+2α (I) × H 2+2α (I) such that u 0 ∈ S α (κ) for some κ ∈ (0, 1) and u 1 (±1) = ∂ x u 1 (±1) = 0. Let (u γ , ψ γ ) be the unique solution to (1)-( 5) defined on the maximal interval of existence [0, T γ ). There are

γ := γ κ, γ 1 , u 1 H 2α D (I) ∈ (0, γ 1 ], N := N(κ, γ 1 ) > 0, and Λ := Λ(κ, γ 1 ) > 0 such that: (i) There is T := T λ , κ, γ 1 , u 0 H 4+2α (I) ∈ (0, ∞) such that, for all γ ∈ (0, γ), T γ > T and u γ (t) ∈ S α (κ/2) for t ∈ [0, T ].
(ii) If λ ∈ (0, Λ) and u 0 H 4+2α (I) ≤ N, then T γ = ∞ and u γ (t) ∈ S α (κ/2) for t ≥ 0 and γ ∈ (0, γ). The proof of this proposition is given in Section 2. It relies on an exponential decay of the energy associated to the damped wave equation being independent of γ ∈ [0, γ 1 ].

As a consequence we are in a position to investigate the damping dominated limit and prove that (u γ , ψ γ ) converges toward (u 0 , ψ 0 ) in a suitable sense as γ 2 → 0. Theorem 1.6 (Damping Dominated Limit). Under the assumptions of Proposition 1.5 (i) and as γ 2 -→ 0, [START_REF] Laurenc | A stationary free boundary problem modeling electrostatic MEMS[END_REF] 

u γ -→ u 0 in C [0, T ], H 2+2ξ (I)
for each ξ ∈ (0, α) and

(13) φ u γ -→ φ u 0 in C [0, T ], H 2 (I × (0, 1)) ,
where φ u γ is the transformed electrostatic potential given by (7) (with u replaced by u γ ). In addition, if u 0 = u 1 = 0, then

(14) ∂ t u γ -→ ∂ t u 0 in L p 0, T ; H 2α (I)
for each p ∈ (1, ∞). Under the assumptions of Proposition 1.5 (ii), statements (12)-( 14) are true for each T > 0 instead of T .

The proof of Theorem 1.6 is performed in Section 3. It is based on compactness properties of (u γ , ψ γ ) γ∈(0,γ 1 ) being provided by the energy functional E .

A LOWER BOUND ON THE MAXIMAL EXISTENCE TIME

In order to prove Proposition 1.5, we consider an initial condition (u 0 , u 1 ) belonging to H 4+2α D (I) × H 2+2α D (I) and such that u 0 ∈ S α (κ) for some κ ∈ (0, 1) and 2α ∈ (0, 1/2), where

H θ D (I) :=            v ∈ H θ (I) ; v(±1) = ∂ x v(±1) = 0 , θ > 3 2 , v ∈ H θ (I) ; v(±1) = 0 , 1 2 < θ < 3 2 , H θ (I) , θ < 1 2 .
We fix γ ∈ (0, γ 1 ] with γ 1 > 0 introduced in Theorem 1.3 (ii) and let (u γ , ψ γ ) with

u γ ∈ C [0, T γ ), H 2+2α D (I) ∩C 1 [0, T γ ), H 2α D (I) and ∂ k t u γ ∈ L 1 (0, T ), H 4+2α-2k D (I) , k = 0, 1, 2 , T ∈ (0, T γ ) ,
be the unique solution to (1)-( 5) on the maximal interval of existence [0, T γ ) as provided by Theorem 1.3. Then, introducing the operator

A α := β ∂ 4 x -τ∂ 2 x ∈ L H 4+2α D (I), H 2α D (I) we have γ 2 d 2 dt 2 u γ + d dt u γ + A α u γ = -λ g(u γ ) , t ∈ (0, T γ ) ,
in H 2α D (I), the function g being defined in Proposition 1.1. We want to control a suitable norm of u γ (t) for which we basically use an idea from [9, Section 2], the difference mainly being the focus on estimates which are uniform with respect to γ ∈ (0, γ 1 ]. To this end, define v(t) := u γ (t)u 0 and f (t

) := -λ g(u γ (t)) -A α u 0 for t ∈ [0, T γ ). Then v solves the equation (15) γ 2 d 2 dt 2 v + d dt v + A α v = f , t ∈ (0, T γ ) , in H 2α D (I) with initial condition (v(0), ∂ t v(0)) = (0, u 1 ). Recall that there are real numbers c 2 ≥ c 1 ≥ c 0 ≥ 1 such that (16) z 2 H 2α D (I) ≤ c 0 z 2 H 2+2α D (I) ≤ c 1 A 1/2 α z 2 H 2α D (I) ≤ c 2 z 2 H 2+2α D (I)
for all z ∈ H 2+2α D (I). Then, defining

E(t) := A 1/2 α v(t) 2 H 2α D (I) + γ 2 ∂ t v(t) 2 H 2α D (I) , t ∈ (0, T γ ) , and 
F(t) := γ v(t) , ∂ t v(t) H 2α D (I)
, t ∈ (0, T γ ) , we deduce from ( 15), [START_REF] Laurenc | A fourth-order model for MEMS with clamped boundary conditions[END_REF], and the self-adjointness of

A 1/2 α in H 2α D (I) that (17) d dt E(t) = -2 ∂ t v(t) 2 H 2α D (I) + 2 f (t) , ∂ t v(t) H 2α D (I)
and ( 18) 16)-( 18) and Young's inequality,

|F(t)| ≤ c 1 2 E(t) for a. e. t ∈ (0, T γ ). Next, let b := min 2 2γ 2 1 + c 1 + 1 , 1 2c 1 , 1 γ 1 c 1 and introduce G(t) := E(t) + bγF(t) for t ∈ (0, T γ ). According to (
d dt G(t) = -2 + bγ 2 ∂ t v(t) 2 H 2α D (I) -b v(t) , ∂ t v(t) + A α v(t) -f (t) H 2α D (I) + 2 f (t) , ∂ t v(t) H 2α D (I) ≤ -2 + bγ 2 ∂ t v(t) 2 H 2α D (I) -b A 1/2 α v(t) 2 H 2α D (I) + b 1 4c 1 v(t) 2 H 2α D (I) + c 1 ∂ t v(t) 2 H 2α D (I) + b 2 2 v(t) 2 H 2α D (I) + 1 2 f (t) 2 H 2α D (I) + b ∂ t v(t) 2 H 2α D (I) + 1 b f (t) 2 H 2α D (I) ≤ -2 + bγ 2 + bc 1 + b ∂ t v(t) 2 H 2α D (I) - b 2 A 1/2 α v(t) 2 H 2α D (I) + b 2 1 2c 1 + b v(t) 2 H 2α D (I) -A 1/2 α v(t) 2 H 2α D (I) + 1 2 + 1 b f (t) 2 H 2α D (I)
for a. e. t ∈ (0, T γ ). Since the choice of b ensures that

1 2c 1 + b ≤ 1 c 1 and -2 + b(γ 2 + c 1 + 1) ≤ -bγ 2 ,
the third term in the right hand side is non-positive by [START_REF] Laurenc | A fourth-order model for MEMS with clamped boundary conditions[END_REF] and we obtain d dt

G(t) ≤ - b 2 E(t) + b + 2 2b f (t) 2 H 2α D (I)
for a.e. t ∈ (0, T γ ) .

Observe that [START_REF] Owen | Asymptotic first eigenvalue estimates for the biharmonic operator on a rectangle[END_REF] and the choice of b also ensure 1 2

E(t) ≤ 1 - c 1 bγ 2 E(t) ≤ G(t) ≤ 1 + c 1 bγ 2 E(t) ≤ 1 + c 1 bγ 1 2 E(t) for t ∈ (0, T γ ), whence d dt G(t) ≤ - b 2 + c 1 bγ 1 G(t) + b + 2 2b f (t) 2 H 2α D (I) for a.e. t ∈ (0, T γ ) . Consequently, setting ω := b/(2 + c 1 bγ 1 ), E(t) ≤ 2G(t) ≤ b ω e -ωt E(0) + b + 2 bω 1 -e -ωt sup s∈(0,t) f (s) 2 H 2α D (I)
for t ∈ (0, T γ ). Now, owing to ( 16) and the definitions of E(t) and f (t), there is a constant

M := M(γ 1 ) > 0 such that u γ (t) -u 0 2 H 2+2α D (I) ≤ Mγ 2 u 1 2 H 2α D (I) + M 1 -e -ωt λ 2 sup s∈(0,t) g(u γ (s)) 2 H 2α D (I) + u 0 2 H 4+2α D (I)
for t ∈ (0, T γ ). Since u 0 belongs to S α (κ), it follows from its time continuity in H 2+2α 

u γ (t) -u 0 2 H 2+2α D (I) ≤ Mγ 2 u 1 2 H 2α D (I) + M λ 2 c 3 (κ) 2 + u 0 2 H 4+2α D (I) 1 -e -ωt
for t ∈ [0, Tγ ). Therefore, since u 0 ∈ S α (κ) and since H 2+2α D (I) embeds continuously in L ∞ (I) with constant, say, c 4 ≥ 1, the previous inequality ensures that

u γ (t) H 2+2α D (I) ≤ u γ (t) -u 0 H 2+2α D (I) + u 0 H 2+2α D (I) < 2 κ as soon as Mγ 2 u 1 2 H 2α D (I) + M λ 2 c 3 (κ) 2 + u 0 2 H 4+2α D (I) 1 -e -ωt < 1 κ 2 and u γ (t) ≥ u 0 -u γ (t) -u 0 L ∞ (I) ≥ κ -1 -c 4 u γ (t) -u 0 H 2+2α D (I) > κ 2 -1
as soon as

Mγ 2 u 1 2 H 2α D (I) + M λ 2 c 3 (κ) 2 + u 0 2 H 4+2α D (I) 1 -e -ωt < κ 2 4c 2 4 .
Thus, since κ 2 /(4c 2 4 ) ≤ 1 ≤ 1/κ 2 , we deduce from the above analysis that u γ (t) belongs to S α (κ/2) provided t ∈ [0, Tγ ) and γ ∈ (0, γ 1 ] satisfy [START_REF] Pelesko | Modeling MEMS and NEMS[END_REF] γ 2 u 1 2

H 2α D (I) < κ 2 8Mc 2 4 and (20) 
λ 2 c 3 (κ) 2 + u 0 2 H 4+2α D (I) 1 -e -ωt < κ 2 8Mc 2 4 .
Therefore, there are γ := γ κ, γ 1 , u 1 H 2α D (I) ∈ (0, γ 1 ) and T := T λ , κ, γ, u 0

H 4+2α D (I) > 0 such that u γ (t) ∈ S α (κ/2) for t ∈ [0, Tγ ) ∩ [0, T ] and γ ∈ (0, γ)
Recalling the definition of Tγ , the previous statement implies in particular that Tγ ≥ T . Finally, owing to the positivity of ω, it is clear that if one requires that

λ 2 c 3 (κ) 2 + u 0 2 H 4+2α D (I) < κ 2 8Mc 2 4
instead of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF], there are Λ := Λ(κ, γ 1 ) > 0 and N := N(κ, γ 1 ) > 0 such that u γ (t) belongs to S α (κ/2) for all t ∈ [0, T γ ) and γ ∈ (0, γ) provided that λ ∈ (0, Λ) and u 0 H 4+2α D (I) ≤ N, whence T γ = ∞ by Theorem 1.3 (ii). This proves Proposition 1.5.

THE TIME SINGULAR LIMIT γ 2 -→ 0

In order to prove Theorem 1.6 we stick to the notation from the previous section. Recall that

(21) u γ (t) ∈ S α (κ/2) , t ∈ [0, T ] , γ ∈ (0, γ) .
It then follows from (8) that

ψ u γ (t) H 2 (Ω(u γ (t))) ≤ C 0 (κ) , t ∈ [0, T ] , γ ∈ (0, γ) .
This gives a uniform bound on the electrostatic energy E e (u γ (t)) defined in [START_REF] Kavallaris | A hyperbolic non-local problem modelling MEMS technology[END_REF] so that (11) implies

(22) γ 2 2 u γ (t) 2 L 2 (I) + t 0 ∂ t u γ (s) 2 L 2 (I) ds ≤ c(κ) , t ∈ [0, T ] , γ ∈ (0, γ) .
Now, let ξ ∈ (0, α). Owing to (21) and ( 22), the set {u γ ; γ ∈ (0, γ)} is bounded in L ∞ (0, T ; H 2+2ξ (I)) with {∂ t u γ (t) ; γ ∈ (0, γ)} bounded in L 2 (0, T ) × I . We then infer from the compactness of the embedding of H 2+2ξ (I) in H 2+2α (I) and [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4] that there are subsequence of γ 2 -→ 0 (not relabeled) and ū0 in C [0, T ], H Clearly, ū0 (t) ∈ S α (κ/4) for t ∈ [0, T ] by ( 21) and ( 23). The latter and (9) also imply φ u γ (t) -φ ū0 (t) H 2 (I×(0,1)) ≤ C 0 (κ/4) u γ (t) -ū0 (t) H 2+2ξ (I)

for t ∈ [0, T ] and γ ∈ (0, γ). Consequently, Theorem 1.6 follows if we can show that ū0 and u 0 coincide. To this end recall that the function g : S(κ/4) → H 2α D (I), defined in Proposition 1.1, is uniformly Lipschitz continuous. In particular, from (23) we deduce that for each p ∈ (1, ∞), Since the above Cauchy problem has a unique solution according to Theorem 1.3, namely u 0 (restricted to [0, T ]), we conclude that ū0 = u 0 and since this limit is independent of the subsequence γ 2 -→ 0, Theo- rem 1.6 is proven.
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 1 FIGURE 1. Sketch of an idealized electrostatic MEMS device.
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  (I) and the continuous embedding of H 2+2αD (I) in L ∞ (I) that Tγ := sup t 0 ∈ (0, T γ ) ; u γ (t) ∈ S α (κ/2) for all t ∈ [0,t 0 ) > 0 .Then, by Proposition 1.1,g(u γ (t)) H 2α D (I) ≤ c 3 (κ) := sup w∈S α (κ/2) g(w) H 2α D (I) , t ∈ [0, Tγ ) ,and we conclude that

  u γ -→ ū0 in C [0, T ], H 2+2ξ D (I) .

  (24) g(u γ ) -→ g 0 := g( ū0 ) in L p 0, T ; H 2α D (I) . Thus, if v γ denotes the solution to the linear Cauchy problemγ 2 d 2 dt 2 v + d dt v + A α v = -λ g(u γ ) , t ∈ [0, T ] , subject to zero initial conditions v(0) = γ 2 ∂ t v(0) = 0 ,for γ ∈ (0, γ) (with v 0 denoting accordingly the solution with γ = 0), it follows from (24), the fact that -A α generates a strongly continuous cosine family in H 2α D (I) as pointed out in [13, Section 3.2], and [5, VI.Theorem 7.6] that(25) v γ -→ v 0 in C [0, T ], H 2α D (I) , ∂ t v γ -→ ∂ t v 0 in L p 0, T ; H 2α D (I). On the other hand, if w γ denotes the solution to the homogeneous Cauchy problemγ 2 d 2 dt 2 w + d dt w + A α w = 0 , t > 0 , subject to the initial conditions w(0) = u 0 , γ 2 ∂ t w(0) = γ 2 u 1 ,for γ ∈ (0, γ) (with w 0 denoting accordingly the solution with γ = 0), then(26) w γ -→ w 0 in C [0, T ], H 2α D (I) owing to[START_REF] Kisyński | Sur les équations hyperboliques avec petit paramètre[END_REF] Theorem 3.2]. Clearly, by uniqueness of solutions to linear wave equations, we have u γ = v γ + w γ , and consequently, from (23), (25), and (26) we derive that ū0 = v 0 + w 0 solves d dt ū0 + A α ū0 = -λ g( ū0 ) , t ∈ (0, T ] , ū0 (0) = u 0 .