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Abstract. The GGH Graded Encoding Scheme [9], based on ideal lat-
tices, is the first plausible approximation to a cryptographic multilinear
map. Unfortunately, using the security analysis in [9], the scheme re-
quires very large parameters to provide security for its underlying “en-
coding re-randomization” process. Our main contributions are to formal-
ize, simplify and improve the efficiency and the security analysis of the
re-randomization process in the GGH construction. This results in a new
construction that we call GGHLite. In particular, we first lower the size
of a standard deviation parameter of the re-randomization process of [9]
from exponential to polynomial in the security parameter. This first im-
provement is obtained via a finer security analysis of the “drowning” step
of re-randomization, in which we apply the Rényi divergence instead of
the conventional statistical distance as a measure of distance between
distributions. Our second improvement is to reduce the number of ran-
domizers needed from Ω(n log n) to 2, where n is the dimension of the
underlying ideal lattices. These two contributions allow us to decrease
the bit size of the public parameters from O(λ5 log λ) for the GGH scheme
to O(λ log2 λ) in GGHLite, with respect to the security parameter λ (for
a constant multilinearity parameter κ).

1 Introduction

Boneh and Silverberg [6] defined a cryptographic κ-multilinear map e as a
map from G1× . . .×Gκ to GT , all cyclic groups of order p, which enjoys
three main properties: first, for any elements gi ∈ Gi for i ≤ κ, j ≤ κ and
α ∈ Zp, we have e(g1, . . . , α · gj , . . . , gκ) = α · e(g1, . . . , gκ); second, the
map e is non-degenerate, i.e., if the gi’s are generators of their respective
Gi’s then e(g1, . . . , gκ) generates GT ; and third, there is no efficient algo-
rithm to compute discrete logarithms in any of the Gi’s. Bilinear maps
(κ = 2) and multilinear maps have a lot of cryptographic applications,
see [11,21,5] and [6,20,16,19], respectively. But unlike bilinear maps, built
with pairings on elliptic curves, the construction of cryptographic mul-
tilinear maps was an open problem for several years. In [6], Boneh and



Silverberg studied the interest of such maps, and gave two applications:
multipartite Diffie-Hellman key exchange and very efficient broadcast en-
cryption. But they conjectured that multilinear maps will probably “come
from outside the realm of algebraic geometry.” In 2013, Garg, Gentry and
Halevi [9] introduced the first “approximate” multilinear maps contruc-
tion, based on ideal lattices, and the powerful notion of graded encoding
scheme. Based on their work, Coron, Lepoint and Tibouchi [7] recently
described an alternative construction of graded encoding scheme.

We first give a high level description of the GGH graded encoding
scheme [9]. If we come back to the definition of cryptographic multilin-
ear maps, the authors of [9] notice that α · gi can be viewed as an “en-
coding” of the “plaintext” α ∈ Zq. They consider the polynomial rings
R = Z[x]/〈xn + 1〉 and Rq = R/qR (replacing the exponent space Zp).
They generate a small secret g ∈ R and let I = 〈g〉 be the principal
ideal over R generated by g. They also sample a uniform z ∈ Rq which
stays secret. The “plaintext” is an element of R/I, and is encoded via a
division by z in Rq: to encode a coset of R/I, return [c/z]q, where c is an
arbitrary small coset representative. In practice, as g is hidden, they give
another public parameter y, which is an encoding of 1, and the encoding
of the coset is computed as [e · y]q, where e is a small coset representative
(possibly different from c). But, as opposed to multilinear maps, their
graded encoding scheme uses the notion of encoding level: the plaintext
e is a level-0 encoding, the encoding [c/z]q is a level-1 encoding, and at
level i, an encoding of e +I is given by [c/zi]q = [e ·yi]q. These encodings
are both additively and multiplicatively homomorphic, up to a limited
number of operations. More precisely, a product of i level-1 encodings is
a level-i encoding. One can multiply any number of encodings up to κ,
instead of exactly κ in multilinear maps (the parameter κ is called the
multilinearity parameter).

The authors of [9] introduced new hardness assumptions: the Graded
Decisional Diffie-Hellman (GDDH) and its computational variant (GCDH).
These are natural analogues of the Diffie-Hellman problems from group-
based cryptography. To ensure their hardness, and hence the security of
the cryptographic constructions, the second main difference with multi-
linear maps is the randomization of the encodings. The principle is as fol-
lows: first some level-1 encodings of 0, called {xj = [bj/z]q}j≤mr , are given
as part of the public parameters; then, to randomize a level-1 encoding
u′ = [e·y]q, one outputs u = [u′+

∑
j ρjxj ]q = [c/z]q with c = c′+

∑
j ρjbj ,

where the ρj ’s are sampled from a discrete Gaussian distribution over Z

with deviation parameter σ∗. Without this re-randomization, the encod-



ing u′ of e allows e to be efficiently recovered using u = [u′y−1]q. Adding
the re-randomization step prevents this division attack, but the statistical
properties of the distribution of the re-randomized encoding u remain cor-
related to some extent with the original encoding u′ (for instance, the cen-
ter of the distribution of c is c′, since the distribution of

∑
j ρjbj is known

to be centered at 0). This property may allow other attacks that exploit
this correlation. The question arises as to how to set the re-randomization
parameter σ∗ in order to guarantee security against such potential “statis-
tical correlation” attacks – the larger the re-randomization parameters the
smaller the correlation, and heuristically the more resistant the scheme is
to such attacks. But increasing σ∗ impacts the efficiency of the scheme.

In [9], the authors use a “drowning step” to solve this problem. This
technique, also called “smudging,”was previously used in other applica-
tions [3,10,2,4].Generally, “drowning” consists in hiding a secret vector
s ∈ Zn by adding a sufficiently large random noise e ∈ Zn to it, so that
the distribution of s + e becomes “almost independent” of s. In all of the
above applications, to achieve a security level 2λ (where λ denotes the se-
curity parameter), the security analysis requires “almost independent” to
be interpreted as “within statistical distance 2−λ from a distribution that
is independent of s.” In turn, this requirement implies the need for “ex-
ponential drowning,” i.e., the ratio γ = ‖e‖/‖s‖ between the magnitude
of the noise and the magnitude of secret needs to be 2Ω(λ). Exponential
drowning imposes a severe penalty on the efficiency of these schemes,
as their security is related to γ-approximation lattice problems, whose
complexity decreases exponentially with log γ. As a result, the schemes
require a lattice dimension n at least quadratic in λ and key length at
least cubic in λ. In summary, the GGH re-randomization step, necessary
for its security, is also a primary factor in its inefficiency.

Our contributions. First, we formalize the re-randomization security
goal in the GGH construction, that is implicit in the work of [9]. A pri-
mary security goal of re-randomization is to guarantee security of the
GDDH problem against statistical correlation attacks. Accordingly, we
formulate a security goal that captures this security guarantee, by in-
troducing a canonical variant of GDDH, called cGDDH. In this variant,
the encodings of some elements are sampled from a canonical distribu-
tion whose statistical properties are independent of the encoded elements.
Consequently, the canonical problems are by construction not subject to
“statistical correlation” attacks. Our re-randomization security goal is for-
mulated as the existence of an efficient computational reduction from the
canonical problems to their corresponding non-canonical variants.



Our first main improvement to the GGH scheme relies on a new secu-
rity analysis of the drowning step in the GGH re-randomization algorithm.
We show that our re-randomization security goal can be satisfied without
“exponential drowning,” thus removing the main efficiency bottleneck.
Namely, our analysis provides a re-randomization at security level 2λ

while allowing the use of a re-randomization deviation parameter σ∗ that
only drowns the norm of the randomness offset r′ ∈ I (from the orig-
inal encoding to be re-randomized) by a polynomial (or even constant)
drowning ratio γ = λO(1) (rather than γ = 2Ω(λ), as needed in the anal-
ysis of [9]). However, our analysis only works for the search variant of
the Graded Diffie-Hellman problem. Fortunately, we show that the two
flagship applications of the GGH scheme – the N -party Key Agreement
and the Attribute Based Encryption – can be modified to rely on this
computational assumption (in the random oracle model).

Our second main improvement of the re-randomization process is to
decrease mr, the number of encodings of 0 needed, from Ω(n log n) to 2.
We achieve this result by presenting a new discrete Gaussian Leftover
Hash Lemma (LHL) over algebraic rings. In [9], the authors apply the
discrete Gaussian LHL from [1] to show that the distribution of the sum∑

j≤mr
ρjrj is close to a discrete Gaussian on the ideal I. Our improve-

ment consists in sampling the randomizers ρj as elements of the full n-
dimensional ring R, rather than just from Z. Since each randomizer now
has n times more entropy than before, one may hope to obtain a similar
LHL result as in [1] while reducing mr by a factor ≈ n. However, as the
designers of the GGH scheme notice in [9, Se. 6.4], the proof techniques
from [1] do not seem to immediately carry over to our “algebraic ring”
LHL setting. Our new LHL over rings resolves this problem.

These contributions allow us to decrease the bit size of the public
parameters from O(κ3λ5 log(κλ)) for the GGH scheme to O(κ2λ log2(κλ))
for GGHLite, for security level 2λ for the graded Diffie-Hellman problem.

Technical overview. Our first main result is to reduce the size of the
parameter σ∗ in the re-randomization process. Technically, our improved
analysis of drowning is obtained by using the Rényi divergence (RD) to
replace the conventional statistical distance (SD) as a measure of distri-
bution closeness. The RD was already exploited in a different context
in [13, Claim 5.11], to show the hardness of Ring-LWE. Here, we use the
RD to decrease the amount of drowning, by bounding the RD between a
discrete Gaussian distribution and its offset.This suffices for relating the
hardness of the search problems using these encoding distributions, even
though the SD between the distributions is non-negligible. The technique



does not seem to easily extend to the decision problems, as RD induces a
multiplicative relationship between success probabilities, rather than an
additive relationship as SD does.

Our second main result is a new LHL over the ring R. We now briefly
explain this result and its proof. For a fixed X = [x1, x2] ∈ R2, with
each xi sampled from DR,s, our goal is to study the distribution ẼX,s =

x1 ·DR,s + x2 ·DR,s. In particular, we prove that ẼX,s is statistically close
to DZn,sXT . For this, we adapt the proof of the LHL in [1]: we follow a
similar series of steps, but the proofs of these steps differ technically, as
we exploit the ring structure.

We first show that X · R2 = R, except with some constant proba-
bility < 1. For this, we adapt a result from [23] on the probability that
two Gaussian samples of R are coprime. Note that in contrast to the
LHL over Z in [1], in our setting the probability that X ·R2 6= R is non-
negligible. This is unavoidable with the ring R = Z[x]/〈xn +1〉, since each
random element of R falls in the ideal 〈x+1〉 with probability ≈ 1/2, both
x1 and x2 (and hence the ideal they generate) get “stuck” in 〈x + 1〉 with
probability ≈ 1/4. However, the probability of this bad event is bounded
away from 1 by a constant and thus we only need a constant number of
trials on average with random X’s to obtain a good X by rejection.

Then, we define the orthogonal R-module AX = {v ∈ R2 : X ·v = 0},
and apply a directly adapted variant of [1, Le. 10] to show that if the
parameter s is larger than the smoothing parameter ηε(AX) (with AX

viewed as an integral lattice), then the SD between ẼX,s and the ellipsoidal
Gaussian DZn,sXT is bounded by 2ε. We finally show that this condition
on the smoothing parameter of AX holds. For this, we observe that the
Minkowski minima of the lattice AX are equal, due to the R-module
structure of AX . This allows us to bound the last minimum from above
using Minkowski’s second theorem. A similar approach was previously
used (e.g., in [12]) to bound the smoothing parameter of ideal lattices.

Notation. A function f(λ) is said negligible if it is λ−ω(1). For an inte-
ger q, we let Zq denote the ring of integers modulo q. The notation [·]q
means that all operations within the square brackets are performed mod-
ulo q. We choose n ≥ 4 as a power of 2, and let K and R respec-
tively denote the polynomial ring Q[X]/〈xn + 1〉 and Z[X]/〈xn + 1〉. The
rings K and R are isomorphic to the cyclotomic field of order 2n and
its ring of integers, respectively. For an integer q, we let Rq denote the
ring Zq[x]/〈xn + 1〉 ≃ R/qR. For z ∈ R we denote by MSBℓ(z) ∈ {0, 1}ℓ·n
the ℓ most-significant bits of each of the n coefficients of z. Vectors are
denoted in bold. For b ∈ Rd (resp. g ∈ K), we let ‖b‖ (resp. ‖g‖) de-



note its Euclidean norm (resp. norm of its coefficient vector). The uni-
form distribution on finite set E is denoted by U(E). The statistical
distance (SD) between distributions D1 and D2 over a countable do-
main E is 1

2

∑
x∈E |D1(x) − D2(x)|. For a function f over a countable

domain E, we let f(E) =
∑

x∈E f(x). Let X ∈ Rm×n be a rank-n matrix
and UX = {‖Xu‖ : u ∈ Rn, ‖u‖ = 1}. The smallest (resp. largest) singu-
lar value of X is denoted by σn(X) = inf(UX) (resp. σ1(X) = sup(UX)).

Remark. Due to lack of space, some contents have been postponed to
the full version of this paper, available from the webpages of the authors.

2 Preliminaries

Lattices. We refer to [14,17] for introductions to the computational as-
pects of lattices. A d-dimensional lattice Λ ⊆ Rn is the set of all integer lin-
ear combinations

∑d
i=1 xibi of some linearly independent vectors bi ∈ Rn.

The determinant det(Λ) is defined as
√

det(BT B), where B = (bi)i is any

such basis of Λ. For i ≤ d, the ith minimum λi(Λ) is the smallest r such
that Λ contains i linearly independent vectors of norms ≤ r.
Gaussian distributions. For a rank-n matrix S ∈ Rm×n and a vector
c ∈ Rn, the ellipsoid Gaussian distribution with parameter S and center c

is defined as: ∀x ∈ Rn, ρS,c(x) = exp(−π(x − c)T (ST S)−1(x− c)). Note
that ρS,c(x) = exp(−π‖(ST )†(x − c)‖), where X† denotes the pseudo-
inverse of X. The ellipsoid discrete Gaussian distribution over a coset
Λ + z of a lattice Λ, with parameter S and center c is defined as: ∀x ∈
Λ + z, DΛ+z,S,c = ρS,c(x)/ρS,c(Λ).
Smoothing parameter. Introduced by [15], the smoothing parameter
ηε(Λ) of an n-dimensional lattice Λ and a real ε > 0 is defined as the
smallest s such that ρ1/s(Λ∗ \ {0}) ≤ ε. We use the following properties.

Lemma 2.1 ([15, Le. 3.3]). Let Λ be an n-dimensional lattice and ε >
0. Then ηε(Λ) ≤

√
ln(2n(1 + 1/ε))/π · λn(Λ).

Lemma 2.2 ([1, Le. 3]). For a rank-n lattice Λ, constant 0 < ε < 1,
vector c and matrix S with σn(S) ≥ ηε(Λ), if x is sampled from DΛ,S,c

then ‖x‖ ≤ σ1(S)
√

n, except with probability ≤ 1+ε
1−ε · 2−n.

Algebraic number rings and ideal lattices. For g, x ∈ R, we let [x]g
denote the reduction of x modulo the principal ideal I = 〈g〉 with respect
to the Z-basis (g, x · g, . . . , xn−1 · g), i.e., [x]g is the unique element of R
in Pg = {∑n−1

i=0 cix
ig : ci ∈ [−1/2, 1/2)∩R} such that x− [x]g ∈ 〈g〉. The

set Pg ∩R is a set of unique representatives of the cosets of I in R, that



make up the quotient ring R/I. To use our improved drowning lemma in
Section 4, we need a lower bound on the last singular value σn(rot(b)) of
the matrix rot(b) ∈ Zn×n corresponding to the map x 7→ b · x over R, for
a Gaussian distributed b ←֓ DI,σ. In the following, and in the rest of the
paper, we abuse notation and write b for this matrix.

Lemma 2.3 (Adapted from [23, Le. 4.1]). Let R = Zn[x]/(xn + 1)
for n a power of 2. For any ideal I ⊆ R, δ ∈ (0, 1), t ≥

√
2π and

σ ≥ t√
2π
· ηδ(I), we have:

Prb←֓DI,σ

[
‖b−1‖ ≥ t

σ
√

n/2

]
≤ Prb←֓DI,σ

[
σn(b) ≤ σ

√
n/2

t

]
≤ 1+δ

1−δ
n
√

2πe
t .

3 GGH and its re-randomization procedure

In this section, we recall the Garg et al. scheme from [9], and its related
hard problems. We then discuss the re-randomization step of the scheme
and explain what should be expected from it, in terms of security. This
security requirement is unclear in [9] and [1]. We formulate it precisely.
This will drive our re-randomization design in the following sections.

3.1 The GGH scheme

We recall the GGH scheme in Figure 1. We present it here in a slightly
more general form than [9]: we leave as a parameter the distribution χk

of the re-randomization coefficients ρj for a level-k encoding (for any
k ≤ κ). In the original GGH scheme, we have χk = DZ,σ∗

k
for some σ∗k’s,

i.e., the ρj ’s are integers sampled from a discrete Gaussian distribution.
Looking ahead, in Section 5, we analyze a more efficient variant, in which
χk = DR,σ∗

k
, so that the ρj ’s belong to R.

The aim of isZero is to test whether the input u = [c/zκ]q is a level-
κ encoding of 0 or not, i.e., whether c = g · r for some r ∈ R. The
following conditions ensure correctness of isZero, when χk = DZ,σ∗

k
(for

all k ≤ κ): the first one implies that false negatives do not exist (if u is
level-κ encoding of 0, then isZero(u) returns 1), whereas the second one
implies that false positives occur with negligible probability.

q > max((nℓg−1)8, ((mr + 1) · nσ∗1σ′)8κ) (1)

q > (2nσ)4. (2)

The aim of ext is to extract a quantity from its input u = [c/zκ]q that
depends only on the encoded value [c]g, but not on the randomizers. To



• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilin-
earity parameter κ, determine scheme parameters n, q, mr, σ, σ′, ℓg−1 , ℓ, based
on the scheme analysis. Then proceed as follows:
• Sample g ←֓ DR,σ until ‖g−1‖ ≤ ℓg−1 and I = 〈g〉 is a prime ideal. Define

encoding domain Rg = R/〈g〉.
• Sample z ←֓ U(Rq).
• Sample a level-1 encoding of 1: set y = [a · z−1]q with a ←֓ D1+I,σ′ .

• For k ≤ κ, sample mr level-k encodings of 0: set x
(k)
j = [b

(k)
j · z−k]q with

b
(k)
j ←֓ DI,σ′ for all j ≤ mr.

(Note that a = 1 + gry and b
(k)
j = gr

(k)
j for some ry, r

(k)
j ∈ R.)

• Sample h ←֓ DR,
√

q and define the zero-testing parameter pzt = [ h
g

zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {x(k)
j }j≤mr,k≤κ) and pzt.

• Level-0 sampler samp(par): Sample e ←֓ DR,σ′ and return e.
(Note that e = eL + geH for some unique coset representative eL ∈ Pg, and some
eH ∈ R.)

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.

• Re-randomize: Sample ρj ←֓ χk for j ≤ mr and return u = [u′+
∑mr

j=1
ρjx

(k)
j ]q.

(Note that u′ = [c′/zk]q with c′ ∈ eL + I and u = [(c′ +
∑

j
ρjb

(k)
j )/zk]q.)

• Adding encodings add: Given level-k encodings u1 = [c1/zk]q and u2 = [c2/zk]q:
• Return u = [u1 + u2]q, a level-k encoding of [c1 + c2]g.

• Multiplying encodings mult: Given level-k1 encoding u1 = [c1/zk1 ]q and a level-
k2 encoding u2 = [c2/zk2 ]q:
• Return u = [u1 · u2]q, a level-(k1 + k2) encoding of [c1 · c2]g.

• Zero testing at level κ isZero(par, pzt, u): Given a level-κ encoding u = [c/zκ]q,
return 1 if ‖[pztu]q‖∞ < q3/4 and 0 else.
(Note that [pzt · u]q = [hc/g]q.)

• Extraction at level κ ext(par, pzt, u): Given a level-κ encoding u = [c/zκ]q,
return v = MSBℓ([pzt · u]q).
(Note that if c = [c]g + gr for some r ∈ R, then v = MSBℓ( h

g
([c]g + gr)) =

MSBℓ( h
g

[c]g + hr), which is equal to MSBℓ( h
g

[c]g), with probability 1− λ−ω(1).)

Fig. 1. The GGH graded encoding scheme.



avoid trivial solutions, one requires that this extracted value has min-
entropy ≥ 2λ (if that is the case, then one can obtain a uniform distri-
bution on {0, 1}λ, using a strong randomness extractor). The following
two inequalities guarantee these properties, when χk = DZ,σ∗

k
(for all k).

The first one implies that εext = Pr[ext(u) 6= ext(u′)] is negligible, when u
and u′ encode the same value [c]g, whereas the second one provides large
min-entropy.

1/4 log q − log(
2n

εext
) ≥ ℓ ≥ log(

nσ

8
). (3)

3.2 The GDDH, GCDH and Ext-GCDH problems

The computational problems that are required to be hard for the GGH

scheme depend on the application. Here we recall the definitions of the
Graded Decisional and Computational Diffie-Hellman (GDDH and GCDH)
problems from [9]. We introduce another natural variant that we call the
Extraction Graded Computational Diffie-Hellman (Ext-GCDH), in which
the goal is to compute the extracted string of a Diffie-Hellman encoding.

Definition 3.1 (GCDH/Ext-GCDH/GDDH). The problems GCDH,
Ext-GCDH and GDDH are defined as follows with respect to experiment
of Figure 2:3

– κ-graded CDH problem (GCDH): On inputs par, pzt and the ui’s
of Step 2, output a level-κ encoding of

∏
i≥0 ei + I, i.e., w ∈ Rq such

that ‖[pzt(vC − w)]q‖ ≤ q3/4.
– Extraction κ-graded CDH problem (Ext-GCDH): On inputs

par, pzt and the ui’s of Step 2, output the extracted string for a level-κ
encoding of

∏
i≥0 ei +I, i.e., w = ext(par, pzt, vC) = MSBℓ([pzt ·vC ]q).

– κ-graded DDH problem (GDDH): Distinguish between vD and vR,
i.e., between the distributions DDDH = {par, pzt, (ui)0≤i≤κ, vD} and
DR = {par, pzt, (ui)0≤i≤κ, vR}.

Ext-GCDH is at least as hard as GDDH: given vx with x ∈ {DDH, R},
use the Ext-GCDH oracle to compute w = ext(par, pzt, vC). Nevertheless,
we show (see full version) that it suffices for instantiating, in the random
oracle model, at least some of the interesting applications of graded en-
coding schemes, at a higher efficiency than the instantiations of [9] based
on GDDH.

3 Note that we use a slightly different process from [9], by adding a re-randomization
to the element vD. Without it, there exists a “division attack” against GDDH.



Given parameters λ, n, q, mr, κ, σ′,
proceed as follows:

1. Run InstGen(1n, 1κ) to get

par = (n, q, y, {x(k)
j }j,k) and pzt.

2. For i = 0, . . . , κ:

-Sample ei ←֓ DR,σ′ , fi ←֓ DR,σ′ ,
-Set ui = [ei · y +

∑
j

ρijxj ]q
with ρij ←֓ χ1 for all j.

3. Set u∗ =
[∏κ

i=1
ui

]
q
.

4. Set vC = [e0u∗]q.
5. Sample ρj ←֓ χκ for all j,

set vD = [e0u∗ +
∑

j
ρjx

(κ)
j ]q.

6. Set vR = [f0u∗ +
∑

j
ρjx

(κ)
j ]q.

Fig. 2. The GGH security experiment.

Given parameters λ, n, q, mr, κ, (σ∗
k)k≤κ,

proceed as follows:

1. Run InstGen(1n, 1κ) to get

par = (n, q, y, {x(k)
j }j,k) and pzt.

Write x
(k)
j = [b

(k)
j z−k]q and

B(k) = [b
(k)
1 , · · · , b

(k)
mr

] ∈ Imr .
2. For i = 0, . . . , κ:

-Sample ei ←֓ U(Rg), fi ←֓ U(Rg),

-Set ui = [ciz
−1]q ←֓ D

(1)
can(ei)

with ci ←֓ DI+ei,σ∗

1
(B(1))T .

3. Set u∗ =
[∏κ

i=1
ui

]
q
.

4. Set vC = [e0u∗]q.

5. Set vD = [cD · z−κ]q ←֓ D
(κ)
can(

∏κ

i=0
ei),

with cD←֓ DI+
∏

κ

i=0
ei,σ∗

κ(B(κ))T .

6. Set vR =[cR ·z−κ]q ←֓ D
(κ)
can(f0

∏κ

i=1
ei),

with cR←֓ DI+f0

∏
κ

i=1
ei,σ∗

κ(B(κ))T .

Fig. 3. The canonical security experiment.

3.3 The GGH re-randomization security requirement

The encoding re-randomization step in the GGH scheme is necessary for
the hardness of the problems above. In [9], Garg et al. imposed the infor-
mal requirement that the re-randomization process “erases” the structure
of the input encoding, while preserving the encoded coset. In setting pa-
rameters, they interpreted this requirement in the following natural way.

Definition 3.2 (Strong re-randomization security requirement).
Let u′ = [c′/zk]q, with c′ = eL +gr′ be a fixed level-k encoding of eL ∈ Rg,

and let u = [u′ +
∑

j ρjx
(j)
k ]q = [c/zk]q with c = eL + gr and r =

r′ +
∑

j ρjr
(k)
j be the re-randomized encoding, with ρj ←֓ χk for j ≤ mr.

Let D
(k)
u (eL, r′) denote the distribution of u (over the randomness of ρj’s),

parameterized by (eL, r′) and let D
(k)
can(eL) denote some canonical distribu-

tion, parameterized by eL, that is independent of r′. Then we say that the
strong re-randomization security requirement is satisfied at level k with

respect to D
(k)
can(eL) and encoding norm γ(k) if ∆(D

(k)
u (eL, r′), D

(k)
can(eL)) ≤

2−λ for any u′ = [c′/zk]q with ‖c′‖ ≤ γ(k).

The authors of [9] argued that with χk = DZ,σ∗
k

(for k ≤ κ) and a
“drowning ratio” σ∗k/‖r′‖ exponential in security parameter λ, the distri-



bution D
(k)
u (eL, r′) is within negligible statistical distance to the canonical

distribution D
(k)
can(eL) = [DI+eL,σ∗

k
(B(k))T ·z−k]q. This requirement may be

stronger than needed. Accordingly, we now clarify the desired goal.

3.4 Our security goal: canonical assumptions

We formalize a re-randomization security goal to capture a se-
curity guarantee against “statistical correlation” attacks on
GCDH/Ext-GCDH/GDDH. We define canonical variants cGCDH/Ext-
cGCDH/cGDDH of GCDH/Ext-GCDH/GDDH, using Figure 3. The
main difference with Figure 2 is that the encodings ui = [ci/z]q of the

hidden elements ei, are sampled from a canonical distribution D
(1)
can(ei),

parameterized by ei, whose statistical parameters are independent of
the encoded coset ei, so that it is “by construction” immune against
statistical correlation attacks. In particular, in the canonical distribution

D
(1)
can(ei) that we use, ci is sampled from a discrete Gaussian distribution

DI+ei,σ∗
1(B(1))T (over the choice of the randomization, for a fixed ei),

whose statistical parameters such as center (namely 0) and deviation
matrix σ∗1(B(1))T are independent of ei. The only dependence this
distribution has on the encoded element ei is via its support I + ei.

We believe the canonical problems are cleaner and more natural than
the non-canonical variants, since they decouple the re-randomization as-
pect from the rest of the computational problem. As a further simplifica-
tion, the canonical variants also have their level-0 elements ei distributed
uniformly on Rg (rather than as reductions mod I of Gaussian samples).

Definition 3.3 (cGCDH/Ext-cGCDH/cGDDH). The canonical
problems cGCDH, Ext-cGCDH and cGDDH are defined as follows with
respect to the experiment of Figure 3 and canonical encoding distribution

D
(k)
can(e) (parameterized by encoding level k and encoded element e):

– cGCDH: On inputs par, pzt and the ui’s, output w ∈ Rq such that
‖[pzt(vC − w)]q‖ ≤ q3/4.

– Ext-cGCDH: On inputs par, pzt and the ui’s, output:
w = ext(par, pzt, vC) = MSBℓ([pzt · vC ]q).

– cGDDH: Distinguish between DDDH = {par, pzt, (ui)0≤i≤κ, vD} and
DR = {par, pzt, (ui)0≤i≤κ, vR}.

Remark. One could consider alternative definitions of natural canonical
encoding distributions besides the one we adopt here (see full paper for
examples for which our results also apply).



Given the canonical problems on whose hardness we wish to rely, our
security goal for re-randomization with respect to the GCDH (resp. Ext-
GCDH/GDDH) problems can now be easily formulated: hardness of the
latter should be implied by hardness of the former.

Definition 3.4 (Re-randomization security goal). We say that the
re-randomization security goal is satisfied with respect to GCDH (resp.
Ext-GCDH/GDDH) if any adversary against GCDH (resp. Ext-GCDH/
GDDH) with run-time T = O(2λ) and advantage ε = Ω(2−λ) can be used
to construct an adversary against cGCDH (resp. Ext-cGCDH/cGDDH)
with run-time T ′ = poly(T, λ) and advantage ε′ = Ω(poly(ε, λ)).

4 Polynomial drowning via Rényi divergence

In this section, we present our first result towards our improvement of
the GGH scheme re-randomization. It shows that one may reduce the re-
randomization “drowning” ratio σ∗k/‖r′‖ from exponential to polynomial
in the security parameter λ. Although the SD between the re-randomized
encoding distribution D1 (essentially a discrete Gaussian with an added
offset vector r′) and the desired canonical encoding distribution D2 (a
discrete Gaussian without an added offset vector) is then non-negligible,
we show that these encoding distributions are still sufficiently close with
respect to an alternative closeness measure to the SD, in the sense that
switching between them preserves the success probability of any search
problem adversary receiving these encodings as input, up to a small mul-
tiplicative constant. This allows us to show that our re-randomization
goal is satisfied for the search problems GCDH and Ext-GCDH.

Technically, the closeness measure we study is the Rényi divergence
R(D1‖D2) between the distributions D1 and D2, defined as the expected
value of D1(r)/D2(r) over the randomness of r sampled from D1 (for
brevity we will call R(D1‖D2) the RD between D1 and D2). Intuitively,
the RD is an alternative to SD as measure of distribution closeness, where
we replace the difference between the distributions in SD, by the ra-
tio of the distributions in RD. Accordingly, one may hope RD to have
analogous properties to SD, where addition in the property of SD is
replaced by multiplication in the analogous property of RD. Remark-
ably, this holds true in some sense, and we explore some of this be-
low. In particular, a very important property of the SD is that for any
two distributions D1, D2 on space X, and any event E ⊆ X, we have
D1(E) ≥ D2(E) − ∆(D1, D2). Lyubashevsky et al. [13] observed an
analogous property of the RD that follows roughly the above intuition:



D1(E) ≥ D2(E)2/R(D1‖D2). The latter property implies that as long
as R(D1‖D2) is bounded as poly(λ), any event of non-negligible prob-
ability D2(E) under D2 will also have non-negligible probability D1(E)
under D1. We show that for our offset discrete Gaussian distributions
D1, D2 above, we have R(D1‖D2) = O(poly(λ)), if σ∗k/‖r′‖ = Ω(poly(λ)),
as required for our re-randomization security goal.

The Rényi divergence (RD) and its properties. We review the RD [18,8]
and some of its properties. For convenience, our definition of the RD is
the exponential of the usual definition used in information theory [8], and
coincides with a discrete version of the quantity R defined for continuous
density functions in [13, Claim 5.11].

For any two discrete probability distributions P and Q such that
Supp(P ) ⊆ Supp(Q) over a domain X and α > 1, we define the Rényi
Divergence of orders α and ∞ by

Rα(P‖Q) =
(∑

x∈X
P (x)α

Q(x)α−1

) 1
α−1 and R∞(P‖Q) = maxx∈X

P (x)
Q(x) ,

with the convention that the fraction is zero when both numerator and
denominator are zero. A convenient choice for computations (as also used
in [13]) is α = 2, in which case we omit α. Note that Rα(P‖Q)α−1 =∑

x P (x) · (P (x)/Q(x))α−1 ≤ R∞(P‖Q)α−1. We list several properties of
the RD that can be considered the multiplicative analogues of those of
the SD. The following lemma is proven in the full version.

Lemma 4.1. Let P1, P2, P3 and Q1, Q2, Q3 denote discrete distributions
on a domain X and let α ∈ (1,∞]. Then the following properties hold:

– Log. Positivity: Rα(P1‖Q1) ≥ Rα(P1‖P1) = 1.

– Data Processing Inequality: Rα(P f
1 ‖Q

f
1) ≤ Rα(P1‖Q1) for any

function f , where P f
1 (resp. Qf

1) denotes the distribution of f(y) in-
duced by sampling y ←֓ P1 (resp. y ←֓ Q1).

– Multiplicativity: Let P and Q denote any two distributions of a
pair of random variables (Y1, Y2) on X×X. For i ∈ {1, 2}, assume Pi

(resp. Qi) is the marginal distribution of Yi under P (resp. Q), and
let P2|1(·|y1) (resp. Q2|1(·|y1)) denote the conditional distribution of Y2

given that Y1 = y1. Then we have:
• Rα(P‖Q) = Rα(P1‖Q1) ·Rα(P2‖Q2) if Y1 and Y2 are independent.
• Rα(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Rα(P2|1(·|y1)‖Q2|1(·|y1)).

– Weak Triangle Inequality: We have:

Rα(P1‖P3) ≤
{

Rα(P1‖P2) ·R∞(P2‖P3),

R∞(P1‖P2)
α

α−1 ·Rα(P2‖P3).



– R∞ Triangle Inequality: If R∞(P1‖P2) and R∞(P2‖P3) are defined,
then R∞(P1‖P3) ≤ R∞(P1‖P2) ·R∞(P2‖P3).

– Probability Preservation: Let A ⊆ X be an arbitrary event. Then
Q1(A) ≥ P1(A)

α
α−1 /Rα(P1‖Q1).

We note that the RD does not satisfy the (multiplicative) triangle
inequality R(P1‖P3) ≤ R(P1‖P2) · R(P2‖P3) in general (see [8]), but a
weaker inequality holds if one of the pairs of distributions has a bounded
R∞ divergence, as shown above. We also observe that R∞ does satisfy
the triangle inequality.

For our re-randomization application, we are interested in the RD
between two discrete Gaussians with the same deviation matrix S, that
differ by some fixed offset vector d. The following result (proved in the
full version) shows that their RD is O(1) if σn(S)/‖d‖ = Ω(1).

Lemma 4.2. For any n-dimensional lattice Λ in Rn and matrix S, let P
be the distribution DΛ,S,w and Q be the distribution DΛ,S,z for some fixed
w, z ∈ Rn. If w, z ∈ Λ, let ε = 0. Otherwise, fix ε ∈ (0, 1) and assume

that σn(S) ≥ ηε(Λ). Then R(P‖Q) ≤
(

1+ε
1−ε

)2
· exp

(
2π‖w − z‖2/σn(S)2

)
.

5 A discrete Gaussian leftover hash lemma over R

In this section, we present our second main result for improving the GGH

scheme re-randomization algorithm. Recall that the GGH algorithm re-

randomizes a level-k encoding u′ into u = [u′ +
∑mr

j=1 ρjx
(k)
j ]q, where the

ρj ’s are sampled from χ1 = DZ,σ∗
1

and x
(k)
j = [b

(k)
j /zk]q = [gr

(k)
j /zk]q. To

show that the distribution of
∑mr

j=1 ρjb
(k)
j is close to a discrete Gaussian

over I, they then apply the discrete Gaussian LHL from [1, Th. 3], using

mr = Ω(n log n) fixed elements b
(k)
j ∈ I that are published obliviously

as randomizers “inside” the public zero-encodings x
(k)
j . We show that

it suffices to sample 2 randomizers as elements of the full n-dimensional
ring R, rather than just from Z, i.e., we set χ1 = DR,σ∗

1
. Our proof follows

the same high-level steps as the proof of [1, Th. 3], but differs technically,
as explained in the introduction.

For a fixed X = (x1, x2) ∈ R2, we define the distribution ẼX,s =
x1DR,s + x2DR,s as the distribution induced by sampling u = (u1, u2) ∈
R2 from a discrete spherical Gaussian with parameter s, and outputting
y = x1u1 + x2u2. We prove the following result on ẼX,s.



Theorem 5.1. Let R = Z[x]/〈xn + 1〉 with n a power of 2 and I =
〈g〉 ⊆ R, for some g ∈ R. Fix ε ∈ (0, 1/3), X = (x1, x2) ∈ I2 and s > 0
satisfying the conditions

– Column span: X ·R2 = I.

– Smoothing: s ≥ max(‖g−1x1‖∞, ‖g−1x2‖∞)·n·
√

2
π log(2n(1 + 1/ε)).

Then, for all x ∈ I we have ẼX,s(x) ∈ [1−ε
1+ε , 1] ·DI,sXT (x). In particular,

we have ∆(ẼX,s, DI,sXT ) ≤ 2ε. Finally, if s · σn(g−1) ≥ 7n1.5 ln1.5(n),4

x1, x2 ←֓ DI,s and n grows to infinity, then the first condition holds with
probability Ω(1).

We prove this result for g = 1, and then we generalize to general g.
First, we consider the column span condition.

Lemma 5.2 (Adapted from [23, Le. 4.2 and Le. 4.4]). Let S ∈
Rn×n, and σn(S) ≥ 7n1.5 ln1.5(n). For n going to infinity, we have
Prx1,x2←֓DR,S

[X ·R2 = R] ≥ Ω(1).

Let AX ⊆ {(v1, v2) ∈ R2 : x1v1 + x2v2 = 0} be the 1-dimensional
R-module of vectors orthogonal to X. We view AX as an n-dimensional
lattice in Z2n, via the polynomial-to-coefficient-vector mapping.

Lemma 5.3 (Adapted from [1, Le. 10]). Fix X such that X ·R2 = R
and AX as above. If s ≥ ηε(AX), then ẼX,s(z) ∈

[
1−ε
1+ε , 1

]
·DZn,sXT (z) for

any z ∈ R.

We now study the quantity ηε(AX). First, we show that all successive
Minkowski minima of AX are equal. This property is inherited from the
“equal minima property” of ideal lattices in R.

Lemma 5.4. Let X and AX be as above. Then λ1(AX) = · · · = λn(AX).

Lemma 5.5. Let X and AX be as above. Let s ≥ max(‖x1‖∞, ‖x2‖∞).

Then we have: ηε(AX) ≤ sn ·
√

2
π log(2n(1 + 1/ε)).

Combining the above lemmas, we get Theorem 5.1 for g = 1. The
general case is proved as follows. The injective map y 7→ g · y on R takes
the distribution ẼX,s with X = g−1 ·X to the distribution ẼX,s, while it

takes D
R,sX

T to DI,sXT , with I = 〈g〉. The conditions X · R2 = I and

4 By abuse of notation, we identify g−1 ∈ K with the linear map over Qn obtained
by applying the polynomial-to-coefficient-vector mapping to the map r 7→ g−1r.



X · R2 = R are equivalent. The smoothing condition is satisfied for X
by the choice of s. Thus we can apply Theorem 5.1 with g = 1 to ẼX,s,
and conclude by applying the mapping Mg to get the general case of
Theorem 5.1. For the very last statement of Theorem 5.1, it suffices to
observe that DI,s = g ·DR,s(g−1)T .5 ⊓⊔

6 Our improved GGH grading scheme: GGHLite

We are now ready to describe our simpler and more efficient variant of the
GGH grading scheme, that we call GGHLite. The scheme is summarized
in Figure 4. The modifications from the original GGH scheme consist in:

– Using mr = 2 re-randomization elements x1, x2 in the public key,
sampling the randomizers ρ1, ρ2 from a discrete Gaussian DR,σ∗

1
over

the whole ring R (rather than from Z), applying our algebraic ring
variant of the LHL from Section 5.

– Saving an exponential factor ≈ 2λ in the re-randomization parame-
ter σ∗1 by applying the RD bounds from Section 4.

In terms of re-randomization security requirement, we relax the strong
SD-based requirement on the original GGH scheme to the following weaker
RD-based requirement on GGHLite.

Definition 6.1 (Weak re-randomization security requirement).
Using the notations of Definition 3.2, we say that the weak re-randomization

security requirement is satisfied at level k with respect to D
(k)
can(eL) and

encoding norm γ(k) if R(D
(k)
u (eL, r′)‖D(k)

can(eL)) = O(poly(λ)) for any
u′ = [c′/zk]q such that ‖c′‖ ≤ γ(k).

We summarize GGHLite in Figure 4, which only shows the algorithms
differing from those in the GGH scheme of Figure 1.

Choice of σ, ℓg−1 and σ′, ℓb. The upper bound ℓg−1 on ‖g−1‖ in the
rejection test of InstGen can be chosen as small as possible while keeping
the rejection probability pg bounded from 1. According to Lemma 2.3
with t = 2

√
2πenp−1

g and δ = 1/3, one can choose

ℓg−1 = 4
√

πen/(pgσ) and σ ≥ 2n
√

e ln(8n)/π/pg, (4)

to achieve pg < 1. Note that the same choices apply to the GGH scheme:
here we have a rigorous bound on pg instead of the heuristic arguments

5 With the same abuse of notation as in the previous footnote, for the term (g−1)T .



• Instance generation InstGen(1λ, 1κ): Given security parameter λ and multilin-
earity parameter κ, determine scheme parameters n, q, mr = 2, σ, σ′, ℓg−1 , ℓb, ℓ,
based on the scheme analysis. Then proceed as follows:
• Sample g ←֓ DR,σ until ‖g−1‖ ≤ ℓg−1 and I = 〈g〉 is a prime ideal.
• Sample z ←֓ U(Rq).
• Sample a level-1 encoding of 1: y = [a · z−1]q with a ←֓ D1+I,σ′ .
• For k ≤ κ:
∗ Sample B(k) = (b

(k)
1 , b

(k)
2 ) from (DI,σ′ )2. If 〈b(k)

1 , b
(k)
2 〉 6= I, or

σn(rot(B(k))) < ℓb, then re-sample.

∗ Define level-k encodings of 0: x
(k)
1 = [b

(k)
1 · z−k]q, x

(k)
2 = [b

(k)
2 · z−k]q.

• Sample h ←֓ DR,
√

q and define the zero-testing parameter pzt = [ h
g

zκ]q ∈ Rq.

• Return public parameters par = (n, q, y, {(x(k)
1 , x

(k)
2 )}k≤κ) and pzt.

• Level-k encoding enck(par, e): Given level-0 encoding e ∈ R and parameters par:
• Encode e at level k: Compute u′ = [e · yk]q.

• Return u = [(u′ + ρ1 · x(k)
1 + ρ2 · x(k)

2 )/zk]q, with ρ1, ρ2 ←֓ DR,σ∗

k
.

Fig. 4. The new algorithms of our GGHLite scheme.

for estimating in ‖g−1‖ in [9]; however, as in [9], we do not have a rigorous
bound on the probability that I is prime conditioned on this choice.

Let pb be the rejection probability for the lower bound ℓb on σn(B(k))
in the rejection test of InstGen. To keep pb away from 1, we use that

σn(B(k))2 = minu∈K,‖u‖=1
∑

i=1,2 ‖u · b
(k)
i ‖2 ≥

∑
i=1,2 σn(b

(k)
i )2. Applying

Lemma 2.3 with t = 2
√

2πenp−1
b and δ = 1/3, we get that σn(b

(k)
i ) >

pb

8
√

πen
· σ′, except with probability ≤ pb for i ∈ {1, 2} if σ′ ≥ t√

2π
η1/3(I),

where η1/3(I) ≤
√

ln(8n)/π ·‖g‖ by Lemma 2.1. Therefore, we can choose

ℓb =
pb

2
√

πen
· σ′ and σ′ ≥ 2n1.5σ

√
e ln(8n)/π/pb. (5)

Zero-testing and extraction correctness. The correctness conditions for
zero-testing and correctness remain the same as conditions (2), (3) for the
original GGH scheme. The only modification needed is for condition (1),

because in GGHLite, mr = 2 and ρj ∈ R so ‖ρjb
(1)
j ‖ ≤

√
n‖ρj‖‖b(1)

j ‖.
Accordingly, condition (1) is replaced by:

q > max
(
(nℓg−1)8, (3 · n1.5σ∗σ′)8κ

)
. (6)

Security. We state our improved re-randomization security reduction for
GGHLite, that works with much smaller parameters than GGH. To our
knowledge, it is the first security proof in which the RD is used to replace



the SD in a sequence of games, using the RD properties from Section 4
to combine the bounds on changes between games. This allows us to gain
the benefits of RD over SD, for both the drowning and smoothing aspects.
Namely, with εd, ερ, εe in Theorem 6.2 set as large as O(log λ/κ), our weak
security requirement of Definition 6.1 is satisfied (the RD between real and
canonical encoding distributions is bounded by the quantity R = poly(λ)
in Theorem 6.2), and our re-randomization goal for Ext-GCDH is achieved
(whereas the strong requirement of Definition 3.2 is not satisfied).

Theorem 6.2 (Security of GGHLite). Let εd, ερ, εe ∈ (0, 1/2) and κ ≤
2n. Suppose that the following conditions are satisfied for GGHLite:

– LHL Smoothing:

σ∗1 ≥ n1.5 · ℓg−1 · σ ·
√

2 log(4n · ε−1
ρ )/π. (7)

– Offset “Drowning:”

σ∗1 ≥ n1.5 · (σ′)2 ·
√

2πε−1
d /ℓb. (8)

– samp Uniformity Smoothing:

σ′ ≥ σ ·
√

n ln(4n · ε−1
e )/π. (9)

Then, if A is an adversary against the (non-canonical) Ext-GCDH prob-
lem for GGHLite with run-time T and advantage ε, then A is also an
adversary against the canonical problem Ext-cGCDH for GGHLite with
T ′ = T and advantage

ε′ ≥ (ε− 2−Ω(n))2/R with R = 2O(κ·(εd+ερ+εe+2−n)). (10)

In particular, there exist εd, εe, ερ bounded as O(log λ/κ) such that the
re-randomization security goal in Definition 3.4 is satisfied by GGHLite

with respect to problem Ext-GCDH.

7 Parameter settings

In Table 1, we summarize asymptotic parameters for GGHLite to achieve
2λ security for the underlying Ext-GCDH problem, assuming the hard-
ness of the canonical Ext-cGCDH problem, and to satisfy the zero-
testing/extraction correctness conditions with error probability λ−ω(1).
For simplicity, we assume that κ = ω(1). For comparison, we also show



the corresponding parameters for GGH. The “Condition” column lists the
conditions that determine the corresponding parameter in the case of
GGHLite. For security of the canonical Ext-cGCDH problem, we assume
(as in [9]) that the best attack is the one described in [9, Se. 6.3.3], whose
complexity is dominated by the cost of solving γ-SVP (the Shortest lat-
tice Vector Problem with approximation factor γ) for the lattice I, with
γ set at ≈ q3/8 to get a sufficiently short multiple of g. By the lattice
reduction “rule of thumb,” to make this cost 2λ, we need to set

n = Ω(λ log q). (11)

Table 1. Asymptotic parameters.

Parameter GGHLite GGH[9] Condition

mr 2 Ω(n log n) LHL: Th. 5.1
σ O(n log n) O(n log n) Eq. (4)

ℓg−1 O(1/
√

n log n) O(1/
√

n log n) Eq. (4)

εd, εe, ερ O(κ−1) O(2−λκ−1) Eq. (10)

σ′ Õ(n2.5) Õ(n1.5
√

λ) Eq. (5)

σ∗
1 Õ(n4.5√log κ) Õ(2λn4.5(λ + log κ)) Drown: Eq. (8)

εext O(λ−ω(1)) O(λ−ω(1))

q Õ((n8.5√log κ)8κ) Õ((2λn8λ1.5)8κ) Corr.: Eq. (6)
n O(κλ log λ) O(κλ2) SVP: Eq. (11)
|enc| O(κ2λ log2(κλ)) O(κ2λ3) O(n log q)
|par| O(κ3λ log2(κλ)) O(κ3λ5 log(κλ)) O(mrκn log q)

When κ = poly(log λ), the dimension n, encoding length |enc| and
public parameters length |par| in our scheme GGHLite are all asymptot-
ically close to optimal, namely quasi-linear in the security parameter λ,
versus quadratic (resp. cubic and quintic) in λ for GGH [9]. Thus we expect
GGHLite’s public parameters and encodings to be orders of magnitudes
shorter than GGH for typical λ ≈ 100.
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