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Abstract. Support of membership revocation is a desirable functionality for any group signature scheme.
Among the known revocation approaches, verifier-local revocation (VLR) seems to be the most flexible one,
because it only requires the verifiers to possess some up-to-date revocation information, but not the signers.
All of the contemporary VLR group signatures operate in the bilinear map setting, and all of them will be
insecure once quantum computers become a reality. In this work, we introduce the first lattice-based VLR
group signature, and thus, the first such scheme that is believed to be quantum-resistant. In comparison
with existing lattice-based group signatures, our scheme has several noticeable advantages: support of
membership revocation, logarithmic-size signatures, and weaker security assumption. In the random oracle
model, our scheme is proved to be secure based on the hardness of the SIVP

Õ(n1.5) problem in general
lattices - an assumption that is as weak as those of state-of-the-art lattice-based standard signatures.
Moreover, our construction works without relying on encryption schemes, which is an intriguing feature
for group signatures.
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1 Introduction

Group Signatures. Group signatures have been an important research topic in public-key cryp-
tography since their introduction by Chaum and van Heyst [15]. In these schemes, all the potential
signers form a group, where each signer can anonymously issue a signature on behalf of the whole
group (anonymity). On the other hand, in cases of disputes, there is a tracing mechanism which can
link a given signature to the identity of the misbehaving member (traceability). These two attractive
features allow group signatures to find applications in various real-life scenarios, such as anonymous
online communications, digital right management, e-commerce systems, and much more. Over the last
two decades, many group signature schemes with different security models, different levels of efficiency
and functionality have been proposed ([16,4,5,8,9,6,20,23], ...).

One desirable functionality of group signatures is the support for membership revocation. For
example, misbehaving members who issue signatures for documents, which they are not allowed to
sign, should be revoked from the group. In these cases, if a group signature scheme does not support
revocation, then the whole system has to be re-initialized, which is obviously an unsuitable solution in
practice. Currently there are two main revocation approaches for group signatures. The first approach
requires all the unrevoked members to update their signing keys after each revocation ([4,12,8,11],...).
At the same time, all the signature verifiers need to download the up-to-date group public key. As



a consequence, it is sometimes inconvenient to practically implement such schemes. The second ap-
proach, that is group signatures with verifier-local revocation (VLR), only requires the verifiers to
possess some up-to-date revocation information, but not the signers. Since in most of real-life sce-
narios, the number of signature verifiers is much smaller than the number of signers, this revocation
approach is more flexible and more practical. Moreover, it is akin to that of the traditional Public Key
Infrastructures, where the verifiers use the latest Certificate Revocation List to check the public key
of the signer. The notion of VLR group signatures was introduced by Brickell [10], then formalized
by Boneh and Shacham [9], further investigated and extended by Nakanishi and Funabiki [31,32],
Libert and Vergnaud [24], and Bichsel et al. [7]. It is worth mentioning that all the existing VLR
group signatures scheme operate in the bilinear map setting. Furthermore, all these schemes will be
insecure once quantum computers become a reality [38]. Thus, constructing a VLR group signature
schemes which is secure against quantum computers, or even outside of the bilinear map setting, is a
challenging open question.

Lattice-based Group Signatures. Lattice-based cryptography is currently considered as the most
promising candidate for post-quantum cryptography. As opposed to classical cryptography (i.e., based
on the hardness of factoring or discrete log problems), lattice-based cryptography is widely believed
to be resistant against quantum computers, moreover, it enjoys provable security under worst-case

hardness assumptions ([1,36,18,29]). Designing secure and efficient lattice-based cryptographic con-
structions (and group signatures, in particular) becomes an intriguing challenge for the research
community looking forward to the future. To the best of our knowledge, three lattice-based group
signature schemes have been proposed, but none of them supports membership revocation. The first
one was introduced by Gordon et al. [19] in 2010. While their scheme is of great theoretical interest,
its signatures have size O(N), where N is the number of group users. In terms of efficiency, this is a
noticeable disadvantage if the group is large, e.g., group of all employees of a big company. Camenisch
et al. [13] later proposed lattice-based anonymous attribute tokens system, a primitive that can be
considered as a generalization of group signature. However, in their construction, the signatures size is
still linear in N . Recently, Laguillaumie et al. [22] designed a scheme featuring signature size Õ(logN),
which is the first lattice-based group signature that overcomes the linear-size barrier. We remark that
all the above mentioned schemes follow the traditional sign-and-encrypt-and-prove paradigm: to en-
able the tracing mechanism, these schemes require the signer to encrypt some private information via
certain type of encryption based on the Learning With Errors (LWE) problem, and then generate a
sophisticated proof to prove particularly that the ciphertext is well-formed. Relying on encryption to
construct group signatures may imply two troublesome issues: firstly, it makes the construction less
efficient; secondly, since the whole system is secure only if the underlying encryption scheme is secure,
it usually leads to a relatively strong security assumption. In particular, the recent scheme by Laguil-
laumie et al. [22] is only provably secure if there is no quantum algorithm to approximate the Shortest
Independent Vectors Problem (SIVPγ) on lattices of dimension n to within certain γ = Õ(n8.5). This
yields several interesting open questions in this direction: Is it possible to construct a scheme that
supports membership revocation? Can lattice-based group signature schemes be free of LWE-based
encryptions? How to design a more efficient scheme based on weaker security assumption?

Our Contributions. In the present work, we reply to all the above open questions positively. In par-
ticular, we introduce the first group signature with verifier-local revocation from lattice assumptions,
and thus, the first such scheme that is believed to be quantum-resistant. In comparison with known
lattice-based group signatures, while the schemes from [19], [13] and [22] follow the CPA-anonymity and
CCA-anonymity notions from [8,5], our construction satisfies the (weaker) notion of selfless-anonymity
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for VLR group signatures from [9]. Nevertheless, our scheme has several remarkable advantages over
the contemporary counterparts:

1. Functionality: Our scheme is the first lattice-based group signature that supports membership
revocation. As discussed above, this is a desirable functionality for any group signature scheme.

2. Simplicity: Our scheme is conceptually very simple. The signature is basically an all-in-one proof of
knowledge, made non-interactive using Fiat-Shamir paradigm [17]. Moreover, the scheme departs
from the traditional paradigm, and is free of LWE-based encryptions.

3. Efficiency: For a security parameter n and for a group of N members, the group public key and
the signature have bit-sizes Õ(n2) · logN and Õ(n) · logN , respectively. This result is comparable
to that of [22], and is a noticeable improvement over those of [19] and [13].

4. Security assumption: Our scheme is proved to be secure (in the random oracle model) based on
the worst-case hardness of approximating the Shortest Independent Vectors Problem, for general
lattices of dimension n, to within a factor γ = Õ(n1.5). Surprisingly, this security assumption is as
weak as those of state-of-the-art lattice-based standard signatures, such as [18], [14], and [27]. This
is a non-trivial feature, because when constructing group signatures, which is a more eleborate
primitive than standard signatures, one would expect to rely on a stronger security assumption.

Overview of Our Techniques. The main building block of our VLR group signature scheme is
an interactive protocol allowing a prover to convince the verifier that he is a certified group member
(i.e., he possesses a valid secret signing key), and that he has not been revoked (i.e., his “revocation
token” is not in the verifier’s blacklist). The protocol is repeated many times to make the soundness
error negligibly small, and then is converted to a signature scheme via Fiat-Shamir heuristic. Roughly
speaking, in the random oracle model, the traceability and anonymity of the resulting group signature
are based on the facts that the underlying protocol is a proof of knowledge, and it can be simulated.

We consider a group of N = 2ℓ users, where each user is identified by a string d ∈ {0, 1}ℓ denoting
the binary representation of his index in the group. Let n,m, β, and q ≥ 2 be integers (to be determined
later). Our scheme operates within the structure of a Bonsai tree of hard random lattices [14], namely,

a matrix A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . .
∣∣A0

ℓ

∣∣A1
ℓ

]
∈ Z

n×(2ℓ+1)m
q , and a vector u ∈ Z

n
q . Initially, the group user

with identity d = d[1] . . . d[ℓ] ∈ {0, 1}ℓ is issued a Bonsai signature of his identity, that is a small

vector z ∈ Z
(ℓ+1)m, such that ‖z‖∞ ≤ β and Ad · z = u mod q, where Ad =

[
A0

∣∣Ad[1]
1

∣∣ . . .
∣∣Ad[ℓ]

ℓ

]
-

a subtree defined by d. In other words, z is a solution to the Inhomogeneous Small Integer Solution
(ISIS) instance (Ad,u). To prove that he is a certified group member without leaking z, the user can
perform a proof of knowledge (e.g., [30,26,25]) to convince the verifier that he knows such a vector z
in zero-knowledge.

At this stage, one can obtain a secure identity-based identification scheme (as shown in [37]), but
it is insufficient for our purposes: to achieve anonymity, the group user also has to hide his identity
d, and hence the matrix Ad should not be explicitly given. This raises an interesting question: If
the verifier does not know Ad, how could he be convinced that Ad · z = u mod q? To address this
issue, we introduce the following extension: we add ℓ suitable zero-blocks of size m to vector z to
obtain an extended vector x =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Z

(2ℓ+1)m, where the added zero-blocks are

x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ . We then have ‖x‖∞ ≤ β, and A · x = u mod q. Namely x is a solution to the

ISIS instance given by the whole Bonsai tree, with an additional condition: for each i = 1, . . . , ℓ, one
of the two blocks x0

i ,x
1
i must be zero, where the arrangement of the zero-blocks is determined by d.

To prove in zero-knowledge the possession of such a vector x, we adapt the ‘Stern Extension’ proof
system from [25], where the user identity d is hidden by a “one-time pad” technique. This technique
is as follows. In each round of the protocol, the user samples a fresh uniformly random e ∈ {0, 1}ℓ and
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permutes the blocks of x to obtain the permuted vector v, whose zero-blocks are arranged according
to d ⊕ e (where ⊕ denotes the bit XOR operation). Depending on the verifier’s challenge, the user
later will either reveal e, or reveal d⊕ e and show that v has the correct shape determined by d⊕ e.
Since d⊕ e is uniformly random over {0, 1}ℓ, the user identity d is completely hidden. As a result, the
user can anonymously prove his group membership.

We now briefly review our revocation mechanism. For each group user’s secret key x, consider the
first block x0 that corresponds to the “root” A0 of the Bonsai tree, and let his revocation token be
A0 ·x0 mod q ∈ Z

n
q . We choose suitable parameters, and sample x0 from a proper distribution, so that

the token is statistically close to uniform over Zn
q . At a high level, our revocation mechanism works as

follows. The user is asked to sample a uniformly random vector r0 ∈ Z
m
q , and to compute a commit-

ment c0 using a (lattice-based) statistically hiding and computationally binding string commitment
scheme COM, for which the value A0 · r0 mod q is part of the committed string. Depending on the
verifier’s challenge, the user will either reveal r0 or reveal x0 + r0. In the former case, the verifier can
check for honest computation of c0, while in the latter case, he can perform the revocation check using
a list of tokens of revoked users RL =

{
{ui}i

}
⊂ Z

n
q , as follows:

∀ui ∈ RL, check that c0 6= COM
(
A0 · (x0 + r0)− ui mod q

)
.

Assuming that the user has been revoked, i.e., there exists i such that A0 · x0 mod q = ui. If he
follows the protocol, then COM

(
A0 · (x0 + r0) − ui mod q

)
= COM(A0 · r0 mod q) = c0, and thus,

he gets rejected. If there is a false acceptance, then we can use it to break the computational binding
property of COM. On the other hand, the probability of false rejection is negligibly small, since COM

is statistically regular.

Putting everything together, we obtain a lattice-based VLR group signature that has several nice
features, as mentioned earlier. In the process, we exploit the rich structure of the Bonsai tree [14], and
the versatility of the “Stern Extension” proof system [25]. We also employ a special “one-time pad”

technique, and a novel revocation mechanism.

2 Preliminaries

Notations. For a positive integer n, we let [n] denote the set {1, . . . , n}. Vectors will be denoted in bold
lower-case letters and matrices will be denoted in bold upper-case letters. We assume that all vectors
are column vectors. The concatenation of vectors x ∈ R

m and y ∈ R
k is denoted by (x‖y). We denote

the column concatenation of matrices A ∈ R
n×m and B ∈ R

n×k by
[
A
∣∣B

]
. Let x = (x1, . . . , xn), we

denote by Parse(x, i1, i2) the vector (xi1 , xi1+1 . . . , xi2) for 1 ≤ i1 ≤ i2 ≤ n. If S is a finite set, y
$←− S

means that y is chosen uniformly at random from S. If D1 and D2 are two distributions over the same
countable support S, then their statistical distance is defined as ∆(D1, D2) =

1
2

∑
x∈S |D1(x)−D2(x)|.

Two distributions are statistically close if their statistical distance is negligible.

2.1 VLR Group Signature

The presentation in this Section follows [9]. A VLR group signature consists of 3 following algorithms:

• KeyGen(n,N): On input a security parameter n and the number of group users N , this PPT algo-
rithm outputs a group public key gpk, a vector of user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N −
1]), and a vector of user revocation tokens grt = (grt[0], grt[1], . . . , grt[N − 1]).
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• Sign(gpk, gsk[d],M): On input gpk, a user secret key gsk[d], and a message M ∈ {0, 1}∗, this PPT
algorithm outputs a signature Σ.
• Verify(gpk, RL,Σ,M): On input gpk, a set of revocation tokens RL ⊆ {grt[0], grt[1], . . . , grt[N−1]},
a signature Σ, and the message M , this algorithm outputs either Valid or Invalid. The output Valid
indicates that Σ is a valid signature on messageM under gpk, and the signer has not been revoked.

Remark 1. Any VLR group signature has an implicit tracing algorithm using grt as the tracing key.
The tracing algorithm works as follows: on input a valid signature Σ on a message M , it reveals the
signer of Σ by running Verify(gpk, RL = grt[d], Σ,M), for d = 0, 1, . . ., and outputting the first index
d∗ ∈ {0, 1, . . . , N − 1} for which the verification algorithm returns Invalid. The tracing algorithm fails
if and only if the given signature is properly verified for all d.

A secure VLR group signature scheme must satisfy the following 3 requirements:

1. Correctness: For all (gpk, gsk, grt) outputted by KeyGen, all d ∈ {0, 1, . . . , N − 1}, and all M ∈
{0, 1}∗,

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇔ grt[d] 6∈ RL.
2. Selfless-anonymity: In the following selfless-anonymity game, the adversary’s goal is to determine
which of the two adaptively chosen keys generated a signature. He is not given access to either key.
(a) Setup. The challenger runs KeyGen to generate (gpk, gsk, grt), then gives gpk to the adversary A.
(b) Queries. Adversary A can make the following queries:
• Signing: Query for signature of any user d on any message M ∈ {0, 1}∗. The challenger returns
the signature Σ = Sign(gpk, gsk[d],M).
• Corruption: Query for the secret key of any user d. The challenger returns gsk[d].
• Revocation: Query for the revocation token of any user d. The challenger returns grt[d].

(c) Challenge. Adversary A outputs a messageM∗ and two indices d0 and d1, such that A never made

a corruption or revocation query for user d0 or user d1. The challenger chooses a bit b
$←− {0, 1},

computes a signature of user db on M
∗ as Σ∗ = Sign(gpk, gsk[db],M

∗), and returns Σ∗ to A.
(d) Restricted Queries. After the challenge phase, A can still make queries as before, but with the

following restrictions: it is not allowed to make any corruption or revocation query for user d0 or
user d1.

(e) Output. Eventually, A outputs a bit b′. It wins the game if b′ = b.
We define the adversary’s advantage in winning the game as AdvA =

∣∣Pr[b′ = b]− 1/2
∣∣. We say that

the VLR group signature is selfless-anonymous if AdvA is negligible.

3. Traceability: The adversary’s goal in the traceability game is to forge a signature that cannot be
traced to one of the users in his coalition using the implicit tracing algorithm above. The traceability
game is defined as follows:
(a) Setup: Run KeyGen(n,N) to obtain (gpk, gsk, grt). Adversary A is given (gpk, grt). Set U = ∅.
(b) Queries: Adversary A can make queries to the following oracles:

• Signing: On input a message M , and an index d, the oracle returns Σ = Sign(gpk, gsk[d],M).
• Corruption: On input an index d, the oracle adds d to the set U , and returns gsk[d].

(c) Forgery: Eventually, A outputs a messageM∗, a set of revocation tokens RL∗ and a signature Σ∗.
The adversary wins the game if:
i. Verify(gpk, RL∗, Σ∗,M∗) = valid.
ii. The (implicit) tracing algorithm fails or traces to a user outside of the coalition U \RL∗.
iii. The signature Σ∗ is non-trivial, i.e., A did not obtain Σ∗ by making a signing query on M∗.

The probability that A wins the game, denoted by SuccPTA, is taken over the randomness of A,
algorithms KeyGen and Sign. We say that a VLR group signature is traceable if SuccPTA is negligible.
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2.2 Some Cryptographic Tools from Lattices

Lattices. Let n,m, and q ≥ 2 be integers. For matrix A ∈ Z
n×m
q , define the m-dimensional lattice:

Λ⊥(A) =
{
x ∈ Z

m : A · x = 0 mod q
}
⊆ Z

m.

For any u in the image of A, define the coset Λ⊥
u (A) =

{
x ∈ Z

m : A · x = u mod q
}
. We recall the

homogeneous and inhomogeneous Small Integer Solution problems (SIS and ISIS).

Definition 1. The SIS
p
n,m,q,β and ISIS

p
n,m,q,β problem in the ℓp norm with parameters (n,m, q, β) are

as follows: Given a uniformly random matrix A ∈ Z
n×m
q , and a uniformly random vector u ∈ Z

n
q ,

• SIS
p
n,m,q,β asks to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖p ≤ β.

• ISIS
p
n,m,q,β asks to find a vector x ∈ Λ⊥

u (A) such that ‖x‖p ≤ β.

The hardness of the SIS and ISIS problems is given by a worst-case to average-case reduction from
standard lattice problems, such as the Shortest Independent Vectors Problem (SIVP).

Theorem 1 ([18]). For any m, β = poly(n), and for any q ≥ β · ω(√n log n), solving a random
instance of the SIS2n,m,q,β or ISIS2n,m,q,β problem with non-negligible probability is at least as hard as

approximating the SIVP2
γ problem on any lattice of dimension n to within certain γ = β · Õ(

√
n)

factors.

It then follows from the relationship between the ℓ2 and ℓ∞ norms that the SIS∞n,m,q,β and ISIS∞n,m,q,β

problems are at least as hard as SIVP2
γ (in the ℓ2 norm) for some γ = β · Õ(n).

Gaussians over Lattices. For any positive real σ, the n-dimensional Gaussian function is defined
as: ∀x ∈ R

n, ρσ(x)= exp(−π‖x‖2/σ2). For any n-dimensional lattice Λ, define the discrete Gaussian

distribution over Λ as: ∀x ∈ Λ, DΛ,σ(x) =
ρσ(x)
ρσ(Λ)

. In the following lemma, we review several well-known
facts about discrete Gaussian distribution:

Lemma 1 ([18][34]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and σ ≥ ω(√logm).

1. For all but a 2q−n fraction of all A ∈ Z
n×m
q , for x ←֓ DZm,σ, the distribution of u = A · x mod q

is statistically close to uniform over Z
n
q . Moreover, the conditional distribution of x given u is

DΛ⊥
u
(A),σ.

2. For β = ⌈σ · logm⌉, and x ←֓ DZm,σ, Pr
[
‖x‖∞ > β

]
is negligible.

3. The min-entropy of DZm,σ is at least m− 1.

We now recall the results about two fundamental tools in lattice-based cryptography: the trapdoor
generation and the preimage sampling algorithms. The algorithms stated in the following theorem are
improvements of those in the literature [2,18,33,3].

Theorem 2 ([28]). Given integers n ≥ 1, q ≥ 2, and m ≥ 2n log q. There is a PPT algorithm

GenTrap(n,m, q) that outputs a matrix A ∈ Z
n×m
q and a trapdoor RA, such that the distribution of A

is negl(n)-far from uniform. Moreover, for any vector u in the image of A and σ = ω(
√
n log q log n),

there is a PPT algorithm SampleD(RA,A,u, σ) that outputs x ∈ Z
m sampled from the distribution

DZm,σ, conditioned on the event that A · x = u mod q.

The KTX String Commitment Scheme. Kawachi et al. [21] constructed a string commitment
scheme COM : {0, 1}∗ × {0, 1}m/2 → Z

n
q , such that:
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• If m > 2n(1 + δ) log q for some positive constant δ, then COM is statistically hiding.

• If the SIS∞n,m,q,1 problem is hard, then COM is computationally binding.

In this paper, we will extensively use the KTX commitment scheme. For simplicity, we will omit the
randomness of the commitment. Also, we implicitly choose m sufficiently large, e.g., m = 4n log q, to
make COM statistically hiding.

3 Preparations

We now describe the parameters and some specific constructions that will be used in our scheme.

3.1 Parameters

Our group signature scheme involves two main parameters: a security parameter n and a maximum
expected number of group users N = 2ℓ ∈ poly(n). Given n, we fix the other scheme parameters as in
Table 3.1.

Parameter Value or Asymptotic bound

Modulus q ω(n2 log n)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q log n)

Integer norm bound β ⌈σ · logm⌉

Number of ‘decompositions’ p ⌊log β⌋+ 1

Sequence of integers β1 = ⌈β/2⌉;β2 = ⌈(β − β1)/2⌉
β1, β2, β3, . . . , βp β3 = ⌈(β − β1 − β2)/2⌉; . . . ;βp = 1

Number of protocol repetitions t ω(log n)

Table 1. Parameters of our VLR group signature scheme. The sequence β1, β2, . . . , βp satisfies
∑p

j=1 βj = β, and every
integer in the interval [−β, β] can be efficiently expressed as a subset sum of elements in the set {±β1,±β2, . . . ,±βp}.

3.2 Some Specific Sets

We now define some specific sets of vectors and permutations that will be extensively used throughout
this work. First, we denote by B3m the set of all vectors in {−1, 0, 1}3m having exactly m coordi-
nates −1; m coordinates 0; and m coordinates 1. Given a binary string d = d[1] . . . d[ℓ] ∈ {0, 1}ℓ, we
define two sets:

• Secretβ(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Z

(2ℓ+1)m consisting of 2ℓ+1 blocks

of size m, such that ‖x‖∞ ≤ β, and the following ℓ blocks are zero-blocks 0m: x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ .

• SecretExt(d): The set of all vectors x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ {−1, 0, 1}(2ℓ+1)3m consisting of

2ℓ+ 1 blocks of size 3m, such that the ℓ+ 1 blocks x0,x
d[1]
1 , . . . ,x

d[ℓ]
ℓ are elements of B3m, and the

remaining ℓ blocks x
1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ are zero-blocks 03m.
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Given a vector x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Z

(2ℓ+1)3m consisting of 2ℓ + 1 blocks of size 3m, we
define two sets of permutations of x:

• The set S of all permutations that keep the arrangement of the blocks. Specifically, if π ∈ S, then

π(x) =
(
τ0(x0)‖τ01 (x0

1)‖τ11 (x1
1)‖ . . . ‖τ0ℓ (x0

ℓ )‖τ1ℓ (x1
ℓ )
)
,

where τ0, τ
0
1 , τ

1
1 , . . . , τ

0
ℓ , τ

1
ℓ are certain permutations of 3m elements.

• The set T = {Te
∣∣ e ∈ {0, 1}ℓ}, where for e = e[1] . . . e[ℓ], Te ∈ T rearranges the blocks as follows:

Te(x) =
(
x0‖xe[1]

1 ‖x
1−e[1]
1 ‖ . . . ‖xe[ℓ]

ℓ ‖x
1−e[ℓ]
ℓ

)
.

In particular, given d, e ∈ {0, 1}ℓ, π ∈ S, and x ∈ Z
(2ℓ+1)3m, it can be checked that:

x ∈ SecretExt(d)⇔ π(x) ∈ SecretExt(d)⇔ Te ◦ π(x) ∈ SecretExt(d⊕ e). (1)

3.3 The Decomposition - Extension Technique

Ling et al. [25] proposed a Stern-type zero-knowledge proof of knowledge for the ISIS∞n,m,q,β problem
that enjoys a strong security guarantee: the best way to break their protocol is to solve the underlying
ISIS problem. They achieve this feature by using a versatile Decomposition-Extension framework.
Adapting their technique, we construct the following procedures:

Elementary Decomposition. On input a vector v = (v1, v2, . . . , vm) ∈ Z
m such that ‖v‖∞ ≤ β, the

procedure EleDec outputs p = ⌊log β⌋+1 vectors w̃1, . . . , w̃p ∈ {−1, 0, 1}m, such that
∑p

j=1 βj ·w̃j = v.
This procedure works as follows:

1. For each i ∈ [m], express vi as vi = β1 ·vi,1+β2 ·vi,2+ . . .+βp ·vi,p, where ∀j ∈ [p] : vi,j ∈ {−1, 0, 1}.
It was noted in [25] that for β1, β2, . . . , βp given in Table 3.1, this step can easily be done.

2. For each j ∈ [p], let w̃j := (v1,j , v2,j , . . . , vm,j) ∈ {−1, 0, 1}m. Output w̃1, . . . , w̃p.

Elementary Extension. On input a vector w̃ ∈ {−1, 0, 1}m, the procedure EleExt extends w̃ to a
vector w ∈ B3m. This procedure works as follows:

1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of w̃ that equal to −1, 0, and 1 respectively.

2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m − λ(−1)) coordinates −1, (m − λ(0))
coordinates 0, and (m− λ(1)) coordinates 1. Output w =

(
w̃‖ŵ

)
∈ B3m.

Witness Decomposition and Extensions. On input x ∈ Secretβ(d) for some d = d[1] . . . d[ℓ] ∈
{0, 1}ℓ, the procedure WitnessDE outputs p vectors z1, . . . zp ∈ SecretExt(d). This procedure works as
follows:

1. Write x as the concatenation of 2ℓ+ 1 blocks of size m, namely: x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
.

2. Run EleDec on each of the ℓ+1 blocks x0,x
d[1]
1 , . . . ,x

d[ℓ]
ℓ to obtained (ℓ+1)p decomposed vectors.

Then run EleExt on each of the decomposed vectors to obtain (ℓ + 1)p vectors in B3m, denoted

respectively by {w0,j}pj=1, {w
d[1]
1,j }

p
j=1, . . . , {w

d[ℓ]
ℓ,j }

p
j=1.

3. Create ℓp zero-vectors of dimension 3m, and denote them by {w1−d[1]
1,j }pj=1, . . . , {w

1−d[ℓ]
ℓ,j }pj=1.

4. For each j ∈ [p], let zj =
(
w0,j‖w0

1,j‖w1
1,j‖ . . . ‖w0

ℓ,j‖w1
ℓ,j

)
. Output z1, . . . , zp ∈ SecretExt(d).

Matrix Extension. On input matrix A ∈ Z
n×(2ℓ+1)m
q , the following procedure MatrixExt outputs

matrix A∗ ∈ Z
n×(2ℓ+1)3m
q :
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A · x = u (mod q)

x ∈ Secretβ(d)

d = (1 . . . 0) ∈ {0, 1}ℓ

A0 A0
1 A1

1 A0
ℓ A1

ℓ

· x0

x0
1 = 0m

x1
1

x0
ℓ

x1
ℓ = 0m

u
=n

m

A0

A∗ =
0 A0

1 0 A1
1 0 A0

ℓ 0 A1
ℓ 0

n

2m

zT1 =
︸ ︷︷ ︸

w0,1

︸ ︷︷ ︸

w0
1,1 = 03m

︸ ︷︷ ︸

w1
1,1

︸ ︷︷ ︸

w0
ℓ,1

︸ ︷︷ ︸

w1
ℓ,1 = 03m

zTp =

......

β
1 ·

+
...

+
β
p ·

=

x1
1

β
1 ·

+
...

+
β
p ·

=

x0
ℓ

β
1 ·

+
...

+
β
p ·

=

x0

Fig. 1. An illustration of our Decomposition-Extension technique, where the first bit of d is 1 and its last bit is 0. We
denote by an element of B3m. After performing Decomposition-Extension, one has that zj ∈ SecretExt(d)
for all j ∈ [p], and A∗ ·

(∑p

j=1 βj · zj
)
= A · x = u mod q.

1. Write A as the concatenation of 2ℓ+ 1 component-matrices in Z
n×m
q .

2. Append 2m zero-columns to each of the component-matrices, then output the extended matrix A∗.

In particular, let {zj}pj=1 ←WitnessDE(x) andA∗ ← MatrixExt(A) then we haveA·x = A∗ ·(∑p
j=1 βj ·

zj). We illustrate our Decomposition-Extension technique in Figure 1.
Therefore, in the protocol in Section 4, in order to prove that x ∈ Secretβ(d) for some d ∈ {0, 1}ℓ,

and A · x = u mod q, one can instead prove that:

A∗ · (
p∑

j=1

βj · zj) = u mod q and ∀j ∈ [p], π ∈ S, e ∈ {0, 1}ℓ : Te ◦ π(zj) ∈ SecretExt(d⊕ e),

where the latter relation follows from the fact that zj ∈ SecretExt(d) for all j ∈ [p], and from (1).

4 The Underlying Interactive Protocol

We recall that the main building block of our VLR group signature scheme is an interactive protocol
that allows the prover to convince the verifier that he is a certified group member (i.e., he has a valid
secret key), and that he has not been revoked (i.e., his revocation token is not in the verifier’s list
RL). In Section 5, the protocol is repeated t = ω(log n) times to make the soundness error negligibly
small, and then is transform to a signature scheme via Fiat-Shamir heuristic. The interactive protocol
is summarized as follows:

• The public parameters are A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . .
∣∣A0

ℓ

∣∣A1
ℓ

]
∈ Z

n×(2ℓ+1)m
q and u ∈ Z

n
q .

• The prover’s witness is a x =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Secretβ(d) for some d ∈ {0, 1}ℓ. The

verifier’s additional input is a set RL =
{
{ui}i

}
⊂ Z

n
q , whose cardinality is at most N − 1.

• The prover’s goal is to convince the verifier in that:
1. A · x = u mod q and x ∈ Secretβ(d), while keeping d secret.
2. A0 · x0 mod q 6∈ RL.

4.1 Description of the Protocol

Let COM be the KTX commitment scheme [21]. Let A∗ ← MatrixExt(A). Prior to the interaction, the
prover applies the Decomposition-Extension technique on his witness: Let z1, . . . , zp ←WitnessDE(x).
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The protocol follows Stern’s approach for three-pass zero-knowledge identification schemes [39], for
which we employ an additional commitment c0 to enable the revocation mechanism. The details are
as follows:

1. Commitment: The prover samples a string e
$←− {0, 1}ℓ, p permutations π1, . . . , πp

$←− S, and
p vectors r1, . . . , rp

$←− Z
(2ℓ+1)·3m
q . For each j ∈ [p], let rj,0 = Parse(rj , 1,m). Then it sends the

commitment CMT =
(
c0, c1, c2, c3

)
∈ (Zn

q )
4 to the verifier, where





c0 = COM
(
e, {πj}pj=1, A0 ·

(∑p
j=1 βj · rj,0

)
mod q

)
,

c1 = COM
(
e, {πj}pj=1, A∗ ·

(∑p
j=1 βj · rj

)
mod q

)
,

c2 = COM
(
{Te ◦ πj(rj)}pj=1

)
,

c3 = COM
(
{Te ◦ πj(zj + rj)}pj=1

)
.

(2)

2. Challenge: The verifier sends a challenge Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on the challenge, the prover computes the response RSP differently:

• Case Ch = 1: ∀ j ∈ [p], let vj = Te ◦ πj(zj), wj = Te ◦ πj(rj), d1 = d⊕ e, and set:

RSP =
(
d1, {vj}pj=1, {wj}pj=1

)
. (3)

• Case Ch = 2: ∀ j ∈ [p], let φj = πj , sj = zj + rj , d2 = e, and set:

RSP =
(
d2, {φj}pj=1, {sj}

p
j=1

)
. (4)

• Case Ch = 3: ∀ j ∈ [p], let ψj = πj , hj = rj , d3 = e, and set:

RSP =
(
d3, {ψj}pj=1, {hj}pj=1

)
. (5)

Verification: Receiving the response RSP, the verifier proceeds as follows:
• Case Ch = 1: Parse RSP as in (3). Check that ∀j ∈ [p] : vj ∈ SecretExt(d1), and that:

c2 = COM
(
{wj}pj=1

)
and c3 = COM

(
{vj +wj}pj=1

)
.

• Case Ch = 2: Parse RSP as in (4). ∀j ∈ [p], let sj,0 = Parse(sj , 1,m). Check that:
{
∀ui ∈ RL : c0 6= COM

(
d2, {φj}pj=1, A0 ·

(∑p
j=1 βj · sj,0

)
− ui mod q

)

c1 = COM
(
d2, {φj}pj=1, A

∗ ·
(∑p

j=1 βj · sj
)
− u mod q

)
; c3 = COM

(
{Td2 ◦ φj(sj)}pj=1

)
.

• Case Ch = 3: Parse RSP as in (5). ∀j ∈ [p], let hj,0 = Parse(hj , 1,m). Check that:
{
c0 = COM(d3, {ψj}pj=1, A0 ·

(∑p
j=1 βj · hj,0) mod q

)

c1 = COM
(
d3, {ψj}pj=1, A

∗ · (∑p
j=1 βj · hj) mod q

)
; c2 = COM

(
{Td3 ◦ ψj(hj)}pj=1

)
.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he outputs Invalid.

4.2 Witness Extraction

The following lemma says that in our protocol, one can extract a satisfying witness under specific
conditions.

Lemma 2. Assume that for a given commitment CMT, there exist 3 valid responses RSP(1), RSP(2),

and RSP(3) corresponding to all 3 possible values of the challenge Ch. If COM is a computationally

binding commitment scheme, then one can efficiently extract a vector y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

ℓ‖y1
ℓ

)
∈

Z
(2ℓ+1)m satisfying A · y = u mod q, y ∈ Secretβ(d) for some d ∈ {0, 1}ℓ, and A0 · y0 mod q 6∈ RL.
The proof of this lemma is given in Appendix A.
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5 The VLR Group Signature Scheme

In this section we first describe our lattice-based VLR group signature scheme, and then we prove
that the scheme satisfies the requirements defined in Section 2.1: correctness, selfless-anonymity and
traceability.

5.1 Description of the Scheme

Keys Generation. The randomized algorithm KeyGen(n,N), works as follows:

1. Run GenTrap(n,m, q) to get A0 ∈ Z
n×m
q and trapdoor R.

2. Sample u
$←− Z

n
q , and Ab

i
$←− Z

n×m
q for all b ∈ {0, 1} and i ∈ [ℓ]. Then define the matrix

A =
[
A0

∣∣A0
1

∣∣A1
1

∣∣ . . .
∣∣A0

ℓ

∣∣A1
ℓ

]
∈ Z

n×(2ℓ+1)m
q .

3. For group user with index d ∈ {0, 1, . . . , N − 1}, let d[1] . . . d[ℓ] ∈ {0, 1}ℓ denote the binary repre-
sentation of d, and do the following:

(a) Sample vectors x
d[1]
1 , . . . ,x

d[ℓ]
ℓ ←֓ DZm,σ. Compute z =

∑ℓ
i=1A

d[i]
i · xd[i]

i mod q, and sample

x0 ∈ Z
m with x0 ←֓ SampleD

(
R,A0,u− z, σ

)
. Let x

1−d[1]
1 , . . . ,x

1−d[ℓ]
ℓ be zero-vectors 0m, and

define x(d) =
(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Z

(2ℓ+1)m. If ‖x(d)‖∞ ≤ β then go to step (??); else,
repeat step (3a).

(b) Let the user secret key be gsk[d] = x(d), and the revocation token be grt[d] = A0 · x0 ∈ Z
n
q .

4. Finally, the algorithm outputs (gpk, gsk, grt), where

gpk = (A,u); gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
; grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
.

Remark 2. We have some observations on the behaviour of the above key generation algorithm:

• By Theorem 2, the distribution of matrix A0 generated by GenTrap(n,m, q) is statistically close
to uniform over Zn×m

q . Thus, the distribution of gpk output by KeyGen(n,N) is statistically close

to uniform over Z
n×(2ℓ+1)m
q ×Z

n
q . We note that the pair (A,u) resembles the Bonsai tree structure

[14], where A0 is the “root” of the tree.

• In Step (3a), each coordinate of vector x(d) is either 0 or distributed according to the distribution
DZ,σ (see Theorem 2 regarding the output distribution of algorithm SampleD). By setting β =
⌈σ · logm⌉, we ensure that ‖x(d)‖∞ ≤ β with overwhelming probability (see Lemma 1). Thus, the
event that Step (3a) needs to be repeated only occurs with negligible probability.

• The secret key x(d) of group user with index d satisfies A · x(d) = u mod q, and x(d) ∈ Secretβ(d).

• By Lemma 1, the distribution of each user revocation token grt[d] is statistically close to uniform
over Z

n
q . The trivial requirement is that the revocation tokens of two different group users must

be different. In the very rare event of conflict (i.e., there exist d1, d2 ∈ {0, . . . , N − 1} such that
d2 > d1 and grt[d1] = grt[d2]), the algorithm simply re-samples the key and token for user with
index d2.
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Signing Algorithm. Let H : {0, 1}∗ → {1, 2, 3}t be a hash function, modelled as a random oracle.
Given gpk = (A,u), to sign a message M ∈ {0, 1}∗ using the secret key gsk[d] = x ∈ Secretβ(d), the
user runs the randomized algorithm Sign(gpk, gsk[d],M), which performs the following steps:

1. Generate a proof that the user is a certified group members and that he has not been revoked. This
is done by repeating t = ω(log n) times the basic protocol from Section 4 with public parameter
(A,u) and prover’s witness x, and then making it non-interactive with the Fiat-Shamir heuristic
as a triple

(
{CMT(k)}tk=1, CH, {RSP(k)}tk=1

)
, where

CH =
(
{Ch(k)}tk=1

)
= H

(
M, {CMT(k)}tk=1

)
∈ {1, 2, 3}t.

2. Output the group signature:

Σ =
(
M, {CMT(k)}tk=1, {Ch(k)}tk=1, {RSP(k)}tk=1

)
. (6)

Verification Algorithm. On input gpk = (A,u), a set of tokens RL =
{
{ui}i

}
⊂ Z

n
q whose

cardinality is at most N − 1, a message M ∈ {0, 1}∗, and a purported group signature Σ on M , the
verifier runs the deterministic algorithm Verify(gpk, RL,Σ,M), which performs the following steps:

1. Parse the signature Σ as in (6).
2. Check if

(
Ch(1), . . . , Ch(t)

)
= H

(
M,CMT(1), . . . ,CMT(t)

)
.

3. For k = 1 to t, run the verification of the protocol from Section 4 to check the validity of RSP(k)

with respect to CMT(k) and Ch(k). If any of the verification conditions does not hold, then output
Invalid and terminate.

4. Output Valid.

5.2 Analysis of the Scheme

Efficiency and Correctness. The parameters in Table 3.1 are set so that all of the algorithms
in the VLR group signature in Section 5.1 can be implemented in polynomial time. Asymptotically,
the group public key has bit-size ℓ · Õ(n2) = logN · Õ(n2), while the group signatures have bit-size

ℓ · Õ(n) = logN · Õ(n). The revocation check, i.e., the check against c
(k)
0 in the case Ch(k) = 2, runs

in linear time in the number of revoked users, as it seems unavoidable for secure VLR group signature
schemes.

Theorem 3. Our VLR group signature scheme is correct with overwhelming probability.

The proof of this Theorem is provided in Appendix B.1.

Selfless-Anonymity. We now prove that our VLR group signature scheme is selfless-anonymous.

Theorem 4. If COM is a statistically hiding string commitment scheme, then the VLR group signa-

ture scheme in Section 5.1 is selfless-anonymous in the random oracle model.

Proof. We define two hybrid games G0 and G1. Game G0 is the original selfless-anonymity game (see
Section 2). In game G1, we make the distribution of the challenger’s output independent of the bit
b ∈ {0, 1}. We then prove that these two games are statistically indistinguishable. Since the adversary’s
advantage in game G1 is 0, this implies the selfless-anonymity of our scheme.

Game G0:
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1. Run KeyGen(n,N) to obtain

gpk = (A,u); gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
; grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
.

Set RL := ∅, Corrupted := ∅, and give gpk to the adversary A.
2. If A queries the signature on any message M by user of index d, return Σ = Sign

(
gpk, gsk[d],M

)
.

If A queries the corruption of user of index d, set Corrupted := Corrupted ∪ {d}, and return gsk[d].
If A queries the revocation of user d, set RL := RL ∪ {grt[d]}, and return grt[d].

3. A outputs a message M∗ and d0, d1 such that db 6∈ Corrupted and grt[db] 6∈ RL for each b ∈ {0, 1}.
4. Pick a bit b

$←− {0, 1}, generate a valid signature

Σ = Sign
(
gpk, gsk[db],M

∗
)
=

(
M∗,

{
CMT(k)

}t

k=1
,
{
Ch(k)

}t

k=1
,
{
RSP(k)

}t

k=1

)
,

and return Σ to A.
5. A can still make queries as before, but it is not allowed to ask for gsk[db] or grt[db], for each
b ∈ {0, 1}.

6. Finally A outputs a bit b′.

Game G1:
In this game, we make the following modification with respect to Game G0: In Step 3(b)iD, instead
of generating a legitimate signature, we simulate the signature generation. Our simulation algorithm
is such that:

• Input: The group public key gpk =
(
A,u

)
obtained from Step 3(b)iA, the set of user revocation

tokens RL obtained at the end of Step 3(b)iB, and the message M∗ obtained from Step 3(b)iC.
• Output: A valid group signature Σ∗ for message M∗ under gpk and RL. Moreover, Σ∗ is inde-

pendent of the bit b, and it is statistically indistinguishable from the legitimate signature Σ in
game G0.

Let A =
[
A0|A0

1|A1
1| . . . |A0

ℓ |A1
ℓ

]
and A∗ ← MatrixExt(A). The simulation algorithm does the follow-

ing:

1. For each k ∈ [t], pick a “fake” challenge Ch
(k) $←− {1, 2, 3}, that is a “prediction” of what the real

challenge will not be. Then pick a real challenge Ch(k)
$←− {1, 2, 3} \ {Ch(k)}. It turns out that

Ch(k) is uniformly distributed in {1, 2, 3}, which satisfies the requirement on the output of the
random oracle H. Then prepare CMT(k), and the response RSP(k) to (CMT(k), Ch(k)) as follows:

(a) Case Ch
(k)

= 1:

i. Use linear algebra to compute z ∈ Z
(2ℓ+1)3m
q such that A∗ · z = u mod q. Let g0 =

Parse(z, 1,m). If A0 · g0 ∈ RL then repeat this step. Otherwise, compute z
(k)
1 , . . . , z

(k)
p ∈

Z
(2ℓ+1)3m
q such that

∑p
j=1 βj · z

(k)
j = z mod q.

ii. Sample e(k)
$←− {0, 1}ℓ, and for all j ∈ [p], sample π

(k)
j

$←− S and r
(k)
j

$←− Z
(2ℓ+1)·3m
q , and let

r
(k)
j,0 = Parse(r

(k)
j , 1,m).

iii. Compute CMT(k) =
(
c
(k)
0 , c

(k)
1 , c

(k)
2 , c

(k)
3

)
∈ (Zn

q )
4 as in (2), from Section 4.

iv. If Ch(k) = 2, then set RSP(k) =
(
e(k), {π(k)j }

p
j=1, {z

(k)
j +r

(k)
j }

p
j=1

)
. (7)

If Ch(k) = 3, then set RSP(k) =
(
e(k), {π(k)j }

p
j=1, {r

(k)
j }

p
j=1

)
. (8)

(b) Case Ch
(k)

= 2:
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i. Sample d(k), e(k)
$←− {0, 1}ℓ. For all j ∈ [p], sample π

(k)
j

$←− S, and r
(k)
j

$←− Z
(2ℓ+1)·3m
q , and

z
(k)
j

$←− SecretExt(d(k)). Let r
(k)
j,0 = Parse(r

(k)
j , 1,m).

ii. Compute CMT(k) =
(
c
(k)
0 , c

(k)
1 , c

(k)
2 , c

(k)
3

)
∈ (Zn

q )
4 as in (2), from Section 4.

iii. If Ch(k) = 1, then set RSP(k) =
(
d(k)⊕e(k),

{
Te(k)◦π

(k)
j (z

(k)
j )

}p

j=1
,
{
Te(k)◦π

(k)
j (r

(k)
j )

}p

j=1

)
. (9)

If Ch(k) = 3, then set RSP(k) =
(
e(k), {π(k)j }

p
j=1, {r

(k)
j }

p
j=1

)
. (10)

(c) Case Ch
(k)

= 3:

i. Sample d(k), e(k)
$←− {0, 1}ℓ. For all j ∈ [p] sample π

(k)
j

$←− S and r
(k)
j

$←− Z
(2ℓ+1)·3m
q , and let

r
(k)
j,0 = Parse(r

(k)
j , 1,m).

ii. For all j ∈ [p], sample z
(k)
j

$←− SecretExt(d(k)), and let z
(k)
j,0 = Parse(z

(k)
j , 1,m). If A0 ·

(
∑p

j=1 βj · z
(k)
j,0 ) ∈ RL, then repeat this step.

iii. Compute CMT(k) =
(
c
(k)
0 , c

(k)
1 , c

(k)
2 , c

(k)
3

)
∈ (Zn

q )
4, where c

(k)
0 , c

(k)
2 and c

(k)
3 are as in (2),

from Section 4, while c
(k)
1 is computed as follows:

c
(k)
1 = COM

(
e(k), {π(k)j }

p
j=1, A

∗ ·
p∑

j=1

βj · (z(k)j + r
(k)
j )− u

)
.

iv. If Ch(k) = 1, then set RSP(k) =
(
d(k)⊕e(k),

{
Te(k)◦π

(k)
j (z

(k)
j )

}p

j=1
,
{
Te(k)◦π

(k)
j (r

(k)
j )

}p

j=1

)
. (11)

If Ch(k) = 2, then set RSP(k) =
(
e(k), {π(k)j }

p
j=1, {z

(k)
j +r

(k)
j }

p
j=1

)
. (12)

2. Program the random oracle: H
(
M∗,CMT(1), . . . ,CMT(t)

)
=

(
Ch(1), . . . , Ch(t)

)
.

3. Output the simulated signature Σ∗ =
(
M∗,

{
CMT(k)

}t

k=1
,
{
Ch(k)

}t

k=1
,
{
RSP(k)

}t

k=1

)
.

We have the following observations on the above construction:

• For every k ∈ [t], the distribution of CMT(k) is statistically close to uniform over (Zn
q )

4. This
follows from the statistically hiding property of COM.

• The distribution of
(
Ch(1), . . . , Ch(t)

)
is uniform over {1, 2, 3}t.

• For every k ∈ [t]:

1. If Ch(k) = 1, the view of A on CMT(k) and RSP(k) is either (3(b)iB) and (??), or (3(b)iC) and
(10).

2. If Ch(k) = 2, the view of A on CMT(k) and RSP(k) is either (3(b)iC) and (7), or (3(b)iC) and
(11).

3. If Ch(k) = 3, the view of A on CMT(k) and RSP(k) is either (3(b)iC) and (8), or (3(b)iB) and
(9).

We remark that, in every case, RSP(k) is intentionally designed to be a valid “response” to CMT(k)

and Ch(k), and to be statistically close to that produced by Step (3(b)iD) in Game G0.

These observations imply that Σ∗ is a valid group signature, i.e., Verify
(
(A,u), RL,Σ∗,M∗

)
= Valid,

and that Σ∗ is statistically indistinguishable from the legitimate signature Σ produced by Game G0

(for a more detailed analysis, see Lemma 4 in Appendix B.2). It then follows that Game G0 and
Game G1 are statistically indistinguishable. Moreover, Σ∗ is independent of the bit b ∈ {0, 1}, thus,
the adversary’s advantage in Game G1 is 0. As a result, the adversary’s advantage in Game G0 is
negligible. In other words, our VLR group signature is selfless-anonymous. ⊓⊔
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Traceability. We now prove that, in the random oracle model, our VLR group signature scheme is
traceable if the SIS∞n,(ℓ+1)·m,q,2β problem is hard.

Theorem 5. If there is a traceability adversary A with success probability ǫ and running time T ,
then there is an algorithm F that solves the SIS∞n,(ℓ+1)·m,q,2β problem with success probability ǫ′ >(
1− (7/9)t

)
· 1
2N , and running time T ′ = 32 · T · qH/(ǫ− 3−t) + poly(n,N), where qH is the number of

queries to the random oracle H : {0, 1}∗ → {1, 2, 3}t.
The results of Theorem 1 and Theorem 4 imply that our scheme is traceable in the random oracle
model, based on the worst-case hardness of the SIVPγ problem (in the ℓ2 norm), with γ = 2β · Õ(n) =
Õ(n1.5).
Proof. First, suppose that adversary A can break the computational binding property of the commit-
ment scheme COM with non-negligible probability. As mentioned earlier (see Section 2.2), we can use
A to solve the SIS∞n,(ℓ+1)·m,q,2β problem. Therefore, without loss of generality, we assume that COM is
computationally binding.

We construct a PPT algorithm F solving the SIS∞n,(ℓ+1)·m,q,2β problem with non-negligible proba-
bility, which works as follows:

Challenge: Algorithm F is given a uniformly random matrix C =
[
C0

∣∣C1

∣∣ . . .
∣∣Cℓ

]
∈ Z

n×(ℓ+1)·m
q .

It wins the challenge if it can produce a non-zero vector x ∈ Z
(ℓ+1)·m such that ‖x‖∞ ≤ 2β and

C · x = 0 mod q.
Setup: F performs the following steps:

1. Sample vector z =
(
z0‖z1‖ . . . ‖zℓ

)
∈ Z

(ℓ+1)·m, where each coordinate of z is sampled from DZ,σ.
If ‖z‖∞ > β, then repeat the sampling. Otherwise, compute u = C · z mod q.

2. Run TrapGen(n,m, q) algorithm ℓ times, and let the outputs be
(
(F1,R1), (F2,R2), . . . , (Fℓ,Rℓ)

)
.

3. Pick a target index d∗ = d∗[1] . . . d∗[ℓ]
$←− {0, 1}ℓ, and define A =

[
A0|A0

1|A1
1| . . . |A0

ℓ |A1
ℓ

]
∈

Z
n×(2ℓ+1)·m
q , where A0 = C0, and for each i ∈ [ℓ]: A

d∗[i]
i = Ci and A

1−d∗[i]
i = Fi.

4. Define the secret key and revocation token for user d∗ as follows:

• gsk[d∗] = (x0‖x0
1‖x1

1‖ . . . ‖x0
ℓ‖x1

ℓ ) ∈ Z
(2ℓ+1)·m, where x0 = z0, ∀i ∈ [ℓ]: x

d∗[i]
i = zi and x

1−d∗[i]
i =

0m,
• grt[d∗] = A0 · x0 mod q ∈ Z

n
q .

5. Generate the secret key and the revocation token for each user d 6= d∗, where d = d[1] . . . d[ℓ], as
follows:
• Let d[b] (1 ≤ b ≤ ℓ) be the first bit from the left where d[b] 6= d∗[b]. Since d 6= d∗, such b must

exist. It follows that A
d[b]
b = A

1−d∗[b]
b = Fb.

• Sample ℓ vectors x0,x
d[1]
1 , . . . ,x

d[b−1]
b−1 ,x

d[b+1]
b+1 , . . . ,x

d[ℓ]
ℓ ←֓ DZm,σ, and let

t(d) = u−
(
A0 · x0 +

∑

i∈[ℓ],i 6=b

A
d[i]
i · xd[i]

i

)
mod q.

• Sample x
d[b]
b ←֓ SampleD(Rb,Fb, t

(d), σ).

• For each i ∈ [ℓ], let x
1−d[i]
i = 0m, then let x(d) =

(
x0‖x0

1‖x1
1‖ . . . ‖x0

ℓ‖x1
ℓ

)
∈ Z

(2ℓ+1)·m. If

the very rare event that ‖x(d)‖∞ > β happens, then repeat the sampling. Otherwise, set
gsk[d] = x(d) and grt[d] = A0 · x0 mod q ∈ Z

n
q .

6. Let gpk = (A,u), gsk =
(
gsk[0], gsk[1], . . . , gsk[N − 1]

)
, grt =

(
grt[0], grt[1], . . . , grt[N − 1]

)
. We

note that, by construction, the distribution of (gpk, gsk, grt) is statistically close to that of the real
scheme, and the choice of d∗ is hidden from the adversary. Algorithm F then gives (gpk, grt) to A.
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Queries: Algorithm F answers the queries of A as follows:

• Corruption queries: The corruption set U is initially set to be empty. If A queries the secret
key of any user d ∈ {0, . . . , N − 1}, then F adds d to the corruption set U , and returns gsk[d].

• Signatures queries: If A queries signature of user d on arbitrary message M , then F returns
Σ = Sign

(
gpk, gsk[d],M

)
. Queries to the random oracle H are handled by consistently returning

uniformly random values in {1, 2, 3}t. For each κ ≤ qH, we let rκ denote the answer to the κ-th
query.

Forgery: Eventually, A outputs a message M∗, a set of tokens RL∗ and a non-trivial forged signature

Σ∗ =
(
M∗, {CMTi}ti=1, {Chi}ti=1, {RSPi}ti=1

)
,

such that Verify(gpk, RL∗, Σ∗,M∗) = valid, and the implicit tracing algorithm fails or traces to a user
outside of the coalition U \RL∗. Now algorithm F exploits the forgery as follows.

First, one can argue that A must have queried H on input
(
M∗, {CMTi}ti=1

)
, as otherwise, the

probability that (Ch1, . . . , Cht) = H
(
M∗, {CMTi}ti=1

)
is at most 3−t. Therefore, with probability

at least ǫ − 3−t, there exists certain κ∗ ≤ qH such that the κ∗-th oracle queries involves the tuple(
M∗, {CMTi}ti=1

)
. Next, F picks κ∗ as the target forking point and replays A many times with the

same random tape and input as in the original run. In each rerun, for the first κ∗ − 1 queries, A is
given the same answers r1, . . . , rκ∗−1 as in the initial run, but from the κ∗-th query onwards, F replies

with fresh random values r
′

κ∗ , . . . , r
′

qH

$←− {1, 2, 3}t. The Improved Forking Lemma of Pointcheval and
Vaudenay [35, Lemma 7] implies that, with probability larger than 1/2, algorithm F can obtain a
3-fork involving the tuple

(
M∗, {CMTi}ti=1

)
after less than 32 · qH/(ǫ− 3−t) executions of A. Now, let

the answers of F with respect to the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r

(2)
κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r

(3)
κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).

A simple calculation shows that: Pr
[
∃i ∈ {1, . . . , t} : {Ch(1)i , Ch

(2)
i , Ch

(3)
i } = {1, 2, 3}

]
= 1 − (7/9)t.

Conditioned on the existence of such index i, one parses the 3 forgeries corresponding to the fork

branches to obtain
(
RSP

(1)
i ,RSP

(2)
i ,RSP

(3)
i

)
. They turn out to be 3 valid responses with respect to 3

different challenges for the same commitment CMTi. Since COM is assumed to be computationally-
binding, we can apply Lemma 2 to extract a vector y =

(
y0‖y0

1‖y1
1‖ . . . ‖y0

ℓ‖y1
ℓ

)
∈ Z

(2ℓ+1)m satisfying
A · y = u mod q, A0 · y0 mod q 6∈ RL∗, and y ∈ Secretβ(d) for some d ∈ {0, 1}ℓ. Now consider two
cases:

• If d 6= d∗, which happens with probability at most N−1
N , then algorithm F declares Fail and aborts.

• If d = d∗, then let y∗ =
(
y0‖yd∗[1]

1 ‖ . . . ‖yd∗[ℓ]
ℓ

)
∈ Z

(ℓ+1)m, obtained by removing the zero-blocks

y
1−d∗[1]
1 , . . . ,y

1−d∗[ℓ]
ℓ from y. Note that, by construction, one has C ·y∗ = A ·y = u = C · z mod q.

We will show that, over the randomness of all algorithms, y∗ 6= z with overwhelming probability.
Recall that Σ∗ is a valid signature such that the implicit tracing algorithm either fails or outputs an
index e 6∈ U \RL∗.

• If the tracing algorithm fails, then, in particular, one has Verify(gpk, grt[d∗], Σ∗,M∗) = Valid. It
follows from the correctness of the VLR group signature that A0 · y0 6= grt[d∗] = A0 · z0. This
implies that y0 6= z0, and thus y∗ 6= z.
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• If the tracing algorithm outputs e 6∈ U \RL∗, namely the following two facts simultaneously hold
true:

Verify(gpk, grt[e], Σ∗,M∗) = Invalid and Verify(gpk, RL∗, Σ∗,M∗) = Valid.

This leads to grt[e] 6∈ RL∗, and hence e 6∈ U . Furthermore, the correctness of the revocation check
and the computational binding property of COM imply that A0 · y0 mod q = grt[e]. Now consider
2 cases:

1. If A has never requested the secret key gsk[d∗], then z is unknown to A. In this case, because z
has large min-entropy given u (see Lemma 1), we have z 6= y∗ with overwhelming probability.

2. If the adversary A has requested the secret key gsk[d∗] in the Queries phase, then d∗ ∈ U . In
particular, it must be true that d∗ 6= e (because e 6∈ U) , and thus grt[d∗] 6= grt[e]. In other
words, we have A0 · y0 6= A0 · z0 mod q. This leads to y∗ 6= z.

Now let x = z−y∗ ∈ Z
(ℓ+1)m, then x 6= 0; C ·x = 0 mod q; and ‖x‖∞ ≤ ‖z‖∞+ ‖y‖∞ ≤ β+β = 2β.

Algorithm F finally outputs the vector x, which is a valid solution to the given SIS∞n,(ℓ+1)·m,q,2β instance.

We observe that the probability that F does not abort is at least 1/N , and conditioned on not
aborting, it can solve the SIS∞n,(ℓ+1)·m,q,2β problem with probability larger than 1/2 ·

(
1 − (7/9)t

)
in

time

T · 32 · qH/(ǫ− 3−t) + poly(n,N).

This concludes the proof. ⊓⊔
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A Witness Extraction

The following lemma says that in our protocol, one can extract a satisfying witness under specific
conditions.

Lemma 3. Assuming that for a given commitment CMT, there exist 3 valid responses RSP(1), RSP(2),

and RSP(3) corresponding to all 3 possible values of the challenge Ch. If COM is a computationally

binding commitment scheme, then one can efficiently extract a vector y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

ℓ‖y1
ℓ

)
∈

Z
(2ℓ+1)m satisfying A · y = u mod q, y ∈ Secretβ(d) for some d ∈ {0, 1}ℓ, and A0 · y0 mod q 6∈ RL.

Proof. Let CMT =
(
c0, c1, c2, c3

)
∈ (Zn

q )
4, and let RSP(1), RSP(2), RSP(3) as in (3), (4), and (5),

respectively. Since all 3 responses satisfy the verification conditions, the followings are true:





∀j ∈ [p] : vj ∈ SecretExt(d1); c0 = COM(d3, {ψj}pj=1, A0 ·
(∑p

j=1 βj · hj,0) mod q
)
;

∀ui ∈ RL : c0 6= COM
(
d2, {φj}pj=1, A0 ·

(∑p
j=1 βj · sj,0

)
− ui mod q

)
;

c1 = COM
(
d2, {φj}pj=1, A

∗ ·
(∑p

j=1 βj · sj
)
− u

)
= COM

(
d3, {ψj}pj=1, A

∗ ·
(∑p

j=1 βj · hj

))
;

c2 = COM
(
{wj}pj=1

)
= COM

(
{Td3 ◦ ψj(hj)}pj=1)

)
;

c3 = COM
(
{vj +wj}pj=1

)
= COM

(
{Td2 ◦ φj(sj)}pj=1)

)
.

Since COM is computationally binding, one can deduce that d2 = d3, φj = ψj for all j ∈ [p], and that:





A0 ·
(∑p

j=1 βj · (sj,0 − hj,0)
)
6∈ RL,

∀j ∈ [p] : wj = Td2 ◦ φj(hj) and vj +wj = Td2 ◦ φj(sj),
A∗ ·

(∑p
j=1 βj · (sj − hj)

)
= u mod q.

For each j ∈ [p], let y′
j = sj−hj , then Td2◦φj(y′

j) = Td2◦φj(sj)−Td2◦φj(hj) = vj ∈ SecretExt(d1).
It then follows that φj(y

′
j) ∈ SecretExt(d1 ⊕ d2). Let d = d1 ⊕ d2, then y′

j ∈ SecretExt(d) for all
j ∈ [p], since the permutation φj ∈ S preserves the arrangements of the blocks of y′

j . Now let

y′ =
∑p

j=1 βj ·y′
j ∈ Z

(2ℓ+1)3m
q , and let y ∈ Z

(2ℓ+1)m be the vector obtained from y′ by removing the last
2m coordinates in each 3m-block. We note that ‖y‖∞ ≤ ‖y′‖∞ ≤

∑p
j=1 βj · ‖yj‖∞ =

∑p
j=1 βj · 1 = β.

Moreover, as y′
j ∈ SecretExt(d) for all j ∈ [p], we have that y ∈ Secretβ(d).

Let y =
(
y0‖y0

1‖y1
1‖ . . . ‖y0

ℓ‖y1
ℓ

)
, then the blocks y

1−d[1]
1 , . . . ,y

1−d[ℓ]
ℓ are zero-blocks 0m. Further-

more, we have that:

A0 · y0 = A0 ·
( p∑

j=1

βj · (sj,0 − hj,0)
)
6∈ RL.

Finally, by construction, we have: A · y = A∗ · y′ = A∗ ·∑p
j=1 βj · yj = A∗ ·

(∑p
j=1 βj · (sj − hj)

)
=

u mod q. Therefore, we have obtained a vector y satisfying all the conditions stated in the lemma. ⊓⊔

B Analysis of our scheme

B.1 Correctness

Theorem 6. Our VLR group signature scheme is correct with overwhelming probability.
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Proof. We have to prove that for all gpk = (A,B,u), gsk = ({gsk[d]}N−1
d=0 ), grt = ({grt[d]}N−1

d=0 )
outputted by KeyGen(n,N), all d ∈ {0, 1, . . . , N − 1}, and all M ∈ {0, 1}∗, we have:

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇔ grt[d] 6∈ RL.

1. We first prove that: grt[d] 6∈ RL⇒ Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid.
Suppose that grt[d] 6∈ RL. We will show that, for each k ∈ [t], all the checks performed by the
verification algorithm hold true, except for negligible probability. For simplicity, we will not consider
the trivial checks for correct computations, e.g., the case Ch(k) = 3.

(a) If Ch(k) = 1: The crucial point is to check whether ∀j ∈ [p] : v
(k)
j ∈ SecretExt(d

(k)
1 ). Note

that if x = gsk[d] is outputted by KeyGen(n,N) then x ∈ Secretβ(d), and thus, all the vectors
z1, . . . , zp outputted by the procedure WitnessDE(x) belong to the set SecretExt(d). It then follows

from the special properties of the permutation sets S and T that ∀j ∈ [p] : Te(k) ◦ π
(k)
j (zj) ∈

SecretExt(d ⊕ e(k)). Finally, it is worth to recall that ∀j ∈ [p] : v
(k)
j = Te(k) ◦ π

(k)
j (zj), and that

d
(k)
1 = d⊕ e(k).

(b) If Ch(k) = 2: There are two crucial checks:
i. Check if ∀ui ∈ RL : c0 6= COM

(
d2, {φj}pj=1, A0 ·

(∑p
j=1 βj · sj,0

)
− ui mod q

)
. For each i,

let αi = A0 ·
(∑p

j=1 βj · sj,0
)
− ui ∈ Z

n
q . Meanwhile, c

(k)
0 = COM

(
d2, {φj}pj=1, α), where

α = A0 ·
(∑p

j=1 βj · rj,0
)

= αi + ui − grt[d]. Since grt[d] 6∈ RL, we have grt[d] 6= ui

for all i, and thus, α 6= αi. Moreover, over the randomness of all algorithms, the distri-
butions of COM

(
d2, {φj}pj=1, α) and COM

(
d2, {φj}pj=1, αi) are statistically close to uni-

form over Z
n
q (this follows from the statistically hiding property of COM). Hence, we have

COM
(
d2, {φj}pj=1, α) 6= COM

(
d2, {φj}pj=1, αi) with overwhelming probability.

ii. Check if A∗ ·
(∑p

j=1 βj · s
(k)
j

)
− u = A∗ ·

(∑p
j=1 βj · r

(k)
j

)
. This is true, because

A∗ ·
( p∑

j=1

βj ·s(k)j

)
= A∗ ·

p∑

j=1

βj ·
(
zj+r

(k)
j

)
= A∗ ·

p∑

j=1

βj ·zj+A∗ ·
p∑

j=1

βj ·r(k)j = u+A∗ ·
p∑

j=1

βj ·r(k)j ,

where the last equation follows from the fact that A∗ ·
(∑p

j=1 βj · zj
)
= A · x = u mod q.

Therefore, the verification algorithm outputs Valid with overwhelming probability, over the random-
ness of all algorithms.

2. We then prove that: Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid⇒ grt[d] 6∈ RL.
Assume by contradiction that grt[d] = A0 · x0 mod q ∈ RL, and fix any k ∈ [t]. Note that in the

signing algorithm, we construct c
(k)
0 so that:

c
(k)
0 = COM

(
d2, {φj}pj=1, A0 ·

( p∑

j=1

βj · rj,0
)
mod q

)

On the other hand, since the verification algorithm outputs Valid, the following requirement must
satisfy (in the case Ch(k) = 2):

c
(k)
0 6= COM

(
d2, {φj}pj=1, ,A0 ·

( p∑

j=1

βj · sj,0
)
− ui mod q

)

As we have s
(k)
j,0 = zj,0+ r

(k)
j,0 and A0 ·x0 = A0 ·

(∑p
j=1 βj · zj,0

)
, we have that A0 ·

(∑p
j=1 βj · r

(k)
j,0

)
=

A0 ·
(∑p

j=1 βj · s
(k)
j,0

)
−A0 · x0 mod q. Thus, we obtain a contradiction. Namely, it must be true that

grt[d] 6∈ RL. This concludes the proof. ⊓⊔
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B.2 Selfless-anonymity

Lemma 4. The signature Σ∗ outputted by Game G1 is a valid signature, and is statistically indistin-

guishable from the legitimate signature Σ produced by Game G0.

Proof. Let
Σ∗ =

(
M∗,

{
CMT(k)

}t

k=1
,
{
Ch(k)

}t

k=1
,
{
RSP(k)

}t

k=1

)

be the signature outputted by Game G1. First of all, we observe that:

• For every k ∈ [t], the distribution of CMT(k) is statistically close to uniform over (Zn
q )

4. This
follows from the statistical regularity property of fB and the statistically hiding property of COM.
• The distribution of

(
Ch(1), . . . , Ch(t)

)
is uniform over {1, 2, 3}t.

Therefore, the distributions of
{
CMT(k)

}t

k=1
and

{
Ch(k)

}t

k=1
are statistically close to those of the

legitimate signature Σ. We now will show that for every k ∈ [t], RSP(k) is statistically close to that of
the legitimate signature, and it is valid ‘response’ to CMT(k) and Ch(k). Indeed, for each k ∈ [t], we
have:

1. If Ch(k) = 1, then the view of A on CMT(k) =
(
c
(k)
0 , c

(k)
1 , c

(k)
2 , c

(k)
3

)
and RSP(k) is one of the

following two cases:
(a)





c
(k)
0 = COM

(
d2, {φj}pj=1, A0 ·

(∑p
j=1 βj · rj,0

))
,

c
(k)
1 = COM

(
e(k), {π(k)j }

p
j=1, A∗ ·

(∑p
j=1 βj · r

(k)
j

))
,

c
(k)
2 = COM

(
{Te(k) ◦ π

(k)
j (r

(k)
j )}pj=1

)
,

c
(k)
3 = COM

(
{Te(k) ◦ π

(k)
j (z

(k)
j + r

(k)
j )}pj=1

)
,

(13)

and
RSP(k) =

(
d(k) ⊕ e(k),

{
Te(k) ◦ π

(k)
j (z

(k)
j )

}p

j=1
,
{
Te(k) ◦ π

(k)
j (r

(k)
j )

}p

j=1

)
. (14)

For all j ∈ [p], since z
(k)
j ∈ SecretExt(d(k)), it follows from (1) that Te(k) ◦ π

(k)
j (z

(k)
j ) ∈

SecretExt(d(k) ⊕ e(k)). Thus RSP(k) satisfies the verification conditions for the case Ch(k) = 1

(since the checks with respect to c
(k)
2 and c

(k)
3 obviously hold true). Note that by construc-

tion, d(k) ⊕ e(k) is uniform in {0, 1}ℓ; Te(k) ◦ π
(k)
j (z

(k)
j ) is uniform in SecretExt(d(k) ⊕ e(k)); and

Te(k) ◦ π
(k)
j (r

(k)
j ) is uniform in Z

(2ℓ+1)3m
q . Therefore, the distribution of RSP(k) is identical to

that of the legitimate signature.
(b)





c
(k)
0 = COM

(
d2, {φj}pj=1, A0 ·

(∑p
j=1 βj · rj,0

))
,

c
(k)
1 = COMB

(
e(k), {π(k)j }

p
j=1, A

∗ ·∑p
j=1 βj · (z

(k)
j + r

(k)
j )− u

)
,

c
(k)
2 = COM

(
{Te(k) ◦ π

(k)
j (r

(k)
j )}pj=1

)
,

c
(k)
3 = COM

(
{Te(k) ◦ π

(k)
j (z

(k)
j + r

(k)
j )}pj=1

)
,

(15)

and RSP(k) is computed as in (13). The analysis for this case is similar to the above one.
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2. If Ch(k) = 2, then the view of A on CMT(k) =
(
c
(k)
0 , c

(k)
1 , c

(k)
2 , c

(k)
3

)
and RSP(k) is one of the

following two cases:

(a) CMT(k) is computed as in (12), and RSP(k) =
(
e(k), {π(k)j }

p
j=1, {z

(k)
j +r

(k)
j }

p
j=1

)
. Observe that:

• By construction, we have A0 · g0 6∈ RL. The correctness of the VLR group signature

then implies that: the revocation check with respect to c
(k)
0 holds true with overwhelming

probability.

• By construction, we have A∗ ·
(∑p

j=1 βj · z
(k)
j

)
= u mod q. This implies that the check with

respect to c
(k)
1 holds true.

• The check with respect to c
(k)
3 obviously hold true.

Hence RSP(k) satisfies the verification conditions for the case Ch(k) = 2. Moreover, RSP(k) is

uniform over {0, 1}ℓ × Sp ×
(
Z
(2ℓ+1)3m
q

)p
, and thus, is identically distributed with that of the

legitimate signature.

(b) CMT(k) is computed as in (14), and RSP(k) =
(
e(k), {π(k)j }

p
j=1, {z

(k)
j + r

(k)
j }

p
j=1

)
. As above,

the distribution of RSP(k) is the same as in the legitimate signature. Moreover:

• Since we have A0 · (
∑p

j=1 βj · z
(k)
j,0 ) 6∈ RL, the revocation check with respect to c

(k)
0 holds

true with overwhelming probability.

• We remark that we do not have A∗ ·
(∑p

j=1 βj · z
(k)
j

)
= u mod q, but we construct c

(k)
1 so

that the check with respect to it holds true.

• The check with respect to c
(k)
3 obviously hold true.

3. If Ch(k) = 3, then in any of the two views of the adversary, the verification checks with respect

to c
(k)
1 , and c

(k)
2 are checks for correct computations, and thus, they hold true. Moreover, the

distribution of RSP(k) is uniform over {0, 1}ℓ × Sp ×
(
Z
(2ℓ+1)3m
q

)p
, as in the legitimate signature.

Hence, we have shown that the simulated signature Σ∗ produced by game G1 is a valid signature
of M∗ under gpk and RL, and it is statistically close to the legitimate signature Σ produced by
game G0. ⊓⊔
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