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Abstract

Most surfaces, be it from a fine-art artifact or a mechanical object, are characterized by a strong self-similarity.

This property finds its source in the natural structures of objects but also in the fabrication processes: regularity of

the sculpting technique, or machine tool. In this paper, we propose to exploit the self-similarity of the underlying

shapes for compressing point cloud surfaces which can contain millions of points at a very high precision. Our

approach locally resamples the point cloud in order to highlight the self-similarity of the shape, while remaining

consistent with the original shape and the scanner precision. It then uses this self-similarity to create an ad

hoc dictionary on which the local neighborhoods will be sparsely represented, thus allowing for a light-weight

representation of the total surface. We demonstrate the validity of our approach on several point clouds from fine-

arts and mechanical objects, as well as a urban scene. In addition, we show that our approach also achieves a

filtering of noise whose magnitude is smaller than the scanner precision.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations I.4.2 [ImageProcessing and Computer
Vision]: Compression (Coding)—Approximate methods

1. Introduction

Recent years have witnessed a drastic improvement in scan-
ner acquisition devices which now yield point sets of tens
of millions of points at a high precision. The counterpart of
this development are datasets requiring ever higher storage
capacity. In the absence of efficient yet accurate compression
techniques, lower-resolution representations of the shape are
commonly used, but at the cost of losing precision.

Furthermore, scanner acquisition devices are often sup-
plied with software packages that exploit proximity and lo-
cal redundancy of points to reconstruct a polygonal mesh
from the point set, with the idea that a triangle is worth a set
of points. Therefore research has mainly focused on mesh
compression.

Yet, some applications require only a point cloud and do
not need a mesh. For example, dense point clouds are better
suited to some operations like registration. An acquisition
campaign might result in incomplete data, and prematurely
building a mesh from these acquisitions is not an optimal
strategy. Finally, the global meshing operations are some-
times not accurate enough, and oversmooth the data. Thus,

Figure 1: The Lovers of Bordeaux (15.8 million points). Ex-

ploiting self-similarity in the model, we compress this rep-

resentation down to 1.15 MB. The resulting model (right)

is very close to the original one (left), as the reconstruction

error is less than the laser scanner precision (0.02mm) for

99.14% of the input points.

submitted to COMPUTER GRAPHICS Forum (4/2014).



2 J. Digne, R. Chaine & S. Valette / Self-similarity for accurate compression of point sampled surfaces

there is a dire need for compression methods that preserve
the acquisition device precision.

In this paper, we propose a solution to the compression of
raw surfaces represented as unorganized point clouds. Un-
like meshes, input point sets correspond to samplings of
shapes, without any interpretation. From this observation,
we build a new compression approach that turns a dense
point set surface into another one while keeping the distor-
tion below the input accuracy. We only locally change the
sampling on the surface, so as to favor compression strate-
gies, while remaining within the input precision.

The very reason for locally changing the sampling on
the surface is to highlight the self-similarity inherent to the
shapes, and to use it for compression purpose. The discrete
analysis that we perform requires that the different areas of
the same object be represented with comparable sampling
schemes. Moreover, our goal is not to use a local constrain-
ing model as is sometimes done to visualize point set sur-
faces (Q-Splat [RL00], MLS [ABCO∗01]) but to remain
closer to the data (shape and sampling), while assuming that
each point has a 2-manifold neighborhood at the scale where
the self-similarity is analyzed. The outcome is a very effi-
cient and faithful compression approach that performs much
better than previous algorithms to compress unstructured
surface point sets. Strictly speaking, this method is not loss-
less since the exact input point cloud cannot be recovered.
Yet, the distortion introduced by the compression can be set
below the scanner accuracy, as we will illustrate experimen-
tally.

To sum up, our contributions are the followings:

• We introduce a way of encoding point clouds based on
shape self-similarity, while being respectful of the scanner
accuracy.

• This compression is done at the resolution of the scanner
enabling improved control of the point cloud resolution.

• The input point clouds can be oriented or non-oriented.

Figure 1 shows the difference between an original point
set and its decompression. Our method achieves a 0.59 bits
per point (bpp) bitrate on this model while keeping the re-
construction error below the scanner precision for 99.14%
of the points. As a side-effect, noise and registration artifacts
are filtered out.

The remainder of this paper is organized as follows: sec-
tion 2 reviews the related work on 3D compression and self-
similarity analysis. Section 3 presents the working assump-
tions for our framework. Sections 4 and 5 describe respec-
tively the compression and decompression methods, and, fi-
nally, section 6 shows quantitative and qualitative results and
comparisons.

2. Related Work

2.1. 3D Compression

3D compression has been deeply explored during the two
last decades. For our purpose, we can split 3D compres-
sion in 3 different categories : point cloud compression,
mesh compression and shape compression. Point cloud com-
pression approaches have mostly dealt with coordinates
quantization via recursive space partitioning [SK06, GD02,
HPKG06, SPS12]. In a nutshell, these approaches consist in
inserting the points in a space partitioning data structure (e.g.
octree, kd-tree) of given depth, and to replace them by the
center of the cell they belong to.

Other approaches encode the shape represented by the
point cloud and use this encoding to generate a differ-
ent point cloud in the decompression phase. Kalaiah et al.
[KV05] propose to define a level-of-detail hierarchy of the
point cloud by computing the PCA of the points and splitting
along the axis corresponding to the largest variation. The fi-
nal points are then generated by Gaussian sampling. Schn-
abel et al. [SMK08] segment the point cloud into canonical
geometric shapes. Each part is then efficiently encoded indi-
vidually using vector quantization. Our approach also uses
local height maps, but no segmentation or model regression
is needed. Instead, the shape will define its own analysis
space by itself. Compression based on surface similarity was
proposed in [HMHB08], and we will come back extensively
on it in the next sections. Our approach will also encode the
shapes and generate a different point cloud from this shape
encoding.

Mesh compression was initiated by Deering [Dee95], and
has been greatly improved over the years. The rationale for
mesh compression is that some applications need the origi-
nal mesh connectivity unchanged, e.g. for simulation appli-
cations, or for cases when attribute data are present. Valence-
based coding [TG98] has proven to be nearly optimal for
single-resolution compression. Progressive approaches such
as [AD01, MCAH12] aim at refining the mesh geometry
and connectivity in a progressive way, until full resolution
is reached. Karni & Gotsman [KG00] decompose the in-
put geometry on a spectral basis and the complexity of
this approach is alleviated via mesh partitioning. Space-
partitioning approaches have also been proposed, such as
[GD02, PK05] and have the ability to encode meshes with
complex topologies. However, these approaches give mixed
performance at low bitrates.

When only the shape needs to be transmitted, without
the need to keep acquisition or sampling data, resampling
approaches for shape compression have proven to be the
most efficient approaches. Prior to compression, the in-
put model is remeshed into a new structured surface (e.g.
mesh with subdivision connectivity). This remeshing step
has the advantage to remove tangential information which
does not contribute to the general aspect of the shape.
Wavelets [KSS00, GVSS00, GGH02] and bandelets [PM05]
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exploit the fact that meshes exhibit smooth parts, and of-
fer good performance at very low bitrates. However, few
robust approaches were proposed for structured remeshing
like [LSS∗98] and dealing with data generated from com-
plex meshes might be problematic.

2.2. Self-similarity for images

Self similarity of measured signals has gained interest over
the past decade: research on signal processing as well as im-
age processing has accomplished outstanding progress by
taking advantage of the self-similarity of the measure. In the
image processing field, the idea originated in the non-local
means algorithm [BCM05]: instead of denoising a pixel us-
ing its neighboring pixels, it is denoised by exploiting pixels
of the whole image looking similar. The similarity between
pixels is computed by comparing patches around them. Be-
hind this powerful tool lies the idea that pixel far away from
the considered area might entail information that will help
processing it, because of the natural self-similarity of the
image. This idea gave birth to a thread of work proposing
patch-based methods for a wide variety of problems includ-
ing denoising, super-resolution or inpainting. Recently, the
Patch Match algorithm made the similar patch search much
faster [BSFG09]. Following the development of the com-
pressive sensing theory [CRT06], the idea arose that there
exists spaces, in which the signals would be sparsely rep-
resented, that are especially well suited for processing the
signals. In particular, [AEB06] introduces the idea of de-
signing dictionaries over which each patch of the image is
represented as a sparse linear combination of the dictionary
atoms. We will describe more precisely this method below.

As a consequence of its success in image processing, this
idea was also introduced for surfaces, defined as meshes or
point clouds.

2.3. Self-similarity for surfaces

Self-similarity of surfaces has mainly been exploited for sur-
face denoising applications: the non local means filter has
been adapted for surfaces be it meshes [YBS06] or point
clouds [AGDL09, Dig12]. It was also used to define a Point
Set Surface variant [GAB12] exhibiting better robustness to
noise. Self-similarity of surfaces is obviously not limited to
denoising purposes. For example, analyzing the similarity of
a surface can lead to detect symmetries or repetition struc-
tures in surfaces [MGP06], [PMW∗08]. An excellent sur-
vey of methods exploiting symmetry in shapes can be found
in [MPWC12]. The similarity can also be analyzed between
surfaces [BLSC∗11]. More related to our approach is the
method of [ZSW∗10] where self-similarity is used to con-
solidate scans of urban scenes.

To the best of our knowledge, self-similarity for compres-
sion has only been proposed once before and in a different
setting [HMHB08]. After decomposition of the surface into

patches, these are clustered by similarity, and are replaced
by the representative of each cluster during decompression.
Our approach is more pliant: each patch is represented as a
sparse linear combination over a dictionary, allowing for a
better depiction of the variety of the patches, and permitting
a very high resolution. We will compare our approach to this
method and show a clear gain both numerically and visually.

2.4. K-SVD

The K-SVD algorithm is a method for building representa-
tions of finite discrete signals as sparse linear combinations
over an ad hoc dictionary. It was introduced in [AEB06],
and has since then be used for various purposes including
denoising [EA06] and image analysis [MBP∗09].

Let Y be a k×n matrix, whose columns are n training sig-
nals (yi)i=1,···n, each of them represented by k samples. The
idea is to find a dictionary D, composed of d signal atoms,
over which each signal yi can be represented as a linear com-
bination of the dictionary atoms d j . In other words, one can
find a vector of coefficients xi such that yi = D · xi. Let us
call X the d × n matrix whose columns are the xi, then both
X and D (k×d) are solved for by computing:

min
D,X

‖Y −DX‖ s.t. ∀i,‖xi‖0 ≤ T0

The ‖‖0 represents the number of nonzero coefficients in
xi. It is sometimes abusively called the L0 norm, though it
is not a norm (it is not positive-homogeneous). It measures
the sparsity of a decomposition (a decomposition is said to
be sparse if a lot of the coefficients are zero and thus its L0

“norm” is small). T0 constrains the number of nonzero coef-
ficients.

The K-SVD alternates between finding the best sparse
representation for Y on D using a pursuit algorithm (e.g. or-
thogonal matching pursuit) and updating the dictionary. The
dictionary update consists in considering iteratively each
atom dk from the previous step: consider the group of sam-
ples that use dk in their representation and compute the rep-
resentation error ER

k of the samples that use atom dk on dic-
tionary D\dk. Then ER

k is decomposed using Singular Value
Decomposition ER

k =U∆V T . The updated atom dk is the first
column of U while the updated coefficients is the first col-
umn of V multiplied by ∆(1,1) (first singular value). This it-
erative process needs an initial dictionary which is a random
subset of the input training signals (yi)i=1···N . In this paper
we will use a fast version of this algorithm, with complexity
O(2n2d), that was introduced in [RZE08].

3. Working assumptions

Our algorithm takes as input a point cloud P which is sup-
posed to be dense enough to unambiguously represent an
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interpolating surface M at a fixed resolution coarser than
the point set density. It can handle possibly non-oriented
point clouds, by estimating possibly inexact normal direc-
tions from local neighborhood. If the input data is provided
with oriented normals, instead of estimating the normal di-
rections, the provided ones are used.

The algorithm also requires a radius R that corresponds to
the scale at which the self-similarity of the surface is to be
analyzed. Our framework is based on some precise assump-
tions on R with respect to the input point set.

• Topological condition: R must be set such that P can
be covered by the set of R-neighborhoods correspond-
ing to a subset of seed points in P . Additionally, each
R-neighborhood should delimit a topological disk on the
underlying surface M (to enable parameterization over
the tangent plane).

• Sampling condition: The R-neighborhood of a seed point
must contain enough points so that a meaningful patch of
surface can be computed. This implies R to be sufficiently
large with respect to the scanner resolution.

• Noise level: The method assumes that noise magnitude is
strictly below radius R.

In the examples provided in this paper, the R-
neighborhood of a seed point on the surface is approximated
by the R-neighborhood in the ambient space. Therefore, the
topological condition amounts to taking the radius R below
the reach of the underlying shape, i.e. below the distance be-
tween a surface point and the shape medial axis. In the case
of sharp edges, it is sometimes possible to find a valid cover-
ing with nonzero radius. Otherwise, the approximation of the
R-neighborhood on the surface should be replaced by a more
sophisticated approach. However, it should be noted that the
current approximation approach performs well in practice,
even when there are sharp edges and invalid neighborhoods
(Figures 7, 12), or when dealing with surfaces with bound-
aries.

4. Compression

The compression algorithm consists in three successive
steps: the first one selects a subset of points (the seeds) that
will serve as center points to cover the surface with local
patches and obtain an atlas description. The second one com-
putes a discrete description of the local neighborhood around
a seed. This patch description is obtained by sampling the lo-
cal surface height over a local frame: each neighborhood is
resampled and described as a height map over a radial grid
(Fig. 2). Finally, the third step compresses the description of
the patches by exploiting their self-similarity and building a
custom dictionary, over which all descriptors will be decom-
posed sparsely.

4.1. Seeds selection

The first step of the compression algorithm selects a subset
of seed points. This subset S has to satisfy the following
property: its dilatation of radius R must contain the whole
point cloud P . More formally:

∀p ∈ P ,∃s ∈ S,‖p− s‖ ≤ R.

Each point p can be covered several times. The subset is
constructed in a dart-throwing fashion: we pick a first seed,
tag all the other points in its R-neighborhood as covered and
continue traversing the points until a non-covered point is
found, then a new seed is added and the process continues
until all points are covered. In order to discard outliers in
the point cloud, we require that a point with few neighbors
cannot be considered as a seed, at the cost of breaking the
covering condition above, and omitting some points (in most
cases these outliers represent around 0.1% of the points). In
fact, the outliers will only be problematic if there is a clus-
ter of outliers resulting in a spurious patch, however it is
very unlikely in real-life cases. On the Lovers pointset (Fig.
1) containing 15.8 million points, using a radius of 0.5mm,
89256 seeds are selected and each point is covered in aver-
age 2.6 times.

4.2. Neighborhood description

Once the seeds are selected, their local R-neighborhoods are
sampled on a local pattern, yielding a sampling of the surface
local graph on a radial grid (see Fig. 2). To perform this re-
sampling properly and consistently over the surface, the nor-
mal~n and first principal direction~t1 are first estimated from
local covariance analysis on each local neighborhood. If the
normal is available (in case of an oriented point set), then
only~t1 is computed. It should be noted that during decom-
pression,~n and~t1 can be predicted using covariance analysis
on the seeds only, and only three difference angles need to
be stored for correction.

Once both ~n and ~t1 are available, a radial grid
(ri,θ j)i, j=0···Nbins−1 is computed such that:

ri = (
1
2
+ i) ·

R

Nbins

;θ j = j ·
2π

Nbins

A different local sampling pattern could have been used
(e.g. rectangular grid, Poisson sampling), provided the same
pattern is used for the whole surface and the resolution of
the pattern is close to the point cloud resolution. This ra-
dial pattern is well adapted since more points are sampled
near the seed, where it is likely that there is less multiple
coverage. The seeds coordinates are encoded using a kd-tree
based approach similar to [GD02]. The difference angles are
quantized and compressed using arithmetic coding. For the
Lovers of Bordeaux, bitstream sizes are 312KB for the seeds
coordinates and 297KB for the angle differences, both quan-
tized on 8 bits.
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~n

~t1

Figure 2: Local neighborhood description: a height map

over a radial grid

4.3. Self-similarity compression

To exploit self-similarity between neighborhoods, our ap-
proach relies on building a dictionary, a set of atoms over
which the patches will be decomposed. Both the dictionary
atoms and the coefficients of the patch decomposition are
solved for by the K-SVD algorithm [AEB06], which mini-
mizes the error while maintaining the sparsity of the coef-
ficients, as explained in section 2.4. This algorithm yields
sparse linear decompositions of the patches (i.e. with few
nonzero coefficients). In addition, the nonzero coefficients
distribution presents itself with a sharp peak centered around
0, making them suitable for compression. Therefore we use
scalar quantization followed by entropy coding to compress
the coefficients. In addition to its purpose of reducing the
file size, this quantization improves the sparsity of the coef-
ficients. On the Lovers pointset, the percentage of nonzero
coefficients is about 30% before quantization and 20% after
quantization (on 8 bits).

Our content-based self-similarity approach compares fa-
vorably with the Discrete Cosinus Transform (DCT) which
is known to concentrate the energy on the low frequencies
but is fixed independently of the signal. This DCT is per-
formed on the same neighborhood description and the same
amount k of nonzero coefficient is kept (corresponding to
the k DCT basis functions accumulating the highest energy).
Then the coefficients are quantized using the same scalar
quantization on 8 bits. The Root Mean Square Error (RMSE)
is higher for the DCT: 0.14 against 0.01 for our approach.

Figure 3 shows examples of built dictionaries for two
shapes. For the Lovers of Bordeaux, the dictionary and co-
efficients are respectively encoded on 18KB and 507KB.

Tuning parameters and controlling the accuracy

The proposed approach is driven by 5 parameters : the
patch radius R, the patch discretization size Nbins, the num-
ber of atoms in the dictionary Natoms, and the quantization
for the seeds coordinates and patch coefficients.

In all our experiments, we set Nbins = 16 (i.e. the average

Figure 3: Dictionaries built for two different shapes: a ge-

ometrical one (the mire, left) and a fine art one (the Lovers,

right). The atoms are shown by order of importance (total

absolute weight in the linear decompositions).

p1
p2

Figure 4: Recovering the points from the patches: Seeds p1
and p2 potentially contribute an amount of N2

bins points. To

avoid oversampling in overlapping areas, each seed pro-

vides a position (blue and green diamonds) that will con-

tribute to the final red bold point.

number of points per neighborhood is around N2
bins) and set

the radius accordingly, so that the resolution of the sampling
is close to the resolution of the scanner. This gives a rough
way of computing the radius parameter.

The number of atoms is also easy to set: it will impact
directly on the preservation of the details. If the surface has
low detail variation (for example a mechanical artifact or a
shape where all details have roughly the same size), 16 atoms
is enough to represent the shape. In case of more detailed
surfaces (e.g. the Tanagra with details at various size) we
took 32 atoms. For a more precise control on the accuracy of
the compression, the number of atoms in the dictionary can
also be gradually increased until the k-SVD approximation
error drops below the accuracy of the scanner. As long as
the target accuracy is not reached, atoms are added to the
current dictionary which is further updated. This approach
is valid since it should be noted that the approximation error
decreases towards zero for a dictionary in which every seed
is an atom.

Quantization was set to 16 bits for the seeds coordinates
and 8 bits for the patch coefficients.
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Figure 5: Compression and decompression of the Anu-

bis point set (Left:original, right: decompression). R =
0.7mm,Nbins = 16

5. Decompression

The decompression algorithm consists in two steps: the first
one decompresses the patches given the dictionary and the
coefficients. The second step translates the set of seeds and
the decompressed patches into the final point cloud.

Given the dictionary D and the coefficients matrix X , the
reconstructed patches are computed as Yrec = D ·X , there-
fore for each seed, the corresponding decompressed patches
are recovered. The next step is to go from the set of decom-
pressed patches to the final point cloud. In order to avoid
high variations of sampling density in areas of overlap be-
tween neighboring patches, we perform a consolidation of
the samplings in those areas.

Each bin (r,θ) of the sampling pattern Fs(r,θ) corre-
sponding to seed s yields potentially a point, with coordi-
nates in the local frame (s, t1(s), t2(s),n(s)):

(r cos(θ),r sin(θ),Fs(r,θ))

which are translated in the global coordinate system
as: s+ r cos(θ)t1(s)+ r sin(θ)t2(s)+Fs(r,θ)n(s). Since the
patches overlap, one needs a merging strategy in overlapping
areas (Fig. 4). More precisely, when adding a decompressed
point p, we count the number of seeds whose neighborhood
contains p. If there is a single seed the point is kept as is. Oth-
erwise, p is projected onto the parameterized tangent planes
of each of the seeds. Each of those seeds s can then predict
the position of p from its own patch, yielding a position ps,
and the final position of p is the mean of the predicted posi-
tions ps. On a side note, using radial grids makes the overlap
computation easier than with square grids.

Figure 6: Rendering of the original (left) and decompressed

Stanford St Matthew (right), both have 93.4 million points.

R = 3mm,Nbins = 16

6. Results and comparisons

The compression was tested on shapes from the Farman In-
stitute dataset [DAL∗11], the Stanford Michelangelo Project
and the Robotic 3D Scan Repository (University of Os-
nabrück). Oriented normals were provided in all the shapes
except for the Bremen dataset and the St Matthews. As for
computation times, for the 90 million points St Matthew
pointset, the seed selection (800000 seeds) and local patches
computations take around 10 minutes. The K-SVD algo-
rithm takes 3 additional minutes, while the rest of the op-
erations is almost instantaneous. For the David pointset,
the whole compression takes around 8 min. In comparison
[SMK08] needs 11 min just to decompose the 28M points
David model into height maps. Moreover, compressing this
dataset with the less efficient bzip2 algorithm takes about 6
minutes. The decompression step takes more time: while de-
coding the coefficients and local patterns is instantaneous,
the non-optimized point generation takes around 15 min for
the St Matthew point set and 10 minutes for the David point
set. Due to the locality of this step, further optimizations and
parallelization would undoubtedly drastically reduce decom-
pression time.

Figure 5 shows the detail recovery as well as the denois-
ing obtained through a compression/decompression cycle.
One can see that the details are very well-preserved, while
the noise is removed. One can check that only noise is re-
moved by comparing the error (obtained with the fixed pa-
rameters proposed) with the scan resolution: in most cases
this error is below the scanner resolution. Figure 6 shows the
compression/decompression result on the dense St Matthew
pointset [LPC∗00], which has been reduced to 93,4M points
due to memory limitations (4GB). One can see that the de-
tails are very well preserved. Figure 7 shows the behavior
of the decompressed surface with respect to a standard re-
construction algorithm [KH13]. Quasi-identical results are

submitted to COMPUTER GRAPHICS Forum (4/2014).



J. Digne, R. Chaine & S. Valette / Self-similarity for accurate compression of point sampled surfaces 7

Figure 7: Original mire pointset (top) and decompression

(bottom). Both pointsets were reconstructed using Screened

Poisson Reconstruction [KH13]. R = 0.6mm,Nbins = 16

obtained with the original and with the decompressed point
sets.

For the following comparisons, we measured decompres-
sion error as the root mean square normal distance between
two point clouds (except for the curves of Fig 10, where it
is measured as the root mean square distance to the near-
est point, to be consistent with the results presented in the
corresponding papers). We have compared our method with
a kd-tree based approach similar to [GD02] which com-
presses unoriented point clouds. At 4.13bpp, [GD02] yields
a RMSE of 0.066mm. In comparison our approach gives
a RMSE of 0.010mm at 0.6bpp. The results are compared
visually on figure 8. We also have compared our approach
with an approach close to [HMHB08], by computing self-
similarity clusters and replacing each patch by the represen-
tative of its cluster. We allowed for 16 clusters (the same
size as our dictionary). We can see that numerous arti-
facts appear (Figure 9) which translates into a higher er-
ror (0.12mm vs 0.01mm with our method for the Lovers
point set). Figure 10 compares our approach with previous

Figure 8: Comparison with kd-tree based coding. Left : orig-

inal point cloud. Right : comparative decompression. Even

with more bits per point (4.83 against 0.6 in our method),

the right part encoded with [GD02] is less accurate than

our approach (left part). R = 0.7mm,Nbins = 16

Figure 9: Comparison with an approach similar to

[HMHB08] (right). Our method (left) avoids creating ar-

tifacts by being more pliant. Quantitatively, the RMSE for

the compared method is 0.12mm (0.01mm in our case).

R = 0.5mm,Nbins = 16

works [KV05,SMK08,HMHB08] in terms of rate/distortion.
For our approach, we obtained several bitrates simply by
varying the patch radius R. Note that our approach clearly
outperforms previous works. Finally, Table 1 shows qual-
ity measures for the compression/decompression of several
point clouds. In particular, it shows that the amount of points
that have higher decompression error than the initial resolu-
tion is low, illustrating therefore that the compression does
not hinder precision.

Figure 11 shows the behavior of the algorithm with re-
spect to added outliers. The only outliers that hinder the pro-
cess are the ones that fall within a distance R to the surface.
Their neighborhoods might indeed contain enough points to
create a patch and therefore decompression artefacts. Those
outliers can be considered as large noise. This confirms our
working assumptions (section 3). Outliers lying far from the
surface are well discarded by the algorithm.

On figure 12 we show the compression results on a very
challenging data set of 70 million points that clearly breaks
our working assumption: some linear structures exist and
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Figure 10: Comparison with previous works in terms of

rate/distortion on the David model. The different bitrates

were obtained by increasing the radii of the patches and the

size of the descriptors.

Figure 11: Compressing the Lovers with 10% of outliers

(Left:decompressed; Right:initial)

there are some low density areas. The result is still valid
in densely sampled areas. However, sparsely sampled areas
may be filtered out by the preprocessing step (section 4.1),
showing the limits of the algorithm.

7. Conclusion

We introduced a very efficient framework for compressing
dense point sets describing a surface. First, the method se-
lects a subset of the points, it then computes local descrip-
tions of the selected points and use the similarity between
the descriptions to encode them.

Our approach encodes tens of millions of points scanned
over a surface with less than 1 bit per point. Furthermore, the
difference with the input point set is related to noise. So, the
decompressed point set behaves as well, if not better, than
the original point set, for the purposes of a reconstruction
algorithm or visualization.

There are several ways in which our compression scheme
could be improved:

• Exploiting patch-based representation, artifacts may ap-
pear in case of boundaries, which could be dilated
throughout decompression. One could mitigate this issue
by adjusting the patch size (clipping some outer grid cells)
along boundaries. This would require to store one small
integer for each patch, at a small cost.

• Other seed picking strategies could be implemented, for
example by placing the seeds so that they minimize the
local error, in the spirit of [OBS06].

• Encoding per-point attribute such as normals and colors is
possible with the same similarity-based coder.

Perspectives : Although our algorithm is based on the ex-
ploitation of self-similarity on the whole surface, most of the
involved treatments remain local. This is a good prospect for
handling data of ever increasing size, using streaming pro-
cesses. This is particularly important at a time when the geo-
metric digitization campaigns sometimes cover entire cities.
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