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Modeling and Feedback Control for
Air Flow Regulation in Deep Pits

Emmanuel WITRANT and Nicolas MARCHAND⋆

GIPSA-lab, Control Systems Department,
Universit́e de Grenoble, CNRS/UJF,
Grenoble, France.

Summary. We consider the problem of regulating the air quality in underground extraction rooms
for mining industry. This is a challenging control problem where the flow dynamics, the interconnec-
tions between subsystems and the time-varying topology have to be taken into account along with
real-time computation constraints. Our work is focused on the deep pit part of the ventilation system,
which brings fresh air at a specified pressure to the extraction levels. The flow interactions and main
automation elements are first presented, with a real-time engineering model of the complete mine ven-
tilation system. A novel control-oriented model focused onthe pressure dynamics is then introduced, as
a convective-resistive partial differential equation (PDE) with multiple inputs where the time-varying
transport coefficients are estimated based on the distributed measurements. A fast predictive controller
(FPC) is finally proposed to compensate the pressure losses due to friction and multiple flow exhausts
thanks to the ventilation pit input pressure regulation. Simulation results illustrate the efficiency of the
modeling and control algorithms.

1 Introduction

Mining ventilation is an interesting example of a large scale system with high environmental
impact. Indeed, one of the first objectives of modern mining industry is to fulfil ecological

⋆ E-mail:Emmanuel.Witrant, Nicolas.Marchand @gipsa-lab.grenoble-inp.fr
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specifications during the ore extraction and ore crushing, by optimizing the energy consump-
tion or the production of polluting agents. This motivates the development of new control
strategies for large scale aerodynamic processes based on appropriate automation and the
consideration of the global system. The approach presentedin this paper is focused on the
mining ventilation process, as 50 % of the energy consumed byore extraction goes into ven-
tilation (including heating the air). It is clear that investigating automatic control solutions
and minimizing the amount of pumped air to save energy consumption (proportional to the
cube of airflow quantity) is of great environmental and industrial interest.

Fig. 1 Airflows in an underground mine.

The mine ventilation topology is depicted in Figure 1. It is achieved by a turbine and a
heater connected on the surface to a deep pit (vertical shaft) that conducts the airflow to the
extraction levels. The heater is introduced (in winter timeat least) to avoid freezing in the
upper part of the shaft and the air is cooled down at high depths (more than 1000 meters)
because of the geothermal heating effect. From the deep pit,fans located at each extraction
level pump fresh air to the extraction rooms via tarpaulin tubes. Bad quality air is naturally
driven by the pressure gradient and flows from the extractionrooms back to the exhaust
ventilation shaft (similar but separate from the inflow ventilation shaft).

From a control point of view, we can divide the regulation problem in two parts:

1. pressure regulation in the deep pit thanks to the ground turbine control and distributed
sensors within the shaft;

2. air quality regulation in the extraction rooms thanks to the fans and chemical sensors
located in the rooms.

Both problems are connected by the flow properties in the deeppit at the extraction rooms
level and we consider the pressure as the interconnection variable. From a modeling point of
view, the first problem typically has a clear geometry while the second one is strongly varying
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in geometry (rooms are blasted every day), characteristics(tarpaulin tube length and shape)
and disturbances (trucks) even within the same mine. Computational Fluid Dynamics (CFD)
models, such as the one presented in [5], can then be envisioned for the deep pit while grey-
box identification or global models focused on the main dynamics should be preferred for
the second problem. The mine automation, communication network, historical background
on real-time control and closed-loop control strategies for the second problem are detailed in
[4]. The efficiency of these control strategies strongly depends on the available pressure in the
vertical shaft, which is the topic of the present work. We then focus on the boundary control
(turbine operation) of a deep pit flow (vertical shaft) subject to distributed losses (friction and
fans exhausts).

Starting from the fundamental equation describing the flow dynamics (Navier-Stokes), we
first present the simplifying hypotheses that allows the design for a real-time simulator of the
complete mine aerology. This simulator is subsequently used as a reference to investigate the
performance and limitations of the proposed regulation approach. Defining the pressure dis-
tribution as the regulated variable, we then propose a novelcontrol-oriented model for large
Poiseuille flows that integrates the distributed pressure measurements thanks to an online pa-
rameter identification method. The importance of a diffusive term to model the considered
flow is discussed, which motivates a regulation approach focused on the convective and resis-
tive phenomena. Based on this analysis, we finally propose a dedicated fast predictive control
approach to ensure the real-time constraints and performance objectives.

This chapter is organized as follows. The physical properties and a real-time simulator of
the ventilation system are presented in Section 2, along with the main physical hypotheses.
A control-oriented model and an estimation method that provides for online tracking of the
flow transport parameters are derived in Section 3. Section 4is focused on a FPC feedback
approach that allows for real-time pressure regulation at the bottom of the pit.

2 Ventilation in a deep pit

The aim of this section is to describe key issues that are necessary to analyse and model the
airflow behavior in a deep pit. We first mention the physical principles, which provide funda-
mental dynamics for the mine ventilation model. This process model includes flow interac-
tions, automation devices and can be used in real-time thanks to a 0-D modeling approach.
Focusing on the pressure dynamics, we then propose a 1-D model that specifically describes
the deep pit part and will be used in the next sections to set the regulation law.

2.1 Physical model

The dynamics of the flow is obtained from the conservation of mass (densityρ), momentum
M = ρV (V being the flow speed) and energy (per unit mass)E, along with the perfect
gas equation of statep = ρRT , wherep is the pressure,R the specific gas constant and
T the temperature. Choosing aconservativeform (in the numerical sense) of Navier-Stokes
equations, we have that [2]:

∂

∂t





ρ
ρV
ρE



 + ∇ ·





ρV
ρVT ⊗ V + pI− ς

ρVH − ς ·V − k∇T



 =





0
0
q̇




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where⊗ is the tensor product of two vectors,ς the shear stress vector,k the thermal con-
ductivity, H the total enthalpy anḋq(x, y, t) the rate of heat addition (see [1] for a precise
description). Neglecting the viscous effects (which is reasonable for air and the targeted sim-
plified model), we obtain Euler equation:

∂

∂t





ρ
ρV
ρE



 + ∇ ·





ρV
ρVT ⊗ V + pI

ρVH



 =





0
0
q̇



 (1)

A direct use of this equation to model the complete mining ventilation process involve
complex CFD considerations (the airflow in the vertical shaft is mainly turbulent), typically
out of reach for industrial applications and not suitable for real-time control objectives. An ad-
ditional step toward model simplification and real-time computation analysis is then needed,
as presented in the next subsection.

2.2 Bond graph model and real-time simulator
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Fig. 2 2-D (left) and control-volume (middle) description of the deep pit, simulator of the complete
mine aerology with three ore extraction levels (right).

This section briefly summarizes the main results presented in [5], where a non-dimensional
model was proposed thanks to the bond graph approach and a real-time simulator was de-
signed. Non-dimensional modeling has an increasing use in the design, validation and tuning
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of control laws, as it allows for the integration of as much physical properties as possible
(avoid data mapping) and a reduced computation time (close to real-time, approximately 10
times slower in the worst cases).

The deep pit is described by interconnected cells containing height-averaged flow values,
as depicted in Figure 2. Note that this is equivalent to a control volume discretization of the
flow, where a single volume is used at each height. The equivalent bond graph description is
then obtained for each cell by deriving a flow/effort model from Euler equation (1) under the
following hypotheses:

H1. the impulsive term is negligible compared to the pressure:ρv2 << p in the momentum
equation, which is approximated with an algebraic relationship (such as Saint-Venant or
Darcy-Weisbach equation) that writes asM ≈ a(M, ρ)∇p, wherea(·) is a continuously
differentiable function and∇p is the pressure gradient exerted on the control volume
considered;

H2. only the static pressure is considered, implying that the kinetic energy term in the energy
conservation equation is omitted:H = E + p/ρ;

H3. the gas is calorically perfectE = cvT , wherecv = R/(γ − 1) is the specific heat at
constant volume andγ = 1.4.

The mine ventilation simulator is constructed based on thisflow description and the fans
models proposed in [3]. The deep pits (inflow and exhaust) areboth discretized with 28
control volumes and we consider three extraction levels. The turbine and fans regulation
is done by setting their rotational speed, and flow speed, pressure and temperature can be
measured in each control volume. The resulting computationtime is 34 times faster than
real-time in anIntel Centrinor 1.83 GHz PC. This simulator is used in the next sections
to illustrate the estimation and control strategies. It mayalso be considered in the futur to
develop virtual sensing capabilities in real-time operation schemes.

2.3 Distributed pressure dynamics

For real-time control purposes, we are specifically interested in the pressure dynamics, which
provides for the regulated variable. In order to achieve model-based feedback control, the dis-
tributed measurements can be used to reduce the model complexity thanks to on-line param-
eter estimation, as described in the next section. The appropriate simplified model is obtained
from H1-H3by expressing the energy equation in terms of pressure (perfect gas equation) as:

∂ρE

∂t
= −

∂

∂x

[

M ·

(

E +
p

ρ

)]

+ q̇

⇔
∂p

∂t
= −

∂

∂x

[

M

ρ
·

(

1 +
R

cv

)

p

]

+
R

cv

q̇ (2)

Note that the momentum can be obtained by implicit resolution of the Darcy-Weisbach equa-
tion, which then provides the dynamics for the density evolution.

3 Distributed measurements and online parameters estimation

As mentioned previously, we suppose that distributed measurements (i.e. obtained thanks to a
wireless sensor network) are available to set the control law. One of the main advantages is the
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possibility to constrain the pressure model according to the measured behavior of the flow. In
this section, we derive a generic model architecture from (2) that depicts convective-resistive
dynamics. An online parameter estimation method is then introduced to set the transport
coefficients according to distributed measurements.

3.1 Control oriented model

To propose an efficient model-based control of the flow dynamics, we need to capture the
main tendencies of the pressure evolution. The momentum anddensity impact on the pressure
dynamics are considered with their volume-averaged values:

M̄(t) =
1

V

∮

V

M(v, t)dv, ρ̄(t) =
1

V

∮

V

ρ(v, t)dv

whereV corresponds to the volume of the pit. The energy losses are generated by pressure
losses at the exhausts locations and friction on the walls, which implies that:

R

cv

q̇(x, t) = s(t)̺x(x)ffan(∆pfan(t), η(t)) + r(t)p(x, t)

wheres quantifies the impact of the exhausts on the main flow,̺x is set by the mine topology
(i.e. ̺x = 1 at the exhausts location and0 otherwise),ffan depends on the fan model, the
vector∆pfan contains the pressure gradients across each fan,η is the blades rotational speed
andr denotes the resistance on the pit sides.̺x, ∆pfan andη are considered as known engi-
neering parameters. The physical model (2) is then approximated with the averaged control-
oriented model:

p̄t = c(t)p̄x + r(t)p̄ + s(t)pext(x, t) (3)

wherec(t)
.
= −M̄(t)/ρ̄(t) · (1 + R/cv), pext(x, t)

.
= ̺x(x)ffan(∆pfan(t), η(t)) andpy

.
=

∂p/∂y. The boundary conditions are set by the inflow pressurep̄(0, t) = pin(t) (regulated
thanks to a local PID feedback on the turbine rotation speed)and the dead end at the bottom
of the shaft̄px(L, t) = 0, L being the shaft length.

3.2 Online parameter estimation

A classical estimation problem is to find the set of parametersϑ that minimizes the difference
between the measured and estimated data, given a specific model architecture. This is done
in this section by deriving a variation law forϑ such that the estimation error is exponen-
tially decreasing. We consider the general class of systemsthat involve transport phenomena
described as:

pt = d(t)pxx + c(t)px + r(t)p + s(t)pext(x, t) (4)

whereϑ(t) = {d(t), c(t), r(t), s(t)} denote the diffusive, convective, resistive and source
coefficients, respectively, andpext(x, t) is a distributed source term. The boundary conditions
are given byp(O, t) = p0(t) andpx(L, t) = 0, for x ∈ [0, L]. The variation ofϑ is provided
by the following theorem.
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Theorem 1. Consider the general class of systems described by:






pt = A(p, px, pxx, u, ϑ)ϑ
a1px(0, t) + a2p(0, t) = a3

a4px(L, t) + a5p(L, t) = a6

(5)

wherep is the state,u a known exogenous input,ϑ ∈ R
M denotes a set of time-varying

parameters,A(p, px, pxx, u, ϑ) ∈ R
1×M sets the input-to-state relationship andai are scalar

real coefficients. The estimated statep̂(x, t) converges exponentially top(x, t) in theL2 sense
and:

||p(x, t) − p̂(x, t)||22 = e−2(γ+λ)t||p(x, 0) − p̂(x, 0)||22

where|| · ||2 denotes theL2 norm andγ, λ are positive scalar parameters, if:















p̂t = A(p̂, p̂x, p̂xx, u, ϑ̂)ϑ̂ + γ(p − p̂)
a1p̂x(0, t) + a2p̂(0, t) = a3

a4p̂x(L, t) + a5p̂(L, t) = a6

ϑ̂ = A(p̂, p̂x, p̂xx, u, ϑ̂)†[pt + λ(p − p̂)]

(6)

whereA† is theMoore-Penroseinverse ofA.

Proof. Considering the estimation errorǫ(x, t)
.
= p(x, t) − p̂(x, t), we have from (6) that:

ǫt = pt − [pt + λ(p − p̂) + γ(p − p̂)] = −(γ + λ)ǫ

with the boundary conditionsǫ(0, t) = 0 andǫx(L, t) = 0. Then, to investigate the stability
in theL2 sense, we introduce theLyapunovfunction:

L(t)
.
=

1

2

∫ L

0

ǫ2dx

It follows that:

dL

dt
= −(γ + λ)

∫ L

0

ǫ2dx = −2(γ + λ)L

which directly implies that||ǫ(x, t)||22 = e−2(γ+λ)t||ǫ(x, 0)||22 and concludes the proof.

Remark 1.The parameterλ is introduced to moderate the variations ofϑ̂ andγ ensures the
convergence of the estimated dynamics. The use of two parameters instead of one, which
would be sufficient from a stability point of view, is motivated by the need to adjust the
estimator performances according to robustness constraints and non-smooth signal variations.

Example 1.Consider the model (4) with the inputs depicted in Figure 3, aDirichlet boundary
condition at the surface and a Neumann one atx = L. Such a model writes as (5) with:















A(p, px, pxx, u, ϑ) = [pxx px p pext]
ϑ = [d c r s]T

a1 = 0, a2 = 1, a3 = pin

a4 = 1, a5 = a6 = 0
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Fig. 3 Boundary condition and distributed outputs.

and the estimated values of the transport coefficientsϑ̂ are directly obtained according to (6).
The corresponding algorithm is designed by discretizing the diffusivity using central differ-
ence and the conductivity thanks to a Lax-Wendroff scheme (the model thus remains stable
for d(t) = 0, provided that the conditions on the associated Courant number are satisfied).
The reference model algorithm is set by introducingP ∈ R

N as the vector of discretized
pressures and with the variation law:

P k+1
1 = P k

1 + ts

[

d

∆x2
D(p0, P1, P2) +

c

∆x
C(p0, P1, P2, α) + rP1 + sPext,1

]

...
...

...

P k+1
i = P k

i + ts

[

d

∆x2
D(Pi−1, Pi, Pi+1) +

c

∆x
C(Pi−1, Pi, Pi+1, α) + rPi + sPext,i

]

...
...

...

P k+1
N = P k

N + ts

[

d

∆x2
D(PN−1, PN , PN ) +

c

∆x
C(PN−1, PN , PN , α) + rPN + sPext,N

]

with:

D(Pi−1, Pi, Pi+1)
.
= Pi−1 − 2Pi + Pi+1

C(Pi−1, Pi, Pi+1, α)
.
=

α − 1

2
Pi−1 − αPi +

α + 1

2
Pi+1

wherePi, i = 2 . . .N − 1 denotes theith component ofP , k the time index,ts the sampling
time, −α = −cts/∆x the CFL number and∆x the spatial step. The estimated pressure
vector P̂ is computed using a similar algorithm and the parameter estimation is achieved
with:
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Fig. 4 Model pressureP (t) and squared estimation error||ǫ(x, t)||22.

A =

















1
∆x2D(p0, P̂1, P̂2)

1
∆x

C(p0, P̂1, P̂2, α̂) P̂1 Pext,1

...
...

...
...

1
∆x2D(P̂i−1, P̂i, P̂i+1)

1
∆x

C(P̂i−1, P̂i, P̂i+1, α̂) P̂i Pext,i

...
...

...
...

1
∆x2D(P̂N−1, P̂N , P̂N ) 1

∆x
C(P̂N−1, P̂N , P̂N , α̂) P̂N Pext,N

















The resulting model pressure and estimation error are depicted in Figure 4 while the exact and
estimated values of the transport coefficients are presented in Figure 5. We can see that the
proposed estimator achieves a very precise tracking of the transport parameters and quickly
converges to the exact values. The large perturbations induced by the steps in the boundary
and distributed input signals are reflected as peaks in the estimated parameters (at 30, 50 and
60 s) but are quickly damped.

3.3 Application to the mining ventilation case

The test case is defined as follows, for three extraction levels in aL = 1100 m deep mine.
The1st level fan (atL/4) is not operated (a small flow is naturally driven by the pressure
gradient), the2nd level fan (atL/2) goes from 0 to 150rpm at t = 2000 s and the3rd

level fan (at3L/4) is operated at200 rpm. A step is set on the turbine rotation speed at
t = 1000 s. Pressure measurements at the turbine output and at the bottom of the pit are
available for feedback control and presented in Figure 7 (top). We consider two different
estimated models, with:

1. four transport parameters: diffusion, convection, resistance and source;
2. three parameters, excluding the diffusion according to (3).

The resulting estimation error and parameters values can becompared in Figures 6 and 7,
respectively. We can see that the estimation error quickly decreases to a negligible value in
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Fig. 5 Exact (‘–’) and estimated (‘-· -’) transport coefficients values.

0 500 1000 1500 2000 2500 3000 3500 4000
0.9

1

1.1

1.2

1.3
x 10

5

W
el

l p
re

ss
ur

es
 (

P
a)

0 500 1000 1500 2000 2500 3000 3500 4000

10
−5

10
0

E
st

im
at

io
n 

er
ro

r 
(P

a2 )

time (s)

Fig. 6 Pressure profiles and squared estimation error (three ‘–’ and four ‘- · -’ parameters).

both cases, which validates the proposed estimation strategy. Furthermore, the slight estima-
tion improvement obtained thanks to the additional diffusive term, noticeable but not crucial,
validates the volume-averaging of the momentum and densityas a possible model simplifi-
cation for feedback control.



1 Modeling and Feedback Control for Air Flow Regulation in Deep Pits 11

0 2000 4000
−15

−10

−5

0

5

C
on

ve
ct

io
n 

c(
t)

0 2000 4000

−0.1

−0.05

0

0.05

D
iff

us
io

n 
d(

t)
0 2000 4000

−10

−5

0

5

x 10
−4

R
es

is
ta

nc
e 

r(
t)

time (s)
0 2000 4000

−5

0

5
x 10

−6

S
ou

rc
e 

s(
t)

time (s)

Fig. 7 Parameter estimation for the mine ventilation shaft (three‘–’ and four ‘- · -’ parameters).

4 Fast model predictive control

We consider that the heater is operated based on the atmospheric conditions (i.e. it acts as an
external input) and that the regulated input is the turbine downflow pressure (a local control
loop is set on the turbine to adjust its rotational speed according to a desired pressure). The
control problem is then to ensure a minimum pressure within the shaft (at each extraction
level) based on the turbine actuation. As the pressure can only decrease as we go deeper, the
control objective can be reduced to ensuring a minimum pressure at the bottom of the pit. We
consider that distributed pressure measurements are available to set the state feedback control
law.

The aim of this section is to propose a predictive control of the mine process. Predictive
control is widely used in process industry because of the usual robustness of the method and
of the slow dynamics of the processes. Classical predictivecontrol requires the optimization
of a criterium whose optimum gives the control to apply over the next time instant. Unfor-
tunately, predictive control relies on finding the extremumof an optimization problem that
can hardly be guaranteed, especially for systems describedby PDE like the present system.
Recently, fast predictive control approaches were developed that enable to have an analytical
solution to the predictive control problem without any optimization by using the structure of
the system. This is what we propose to apply here.

We start from the control oriented model and assume that the time varying parameters
c(t), r(t) andd(t) and external disturbances(t)pext(x, t) are slowly varying parameters and
can therefore be considered as constants:c(t) = c, r(t) = r, d(t) = d ands(t)pext(x, t) =
spext(x). By slowly varying, it is only necessary to assume that the perturbation related to
the opening and closing of the extraction rooms levelspext(x) is piecewise constant. The
diffusive termd is assumed to be small and is neglected:d ≈ 0. Note that these assumptions
are only made to design the control law that is tested and applied to the global system without
any simplifications. Therefore, we focus on the following equation:
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pt = cpx + rp + spext(x) (7)

Predictive control consists in finding an open-loop controlprofile τ → p(0, τ) at each
instantt such that the solution of the dynamical system (here the solution of (7)) has “some”
properties on a time horizon[t, t + w] wherew is the prediction horizon (may be infinite).
These properties can be very various and have to ensure the stability of the closed loop
scheme. The most classical property is optimality in optimal predictive control. This open-
loop control profile is applied at its first instantp(0, 0) and the scheme is repeated at the next
time instantt + dt.

The aim of the control law is to give the inflow pressure control profile p(0, τ) in order
to ensure a given down pressurep(L,∞) in closed loop. Once the steady state has been
achieved, a corresponding constant inflow pressurep(0,∞) will ensure the desired down
pressurep(L,∞). At time t, we assume that the system starts with some constant initial
inflow p(0, t), an established pressure profile in the ventilation pit andp(L, t) at the bottom.
This established steady state field of pressurepst(x, p0) results from the application of the
constant inflow pressurep0 and is simply given by (7) assuming no time derivatives, thatis:

pst(x, p0) = p0e
− r

c
x −

s

c

∫ x

0

e−
r

c
(x−z)pext(z)dz

Note that according to this notation, one hasp(L,∞) = pst(L, p(0,∞)) and, as soon as the
system is in a steady state regime at timet, p(L, t) = pst(L, p(0, t)).

We propose to approximate the pressure open-loop profilep(x, t + τ), τ ∈ [0, +∞], by:

p̃(x, t + τ) = pe−αxe−βτ + pst(x, p(0,∞))

Whenτ increases,̃p(x, t + τ) then converges to the steady state solution that ensures the
desired down pressurep(L,∞). At time t (τ = 0), it is natural to take:

p = eαL [p(L, t) − pst(L, p(0,∞))]

in order to ensure the initial condition at least atx = L. Finally, to ensure that̃p is a solution
of (7), we impose thatβ = αc − r.

In this scheme,α is a free parameter. However:

• α > r/c is necessary to ensure the convergence of the open-loop trajectory top(L,∞);
• the convergence speed is inversely proportional to the difference betweenα andr/c;
• the closerα is to r/c, the closer̃p(x, t) is top(x, t), that is to the exact solution of (7).

The open-loop control law profile, defined at timet for anyτ > 0, is therefore given by:

p̃(0, t + τ) = (p(L, t) − p(L,∞)) e−α(x−L)e−βτ + p(0,∞)

wherep(L, t) is the current down pressure,p(L,∞) is the desired down pressure and:

p(0,∞) = e
r

c
L

[

p(L,∞) +
s

c

∫ L

0

e−
r

c
(L−z)pext(z)dz

]

To prove the efficiency of the proposed approach, two scenarii are compared:
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1. the inflow pressure is set at some value that ensures a down pressure of1 hPa for the
initial ventilation topology;

2. the inflow pressure is automatically computed and adaptedonline according to the above
control law using the down pressure measurement.

In both cases, we consider the test case described in Subsection 3.3 with the2nd level fan
operated att = 1000 s instead oft = 2000 s. The obtained control is actually not directly
set on the system but acts as a reference to the turbine outflowpressure. Indeed, the shaft
inflow pressure is set using the corresponding turbine speedby means of a local control law
(proportional-integral control) on the turbine.

On Figure 8, one can see the desired and real inflow pressure aswell as its corresponding
down pressure. The control law clearly enables 1) a fastest convergence to the desired down
pressure and 2) to maintain the down pressure even in case of fan operation at different
extraction levels.
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Fig. 8 Down pressure regulation in a mine with (right) and without (left) fast predictive control

Conclusions

In this work, we considered the problem of airflow modeling and control in deep pits, such as
the ones encountered in mines. Starting from the fundamental physical equations of the flow
and engineering models of the automation components, we first proposed a real-time model
of the complete mine aerology based on a bond graph approach.Specific hypotheses related
to the flow properties were then expressed to obtain a 1-D model of the pressure dynamics.

It was then shown that, considering the averaged impact of the momentum and density, the
pressure dynamics could be reduced to a transport equation with time-varying coefficients. A
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specific estimation method was derived to infer these coefficients from the distributed pres-
sure measurements and the interest for a diffusive term in the flow model was discussed.
A model-based feedback control approach based on fast predictive control was proposed.
Thanks to this approach, a reference down pressure can be ensured even in case of pressure
perturbation due to air usage for underground extraction rooms.

The overall results illustrate the validity of simplified models and the interest for ded-
icated model-based control methodologies to regulate large airflows, thus allowing for an
increased security and a reduced energy consumption. The proposed theoretical results on
flow model simplification, transport parameters estimationand FPC for boundary regulation
can be applied more widely on large Poiseuille flows with distributed outputs.
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