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Chemometrics Applied to Quantitative Analysis of Ternary Mixtures
by Terahertz Spectroscopy
Josette El Haddad, Frederick de Miollis, Joyce Bou Sleiman, Lionel Canioni, Patrick Mounaix,
and Bruno Bousquet*

Universite ́ de Bordeaux, CNRS, LOMA, UMR 5798, Talence, F 33400, France

ABSTRACT: Chemometrics was applied to qualitative and quantitative 
analyses of terahertz spectra obtained in transmission mode. A series of 
mixtures of three pure analytes, namely, citric acid, D (−)fructose, and α
lactose monohydrate under various concentrations, was prepared as pressed 
pellets with polyethylene as binder. Then, terahertz absorbance spectra were 
recorded by terahertz time domain spectroscopy and analyzed. First, principal 
component analysis allowed one to correctly locate the samples into a ternary 
diagram. Second, quantitative analysis was achieved by partial least squares 
(PLS) regression and artificial neural networks (ANN). The concentrations 
were predicted with values of relative mean square error lower than 0.9% for
the three constituents. As a conclusion, chemometrics was demonstrated to be very efficient for the analysis of the ternary
mixtures prepared for this study.

   Terahertz waves (1 THz = 1012 Hz) are electromagnetic 
waves ranging from 0.3 to 10 THz. The low energy
interactions and their capacity to propagate through a wide 
variety of materials1−3 allow these waves to assess the dielectric 
properties of the sample and thus advantageously contribute to 
their understanding in complement to far infrared and Raman 
spectroscopy. Moreover, the interactions with THz waves are 
nondestructive, which is compatible with quality control 
applications for industry4,5 and/or probing biological materi
als6,7 for identification8 and for medical diagnostics.9 Otherwise, 
THz imaging and remote sensing have allowed one to detect 
hazardous and illicit products.1,10
The THz spectroscopy technique is a powerful tool for 

characterizing vibrational modes, such as rotational, torsional, 
phonon, and intra  and intermolecular modes.11 THz spectros
copy is commonly considered as being different from 
conventional far infrared spectroscopy because the terahertz 
response is coupled to the collective behavior of molecules in 
their environment. THz spectroscopy can also distinguish 
polymorphism12 and chirality13 between molecules.
Many chemical compounds and biological molecules have 

already been investigated using THz TDS in the spectral range 
below 3 THz, such as DNA components,6 amino acids,14 and 
crystalline samples.15 This illustrates the importance of this 
spectral range, in providing the so called “fingerprint” of the 
conformational structure of molecules and a new means to 
recognize or distinguish some chemical compounds. Today, 
THz spectroscopy is already utilized to monitor and control 
pharmaceutical processes.16
Recent developments in laser based THz systems provided 

measurements with the stability that was mandatory for 
quantitative analysis. 

However, THz spectroscopy can also be used for identification, 
recognition, and sorting. In this case, quantitative analysis is not 
required and a simple comparison between a few selected 
spectral features (i.e., absorption peaks or bands) can lead to 
interesting results.17 Moreover, in order to improve the ability 
of THz spectroscopy, some chemometric methods were 
applied. A review of terahertz pulsed spectros copy18 

summarized the most common methods applied for processing 
the THz spectra and, more precisely, quantitative univariate 
and multivariate methods. The advantage of using a 
multivariate approach was also reported for process analytical 
technology (PAT).19 Moreover, principal component analysis 
(PCA) has been used to describe and compress the THz data. 
Watanabe et al.20 thus employed the PCA method to retrieve 
the spatial distribution of different chemical compounds in a 
pellet, and Zeilter et al.21 also applied PCA to investigate the 
effects of temperature and hydration on the absorbance spectra 
of pharmaceutical materials. For quantitative analysis, the 
partial least square (PLS) regression has been successfully 
implemented for different types of analyses12,19,22 since the 
terahertz spectra under study revealed linear behaviors. PLS is a 
multivariate method based on a very similar algorithm as the 
one of PCA. In addition to its application to process THz 
spectra of pharmaceutical samples,12 the PLS method was 
found to also be efficient in the framework of cultural 
heritage.23 Another demonstration of the PLS method coupled 
to THz spectroscopy was reported in the case of nutrition 
through the analysis of pesticides in rice.24 Finally, artificial 
neural networks (ANN) were also applied to the THz data 
since this chemometric method allows one to take into account 
possible nonlinear behaviors in the detected signals to identify 
illicit drugs.25 In this case, ANN was not utilized directly as a
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quantitative method. In previous studies, our group has already
applied ANN to quantitative analysis of LIBS spectra26,27 and
has demonstrated the advantages of this technique.
In this paper, we investigated a series of ternary mixtures

based on D (−)fructose, α lactose monohydrate, and citric acid
in various concentrations. All the samples were mixed with
polyethylene playing the role of binder. Previous studies of
THz spectroscopy demonstrated that fructose was character
ized by well contrasted peaks in the THz frequency range.28,29

Lactose has been also identified and quantified by THz
spectroscopy,30,31 as well as citric acid.32 In this work, we
applied different methods of chemometrics in order to analyze
the THz spectra of theses samples. First of all, we applied PCA
in order to manage data compression for qualitative analysis,
and second, we performed quantitative analysis based on the
PLS and ANN methods. We considered three analytes and an
idealized binder such as polyethylene. Thus, this demonstration
based on three analytes should be considered as a first step
prior to more complex cases, which should be addressed in
future works. Indeed, if the parameters presented in this study
appear to be moderate for many well established techniques,
this is not the case in the framework of terahertz spectroscopy.
Moreover, starting with a basic case allows one to demonstrate
the advantages of using chemometrics for reaching acceptable
performance in THz spectroscopy.

EXPERIMENTAL SECTION
For this study, we prepared a series of 39 samples. The three
selected pure analytes, namely, citric acid (Aldrich), D

(−)fructose (Sigma Life Science), and α lactose monohydrate
(Sigma Life Science), each of them containing less than 0.05%
impurities, were mixed together with pure polyethylene
(Aldrich), hereafter called PE, as a binder. First of all, for
each sample, the analytes were weighed out and then ground
into a mortar. Second, they were iteratively mixed together in
small amounts and ground again in order to avoid the
formation of aggregates and heterogeneous clusters into the
sample and then to limit undesired scattering. Indeed, it should
be noted that the size of the grains is known to have a very high
influence on the porosity of the PE based samples and
consequently on scattering. In the present work, the sample
preparation allowed one to obtain terahertz time domain
spectra free of the Christiansen effect reported by Franz et al.33

in the case of coarse grained powder. We prepared mixtures
containing 80% in mass of PE and 20% in mass of the ternary
mixture (fructose−lactose−citric acid) for a total weight of 400
mg per sample. Two replicates of 400 mg each were prepared
for each mixture, and the amounts were ground and
homogenized. Finally, the samples were prepared as pressed
pellets by using a manual press (8 tons/cm2 during 1 min).
Following this accurate sample preparation, THz TDS experi
ments were conducted as described below. Then, we applied a
homemade algorithm based on the work of Duvillaret et al.34

that was able to retrieve from the etalon effect both the
dielectric function and the thickness, simultaneously. On the
basis of this approach, the sample thicknesses were obtained
within 1% accuracy.
Figure 1 displays the 39 samples inside a ternary diagram

with each pure analyte as a pole. The samples were selected as
follows: Three of them contained only one pure analyte and
were consequently displayed at the three poles of the triangle;
then, 12 samples contained different mixtures of two pure
analytes among the three and were consequently displayed on

the three sides of the triangle; and finally, 24 samples contained
different mixtures of the three pure analytes and were
consequently displayed inside the triangle. Let us consider
the sample A30 as an example; this sample contained 70%
fructose, 10% citric acid, and 20% lactose, but it should be
recalled that these three analytes represented 20% of the weight
while the other 80% corresponded to the polyethylene binder.
This remark applies to all of the other samples. Finally, an
additional sample was prepared in order to be used as the
reference sample. This reference sample, not displayed in
Figure 1, solely contained 400 mg of polyethylene and was also
prepared as a pressed pellet is the same way as the other
samples.

Experimental Setup for Terahertz Absorbance Spec-
troscopy. The experimental setup was a commercial system,
namely, the TPS Spectra 3000 from Teraview. Its principle is
depicted in Figure 2. Basically, we used a standard THz TDS

transmission setup based on a mode locked Ti Sapphire laser
providing 80 fs pulses with a 76 MHz repetition rate. The laser
output was split into pump and probe beams. The pump was
focused onto a photoswitch (left in Figure 2) for the generation
of the terahertz field. This terahertz field traveled through the
sample and was finally detected with a photoswitch triggered by
the probe laser beam (right in Figure 2). Upon its interaction

Figure 1. Ternary diagram displaying the 39 samples analyzed by THz
spectroscopy. The three poles are related to fructose, lactose, and citric
acid, and thus, each sample corresponds to a mixture of these analytes.
The value 1 stands for 100%, and each value between 0 and 1
corresponds to the relative percentage in mass of the related analyte.

Figure 2. Experimental setup for transmission terahertz spectroscopy.
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with the sample, the time resolved field variation was measured
using the variation in the photocurrent induced by the probe
laser beam into the detector made of a LT GaAs semi
conductor.
Finally, the photocurrent induced by the probe laser beam

was filtered out and amplified by a lock in digital amplifier at
the frequency of the THz emission given by the chopper that
modulated the incident laser beam. The time delay line allowed
one to sample the signal step by step and then to rebuild the
terahertz field by sampling technique.
All the signals processed in this study were the result of

averaging over 1000 acquisitions in order to lower the noise.
Special attention was paid to evaluate the performance of this
THz TDS system, namely, the signal to noise ratio and the
reliable spectral range. Typically, the latter was ranging from
0.05 to 3 THz for this instrument, depending on the sample
under investigation. The measurements were carried out under
dry air. The level of dry air was controlled in real time through
the monitoring of the absorption of two spectral lines of water
vapor at 1.12 and 1.7 THz, on the reference spectrum, i.e., the
spectrum obtained from the pure PE pellet. Moreover, we also
studied the reproducibility of the measurements by a series of
repetitions. More precisely, the same sample has been analyzed
many times during several days. Between two consecutive
measurements, the sample was extracted from the chamber and
then introduced back in the chamber. We observed that the
variations due to this back and forth positioning were negligible
compared to the effect of the residual water content in air
inside the chamber. By calculating the Fourier transform of the
temporal signal recovered after a sampling along the time delay,
we obtained a signal displayed on a frequency axis for each of
the 40 samples including the reference sample composed of
pure PE. Then, for each measurement, the sample signal S(ω)
was divided by the reference signal R(ω) obtained from the
pure PE pellet. Finally, the absorbance was calculated from the
mathematical expression: A(ω)= −log(S2(ω)/R2(ω)), and for
all the samples, the absorbance spectra were treated via
multivariate approaches. It should be noted that the spectra
were recorded starting with pure PE and then following the
index of the samples, i.e., from A1 to A39.

RESULTS AND DISCUSSION
For each sample, the experiment was repeated 10 times in order
to get some statistics to allow one to detect outliers. The
absorbance of the pure polyethylene pellet was found to be
much lower than the one of the other pellets over the entire
spectral range under study. Figure 3 displays the absorbance
spectra of the three pure analytes, namely, fructose (sample
A1), lactose (sample A6), and citric acid (sample A11),
prepared with 80% of polyethylene (PE) and also the spectrum
of a typical mixture sample (sample A26). It should be noted
that the thickness of our pellets was about 3 mm.
Consequently, the etalon effect was about 30 ps after the

main peak. Moreover, its amplitude was very small due to the
very low reflection of the pellets. The temporal signals were
finally recorded on a 25 ps window in order to filter out the
etalon effect. Thus, no fringe pattern was observed on the
spectra displayed in Figure 3. One can observe in this figure
distinctive spectral bands potentially allowing for identification
and hopefully quantitative analysis. Indeed, three peaks were
observed for D (−)fructose at 1.3, 1.71, and 2.13 THz, four
peaks for α lactose monohydrate at 0.53, 1.19, 1.37, and 1.81
THz, and three peaks for citric acid monohydrate at 1.29, 1.7,

and 2.4 THz. Since the absorbance is additive when the wave is
transmitted through a series of separate samples, one could also
expect some additive effect in the case of a ternary mixture.
Indeed, the absorbance spectrum of sample A26 represented

by the purple curve in Figure 3 naturally contains the spectral
features of the three pure analytes. Nevertheless, it was not
simply the weighted sum of the three spectra related to the
pure analytes. Consequently, direct analysis of unknown
mixture samples was difficult to achieve and this was the
motivation for the use of chemometrics.

Data Description by PCA. For each sample, two pellets
were prepared and five THz absorbance spectra were recorded
per pellet. Consequently, ten spectra per sample were taken
into account. Considering the number of 39 samples, 390 raw
spectra were introduced into the PCA model. The projection of
these spectra onto the plane of the two first components of the
PCA model revealed that two groups of points should be
considered as outliers. They were related to one of the two
replicate pellets of the samples A28 and A34. These samples
were classified as outliers because they displayed scores very
different from the other samples, and thus, they were outside
the Hotelling’s ellipse representing 95% confidence for a given
PCA model. Thus, a new PCA model was calculated without
these 10 spectra, namely, 5 from each sample. It should be
pointed out that the total number of spectra was consequently
changed to 380, corresponding to the 39 samples discussed
above. The spectral range of the THz absorption spectra was
between 0.05 and 2.90 THz with 457 variables for each
spectrum. The first derivative of the absorbance was calculated
for each spectrum, and then, the resulting values were mean
centered as preprocessing of the PCA. In the case of the THz
spectra analysis presented in this paper, such a preprocessing
provided a very strong advantage since raw absorbance spectra
revealed unexpected offsets that might be due to small
variations of the samples’ thickness.
Figure 4 displays the scores of the PCA in the plane of the

two first components. One can observe the small dispersion of
each group of 10 points related to the 10 spectra recorded for
each single sample. In addition, one can clearly observe that the
points are spread inside a triangle (pink lines in Figure 4). We
concluded from Figure 4 that the plane defined by the two first
components allowed one to retrieve the ternary diagram given
in Figure 1. More precisely, the three poles of the triangle in
Figure 4 corresponded to the three pure analytes, namely, citric
acid for the sample A11 (green), fructose for the sample A1
(blue), and lactose for the sample A6 (red). The samples
related to binary mixtures were correctly displayed on the three

Figure 3. Absorbance spectra of fructose (blue), lactose (red), citric
acid (green), and a mixture of the three analytes (purple) in the range
of 0−3 THz.
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sides of the triangle. It should be noted also that the relative
positions of all the samples presented in Figure 1 were correctly
retrieved through the scores of the PCA (cf. Figure 4). To
better understand the ability of PCA to efficiently describe the
THz absorbance spectra, two figures should be compared,
respectively, Figure 5 giving the first derivative of the THz

absorbance spectra for the three pure analytes and Figure 6
displaying the loadings of the two first components of PCA on
the original frequency range. This comparison clearly reveals
that the first loading p[1] displayed in red in Figure 6 was
clearly anticorrelated to the first derivative of the absorbance
spectrum of lactose displayed in red in Figure 5 especially
through the peaks at 0.53 and 1.38 THz. For this reason, the
samples related to lactose were very well separated by the first
component of the PCA and displayed at the extreme left of the
scores’ graph displayed in Figure 4. Similarly, the second
loading p[2] displayed in Figure 6 was clearly correlated to
fructose and anticorrelated to citric acid. This was particularly
easy to verify at 2.41 THz. This was the reason for the good
ability of this PCA model to retrieve the original ternary
diagram with only two components. As a first conclusion, PCA
was demonstrated to be the ideal tool to describe spectral data
from THz absorbance experiments. The ternary diagram was
perfectly retrieved, and the relative position between the
samples was correct. This demonstrates that the THz
absorbance spectra contain very good features to describe the
samples, mixtures of three pure analytes. It should also be
pointed out that the ternary diagram was retrieved without any
knowledge of the data set.
The results presented in Figure 4 allowed one to conclude

that the PCA offers the possibility of semiquantitative analysis.
By extension, it would be possible to quantify these samples by
principle component regression (PCR)35 which consists of
calculating a regression upon the principal components.
However, considering the question of quantitative analysis in
the following section, we decided to use the partial least squares
regression (PLS) instead of the PCR because PLS is recognized
as being more efficient in interpreting the loadings and requires
a low number of principle component.35

Quantitative Analysis by PLS. In this study, the samples
contained up to three analytes in addition to the PE binder.
Consequently, there were two strategies for quantitative
analysis: either the quantification of one single analyte at a
time or the simultaneous quantification of the three analytes.
The PLS regression was utilized in this work. Thus, the PLS 1
algorithm was dedicated to the prediction of the concentrations
of lactose, fructose, and citric acid one at a time, and the PLS 2
algorithm was dedicated to simultaneously predicting the

Figure 4. Scores of PCA in the plane of the two first principal components for a data set of 380 spectra (39 samples) containing 457 variables each.
Solid lines interconnecting the poles have been added to help visually.

Figure 5. First derivative of the THz absorbance spectra for the three
pure analytes, namely, fructose (blue), lactose (red), and citric acid
(green).

Figure 6. Loadings of the PCA model displayed on the original
spectral range. p[1] for the first principal component and p[2] for the
second one.
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concentrations of these three analytes. Prior to any quantitative
analysis, it is highly recommended for one to prepare the data
in order to be able not only to build the best quantitative model
but also to evaluate the performance of the model. On the basis
of the PCA model, which revealed two outliers, namely, one of
the two replicates of the samples A28 and A34, it was decided
to finally exclude not only the two replicates of these samples
but also more generally any sample displaying a large difference
between the two replicates in the PCA model. Thus, the sample
A23 was also excluded from the PLS analysis. After removing
these three outliers, the original data set was split into three
independent subsets namely, the calibration, the validation, and
the test sets.
The calibration set was composed of 190 spectra, i.e., 10

spectra per sample for the 19 samples: A1 A2 A4 A5 A6 A7
A9 A10 A11 A12 A14 A15 A16 A17 A18 A21 A26 A38 A39.
This calibration set was used to build the regression model. The
validation set was made of 110 spectra, i.e., 10 spectra per
sample for the 11 samples: A3 A8 A13 A19 A20 A22 A27 A29
A31 A33 A35. This validation set was used for external
validation of the model. With these two subsets of data, it
was possible to choose the model by minimizing the mean
relative error of prediction. Finally, the test set was made of 60
spectra, i.e., 10 spectra per sample for the 6 samples: A24 A25
A30 A32 A36 A37. This test set was used to evaluate the ability
of the model to predict, a posteriori, the concentrations of
unknown samples. It should be noted that the terms of
calibration, validation, and test sets have been adopted by
Hamzacȩbi et al.36 In addition, in order to evaluate the
performance of the model to achieve quantitative analysis, the
root mean square error hereafter called RMSE was calculated.
The definition that we adopted for RMSE is given by

=
∑ ̂ −= y y

N
RMSE

( )i
N

i i1
2

(1)

where yî corresponds to the reference value of concentration of
the sample i, yi is the value predicted by PLS, and N is the
number of samples.
In order to present values of RMSE that could be easily

compared to the ones obtained from other studies, it is
necessary to properly describe the samples. In this work, each
400 mg pellet contained 80 mg of analytes (pure or mixture),
i.e., 20% of the weight of the pellet. Consequently, we have
built quantitative models from values of concentrations given in
%. Thus, the sample A6 for instance is related to 20% lactose
and 80% PE while the sample A31 corresponds to 2% lactose,
12% citric acid, 6% fructose, and 80% PE. Consequently, since
the predicted values of concentrations are calculated in %,
RMSE is also given in %. However, the value of RMSE should
be discussed in weight, i.e., in mg instead of % for a better
understanding. As a consequence, RMSE = X% corresponds to
RMSE = X mg for 80 mg of analytes (or 20%) and for 400 mg
of pellet (or 100%). Finally, if interested in the total amount of
the analytes instead of the complete pellet made of the mixture,
analytes (20%) + binder (80%), the RMSE values would be
multiplied by a factor of 5.
The values of RMSE are given in Table 1 in the case of

different PLS models applied to the series of data described
above. As a preprocessing step, the first derivative was applied
and then the data were mean centered. In Table 1, one can find
in the first column the type of model, here PLS 1, then the
analyte (F: fructose; L: lactose; and CA: citric acid) in column

2, and then the spectral range of the absorbance spectra in THz.
It also reports the number of variables K and the number of
principal components A considered for the model. The data
were introduced into the models following the index of the
samples, namely, from A1 to A39. Finally, it reports the values
of RMSE for the three sets of data (calibration set: C, validation
set: V, and test set: T). The results presented in Table 1
correspond to three individual PLS 1 models applied to the 457
variables in the spectral range of 0.05−2.90 THz. It should be
noted that the RMSE values for lactose were found to be very
low, i.e., around 0.27% or less. This result was in good
agreement with the previous study based on PCA, which
revealed that lactose was very well described along the axis of
the first component of PCA with a very good separation of the
points related to their concentrations.

Quantitative Analysis by ANN. We also studied the
advantage of using artificial neural networks for the quantitative
analysis of the samples presented above. ANN is a well known
nonlinear method of chemometrics.37 In this study, we selected
a 3 layer network composed of an input layer, a hidden layer,
and an output layer. For the input layer, each neuron received
one value per sample selected from the THz spectra. The
output layer contained only one neuron giving the predicted
value of concentration of the analyte as output value. The
hidden layer was composed of an adjustable number of neurons
interconnecting the neurons from the input and output layers.
For each neuron, the activation function was the sigmoid
function providing an output value ranging between 0 and 1.
The learning step consisted of applying the data from the
calibration set. Iteratively, the feed forward and the back
propagation of the error algorithms were applied.
Practically, it was not possible to introduce all of the data

from each spectrum into the ANN due to a dimensionality
issue. Moreover, THz absorbance spectra often do not contain
well defined peaks, and thus, it could be difficult to select a
reduced number of significant data points. Consequently, we
decided to apply first a PCA model in order to compress the
original data to only a few significant data points. Indeed, PCA
transformed the hundreds of spectral variables of the THz
absorbance spectra into a few scores of the principal
components. Finally, input values of the ANN models were
the scores of the PCA model.
In the case of fructose, the spectral data from the range of

0.05−2.6 THz were processed by PCA. For each value of A, the
number of principal components, three ANN models were
calculated, one for each analyte, and the smallest values of
RMSE determined the best models. Thus, for fructose, the best
ANN model was obtained for A = 5; for lactose, the optimal
ANN model was related to A = 3, and for citric acid, the best
model was obtained for A = 3. The results of the three ANN

Table 1. Values of RMSE Calculated for Different PLS 1
Modelsa

RMSE (%)

model analyte range (THz) K A C V T

PLS-1 F 0.05 2.90 457 3 0.52 1.06 0.78
PLS-1 CA 0.05 2.90 457 7 0.46 0.89 0.80
PLS-1 L 0.05 2.90 457 5 0.17 0.27 0.21

aThe analytes are fructose (F), lactose (L), and citric acid (CA). C, V,
and T stand for calibration (190 samples), validation (110 samples),
and test (60 samples) sets, respectively. A designates the number of
PLS components, and K is the number of variables per sample.
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models are presented in Table 2. For each model, the number
of neurons in the hidden layer is given, as well as the learning

rate, momentum, and number of iterations optimized via
external cross validation. For fructose, the values of RMSE were
found around 0.7%. This result was obtained in the case of the
spectral range of 0.05−2.60 THz. The analysis of lactose was
identically based on a preliminary PCA model in order to use
the scores of the PCA as input data for the ANN. In this case,
the spectral data from the range of 0.05−2.90 THz were
processed by PCA for the samples contained in the calibration
set. We verified that the best results for predicting the
concentration of lactose were obtained with the three first
scores of PCA as input values of the ANN. The values of RMSE
were found to be smaller than 0.34% for lactose. These values
were two times smaller in the case of lactose than in the case of
fructose. This result is in good agreement with the results that
were obtained earlier by PCA and PLS. For citric acid, the
spectral data from the range of 0.05−2.90 THz were processed
by PCA; the scores of the first three components of PCA were
utilized as input data of the ANN model, and the results are
given in Table 2. In the case of citric acid, the RMSE values
were lower than 0.9%. This result was not as good as the one
obtained in the case of lactose but was still satisfactory in
regards to the 400 mg of total weight of the samples
corresponding to the value of 100% and to the 80 mg of
analytes corresponding to the value of 20%. The results are
given in Table 2.

DISCUSSION
It should be noted that RMSE is a mean value, and
consequently, it should be more informative to display for
each sample the values of concentrations predicted by ANN
and by PLS versus the reference values obtained by weighing
out the powder of analytes and binder, as reported in Figure 7.
From Figure 7, one can observe a very similar predictive ability
between PLS and ANN, in the case of data processing of THz
absorbance spectra for the mixtures prepared for this study.
This reveals that no significant nonlinear behavior was present
in this case. In the case of fructose (Figure 7a), the values of

concentration predicted by ANN (blue) were found to be
slightly closer to the curve y = x (dashed lines) than the values
predicted by PLS (red) especially for the sample A30
corresponding to 14% of fructose, which was underestimated
by PLS. Figure 7 also displays error bars that help in the
interpretation of the results. Regarding ANN and PLS, the error
bars describe the relative standard deviation obtained after the
analysis of the 10 replicates of the measurement per sample.
However, in the case of fructose, only one sample was analyzed
by the value of concentration, preventing the observation of
possible matrix effect. In the case of lactose, the predicted
values were very close to the reference ones and the error bars
were very small compared to the ones obtained for the other
analytes. Moreover, it should be emphasized that six samples
composed the test set and that the concentration values of the
samples A30 and A37 were correctly predicted to be close to
4% while those of the samples A24 and A25 were correctly
predicted to be close to 8%. Finally, in the case of citric acid,

Table 2. Results of the Three Optimized ANN Models
Dedicated to the Quantitative Analysis of Fructose, Lactose,
and Citric Acida

fructose lactose citric acid

spectral range
(THz)

0.05 2.60 0.05 2.90 0.05 2.90

input data for
ANN

5 3 3

neurons in the
hidden layer

2 3 3

learning rate 0.05 0.1 0.05
momentum 0.2 0.1 0.1
number of
iterations

12 000 54 000 18 000

calibration set RMSE
(%)

0.78 0.22 0.54

validation set RMSE
(%)

0.70 0.34 0.89

test set RMSE
(%)

0.49 0.33 0.47

aThe number of input data is the number of principal components of
the PCA model.

Figure 7. Predicted concentrations of fructose (a), lactose (b), and
citric acid (c) by ANN (blue, right vertical axis) and PLS (red, left
vertical axis) versus the reference values obtained by weighing out the
powders. The results are given for samples belonging to the test set.
The error bars represent the standard deviation over the 10
measurements per sample. Dashed lines depict the lines defined by
the equation y = x.
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one should notice that for the sample A37 corresponding to
10% of citric acid, both PLS and ANN underestimated the
value of concentration. In addition, one should notice that two
samples corresponding to 8% citric acid, namely, A25 and A32,
revealed larger discrepancy between the predicted and
reference values. This effect was more visible in the case of
PLS analysis with large error bars for the sample A32 revealing
possible coupling between citric acid and fructose.
Finally, no advantage for ANN was evidenced probably

because the absorption spectra were driven by linear behaviors.
The performance obtained by ANN strongly depends on the
preliminary compression achieved by PCA. It is very interesting
to observe that only 3 to 5 data, namely, the scores of PCA,
were enough to build a very good ANN model dedicated to
quantitative analysis.

CONCLUSION
We have successfully applied chemometrics to the analysis of
ternary mixtures of fructose, lactose, and citric acid measured by
transmission terahertz time domain spectroscopy. PCA was
utilized with a very good efficiency to analyze terahertz data of
ternary mixtures. Indeed, PCA allowed one to visualize the
ternary diagram of the three initial analytes. Then, artificial
neural network was used as a quantitative method and
compared to the PLS. Both of these methods provided
predicted values of concentrations for lactose, fructose, and
citric acid characterized by RMSE values lower than 0.9% (4 mg
in the case of pressed pellets of 400 mg containing 320 mg of
polyethylene as binder and 80 mg of mixture). Finally, this
work demonstrated the advantages of using chemometrics to
treat terahertz absorbance spectra. Further work will be
dedicated to the analysis of more complex samples by applying
chemometrics. More generally, chemometrics should have a
larger role in future developments and transfer of terahertz
spectroscopy for chemical analysis as a new tool for industrial
applications.
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(36) Hamzacȩbi, C.; Akay, D.; Kutay, F. Expert Syst. Appl. 2009, 36,
3839−3844.
(37) Marini, F.; Bucci, R.; Magrì, A. L.; Magrì, A. D. Microchem. J.
2008, 88, 178−185.

 7




