
HAL Id: hal-00982544
https://hal.science/hal-00982544v1

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modal truncation for linear Hamiltonian systems : a
physical energy approach

Benjamin Mourllion, Abderazik Birouche

To cite this version:
Benjamin Mourllion, Abderazik Birouche. Modal truncation for linear Hamiltonian systems :
a physical energy approach. Dynamical Systems, 2013, 28 (Issue 2), pp.187-202 (Article).
�10.1080/14689367.2013.777397�. �hal-00982544�

https://hal.science/hal-00982544v1
https://hal.archives-ouvertes.fr


January 31, 2013 16:58 Dynamical Systems FinalRevisedMBPaper

Dynamical Systems

Vol. 00, No. 00, September 2012, 1–21

RESEARCH ARTICLE

Modal Truncation for Linear Hamiltonian Systems:

a Physical Energy Approach

Benjamin Mourllion∗ and Abderazik Birouche

aMIPS EA 2332
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• Re z, z∗, and |z| denote respectively the real part, the conjugate and the modulus

of the complex number z.

• Pf(x) denotes the pseudo-function of f(x). When integrating it, one implicitly

takes account of the Cauchy principal value (P.V.) of the integral of the considered

function. For instance, let c ∈ I = [a, b] be a singularity of function f(x). The

integral over I is undefined whereas the integral of Pf(x) is defined as follows:
∫

I
Pf(τ)dτ = P.V.

∫

I
f(τ)dτ , limε→0+

(∫ c−ε

a
f(τ)dτ +

∫ b

c+ε
f(τ)dτ

)

.

1. Introduction

Realistic systems are often complex and characterized by models of a very high order.

These models are usually difficult to study in a context of analysis. The interest of model

order-reduction is that high order models generate high order controllers/observers lead-

ing to numerous complexities and difficulties in synthesis, simulation and implementation.

Therefore, it is necessary to reduce the order of these systems. The problem of model

order-reduction has become the focus of different research areas (mathematics, mechan-

ics, control theory and computer engineering). Several studies have been devoted to this

issue following the class of system considered.

In the control theory domain, state-of-the-art methods for reducing the order of linear

models can be found in [1, 2, 18]. One important contribution to model reduction is the

balanced truncation method [8, 15]. In this approach, each state is equally controllable

and observable and the reduced order model is obtained by truncating the least con-

trollable and observable states. Balanced truncation is a common method to reduce the

order of Linear Time Invariant (LTI) systems thanks to its simplicity of implementa-

tion; the stability of the reduced system is guaranteed and the approximation error is

bounded. Another important solution to model reduction problems is the optimization

approach which minimizes the H∞-norm (or H2-norm) between the original full order

model and the reduced order model [12, 28]. The main drawback of these solutions is

that the reduced models obtained do not necessarily have obvious physical meanings.

To overcome this problem, some methods propose several adaptations of the balanced

truncation in order to preserve the second-order form of the systems [5, 14, 19]. All these

methods cannot be applied to conservative systems where H∞-norm is infinite. Indeed,

in this case, the reachability Gramian and observability Gramian cannot be computed

(since the Hankel singular values are infinite), and so, the truncation is not possible. It

can be noticed that van der Schaft [23] proposed an alternative approach by associating

a gradient (or reciprocal) system with the conservative system [22, 25] but this ad hoc

method is not straightforwardly interpretable.

In the mechanical and physical domain, several other methods have been developed,

such as Guyan Condensation [10], Component Mode Synthesis [6], Modal Truncation, for

example. State-of-the-art and comparative studies of these methods can be found in [11].
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It is well known that modal truncation helps to keep stronger physical meanings of states

but the selection of eigenmodes to be removed is not easy to perform and remains an

open issue. As underlined by Wortelboer [27, p. 60], all sorts of criteria for selection have

been proposed in literature. Besides, selection criteria are often not made explicit. It is

difficult to trace the origins of most modal reduction methods.

This problem will be the topic of the present paper.

The main contribution of this paper is the definition of a new criterion to select the

eigenmodes to be left out in the modal truncation step. This criterion is based of the

physical energy supplied by the control command and the passivity [24, 25] of physical

systems. In order to preserve as much as possible the connection between this new cri-

terion and the physical energy, the Hamiltonian formulation of physical systems will be

used.

This paper is organized as follows. Section 2 describes the problems and drawbacks of

conventional modal truncation. Section 3, considering classic (i.e. undamped [3, 9, 13])

Hamiltonian systems, presents a strong relation between the energy supplied and the

Fourier transform of the input is introduced. This relation leads to the formulation of a

new criterion. Two examples of modal energy computation are then presented. The first

one deals with a finite-time input signal, while the second one deals with a infinite-time

input signal. Section 4 shows how this criterion can be used in the eigenmode selec-

tion in modal truncation. One example is studied, with two different modal truncation

procedures. Finally, the conclusion will be followed by a few perspectives.

2. Motivation and Problem Positioning

2.1. Introduction

Generally, modal analysis deals with physical second-order form systems given by:

{

Mq̈(t) + Cq̇(t) +Kq(t) = bu(t)

y(t) = cq̇(t)
with dim(q) = n (1)

where M, C and K are respectively the mass (or inertia) matrix, damping matrix

and stiffness matrix. To ensure the physical feasibility of the second order form system

equation (1), these three n×n matrices have to verify the so-called structural conditions:

• M = Mt ≻ 0

• C = Ct � 0

• K = Kt ≻ 0
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2.2. Modal basis

As M = Mt ≻ 0 ⇒ det(M) 6= 0, the inertia matrix is invertible and system (1) has n

eigenmodes, solution of:

(
M−1K

)
Φ = ΦΩ2

with:

Ω = diag{ω1, . . . , ωn} the eigenfrequencies matrix,

Φ = [φ1, . . . , φn] the modal matrix.

The mass and stiffness matrices are symmetric and positive definite, then the modal

matrix is diagonal and the eigenfrequencies are real and positive and the eigenmodes are

real. Moreover, the eigenmodes are orthogonal

φt
iMφj = 0 and φt

iKφj = 0 if ωi 6= ωj .

Therefore, the modal transformation gives the following diagonal matrices

M̃ = ΦtMΦ

K̃ = ΦtKΦ

Due to the damping matrix, orthogonal modes can be coupled through the following

quantity:

C̃ = ΦtCΦ.

If the damping matrix can be written as C = amM+akK (known as Rayleigh damping

condition [17]) or as C = M
∑∞

j=−∞ aj
(
M−1K

)j
(known as Caughey damping condi-

tion [4]), the modal damping matrix can be written as

C̃ = diag{2ξiωi}

then the damped eigenmodes remain uncoupled.

2.3. Drawbacks of modal truncation

One can rewrite the system presented in equation (1) in order to obtain the following

state-space realization:
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[

q̈(t)

q̇(t)

]

=

A
︷ ︸︸ ︷[

−M−1C −M−1K

I 0

][

q̇(t)

q(t)

]

+

B
︷ ︸︸ ︷[

M−1b

0

]

u(t)

y(t) =
[

c 0
]

︸ ︷︷ ︸

C

[

q̇(t)

q(t)

]

Assuming that the eigenmodes are uncoupled, the 2n eigenvalues λi of the matrix A

are:

eig(A) =

{

λ1,2 = −ξ1ω1 ± ω1

√

1− ξ21 , . . . , λ2n−1,2n = −ξnωn ± ωn

√

1− ξ2n

}

.

Usually, the aim of modal truncation is to reduce the order of a system by leaving out

the eigenmodes corresponding to some criteria enumerated below.

• In the damped case, the eigenmodes to be neglected can be selected according to

(1) the eigenfrequencies (usually the higher ones),

(2) the dynamics (usually the more damped ones),

(3) the H∞-norm (the smaller ones). Indeed, the transfer function can be written

as: G(s) =
[

c1 . . . c2n

]






s− λ1

. . .

s− λ2n






−1 




b1
...

b2n




 =

∑2n
i=1

cibi
s−λi

.

The H∞-norm of each term of the sum is given by
∥
∥
∥

cibi
s−λi

∥
∥
∥
∞

= |cibi|
|Reλi|

. So, in

order to obtain a small error upper bound in the H∞-norm, the terms with

the smaller H∞-norm have to be removed.

• In the undamped case (the dissipation matrix is zero: C = 0), the poles of the

system are located on the imaginary axis, therefore the H∞-norm (or L∞-norm)

and the Hankel singular values cannot be computed. Currently, the only way to

perform modal truncation is to leave out the eigenmodes corresponding to some of

the eigenfrequencies (usually the higher ones).

As underlined in [21], from a system and control theory point-of-view, in the undamped

case, the reduced model may have disadvantages since the analysis is only concerned with

the system matrix and not with the input and output matrices. In the following Sections,

a new criterion is defined in order to take account of both the system dynamics and the

input and output matrices.
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3. Energy-Based Criterion

The aim of this Section is to define a new criterion based on the physical energy. Dealing

with passive systems [24, 25] and focusing on the energy supplied, a natural approach is

to use the Hamiltonian framework.

3.1. Hamiltonian formulation

Generally, a dissipative Hamiltonian system is defined [20] as

{

ẋ(t) = (J(x(t))−R(x(t)))∇xH(x(t)) +B(x(t))u(t)

y(t) = Bt(x(t))∇xH(x(t))
(2)

with:

• x =
[

qt pt
]t

the state vector.

• q =
[

q1 . . . qn
]t

∈ M is the vector of the generalized coordinates, belonging to the

configuration manifold M with dim(M) = n.

• p =
[

p1 . . . pn

]t

∈ T ∗
q M is the vector of the generalized momentum, belonging to

the cotangent space to M at the configuration q. Therefore, the vector x belongs to

T ∗M the cotangent bundle(also known as phase space) of M and dim(x) = 2n.

• H(x) is the Hamiltonian function and represents the total energy of the system,

• ∇H represents the column gradient vector.

• J(x) = −J t(x), the symplectic matrix. It is smooth with respect to x.

• R(x) = Rt(x) � 0, the dissipation matrix. It is a smooth function with respect to

x.

• B is a column vector.

A convenient property of this kind of systems is that the energy balance can be easily

obtained:

d

dt
H(x(t)) = ∇t

xH(x(t))ẋ(t)

= ∇t
xH(x(t))[(J(x(t))−R(x(t)))∇xH(x(t)) +B(x(t))u(t)]

= ∇t
xH(x(t))J∇xH(x(t))

︸ ︷︷ ︸

=0

−∇t
xH(x(t))R(x(t))∇xH(x(t)) +∇t

xH(x(t))B(x(t))u(t)

= yt(t)u(t)−∇t
xH(x(t))R(x(t))∇xH(x(t))

Since R � 0, the Hamiltonian systems are passive [20].

In this paper, the focus will only be on linear invariant Hamiltonian systems. In this

case, matrices J , R and B are independent of x. Moreover, the Hamiltonian function is

defined by the following quadratic form:
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H(x) =
1

2
xtEx

where E = Et � 0 is called the energy matrix.

The system presented in equation (2) has the following state-space realization (called

energy variable representation [16]):

{

ẋ(t) = (J −R)Ex(t) +Bu(t)

y(t) = BtEx(t)

The Hamiltonian function is defined over the cotangent bundle T ∗M . The generalized

velocities q̇ =
[

q̇1 . . . q̇n
]t

belong to the tangent space to M at the configuration q: TqM .

In the linear case, the value of the kinetic energy Ek(p) = ptM−1p is equal to the value

of the kinetic co-energy E∗
k(q) = q̇tMq̇ (Legendre transform of Ek). More properties of

energy and co-energy can be found in [16, 26] for instance.

3.2. Relation Between the Input Fourier Transform and the Energy

Supplied

Considering the linear Hamiltonian systems, an important relation between the Fourier

Transform of the input system with the energy supplied by this input is presented in this

Section. To the author’s knowledge, this relation has never been presented and used in

the related literature. This is the key point on which the new criterion is based.

Consider the undamped harmonic oscillator of the form.

d2q

dt2
(t) + ω2

0q(t) =
1

m
u(t) with ω2

0 =
k

m
. (3)

Defining p = mq̇, the Hamiltonian function is H(q, p) = 1
2m

p2 + 1
2
kq2 = 1

2
mq̇2 + 1

2
kq2,

this system can be rewritten as equation (2) with J =

[

0 1

−1 0

]

, R = 0 and B =

[

0

1

]

.

The energy variable representation is immediately obtained:

(

A B

C D

)

=







[

0 1
m

−k 0

] [

0

1

]

[

0 1
m

]

0
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Proposition 3.1 Considering a forcing function (or distribution) u with the support

[0, T ] (where T > 0 can be finite or infinite). The energy supplied to an harmonic un-

damped oscillator given by equation (3) initially at equilibrium with nil mechanical energy

is

H(x(t)) =
1

2m
|U(ω0)|

2 =
CB

2
|U(ω0)|

2 ∀t ≥ T (4)

where U is the Fourier transform of u.

Proof :

The oscillator is assumed to be initially in equilibrium with a nil mechanical energy.

Therefore, the energy supplied to the system is its mechanical energy at the time T : HT

and remains constant after this time: H(t) = HT ∀t ≥ T .

Defining y(t) = q̇(t), the energy supplied by the input force u is given by its work:

W =

∫ ∞

−∞
y(t)u(t)dt =

1

2π

∫ ∞

−∞
Y (ω)U∗(ω)dω

where the second equality is obtained by the application of the Parseval theorem and

the uppercase variables are the Fourier transforms of the respective lowercase variables.

The derivative property of the Fourier transform leads to Y (ω) = ωQ(ω) where Q

(the Fourier transform of q) is obtained from the equation (3):

Q(ω) =
1

m

U(ω)

ω2
0 − ω2

The singular points (ω = ±ω0) lead to a problem in the evaluation of W .

To obtain a better definition of the work, the singular points are slightly shifted out

of the path of integration through the introduction of an infinitesimally small friction

coefficient ε > 0 (ε2 negligible compared with ω2
0). The previous Fourier transforms

becomes:

Qε(ω) =
1

m

U(ω)

ω2
0 − (ω − ε)2

and Yε(ω) = ωQε(ω) = ω
1

m

U(ω)

ω2
0 − (ω − ε)2

,

Moreover, as y(t) and u(t) are real, their Fourier transforms have an Hermitian sym-

metry (i.e. F (−ω) = F ∗(ω)), so:

Wε =
1

π
Re

∫ ∞

0

Yε(ω)U
∗(ω)dω =

1

mπ
Re

∫ ∞

0

ω

ω2
0 − (ω − ε)2

|U(ω)|2dω

Now, using the so-called Dirac-Plemelj formula (also known as the Sokhotsky-Plemelj
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formula, see [7] for instance):

lim
η→0+

1

x± η
= P

1

x
∓ πδ(x) (5)

the following equation is obtained letting ε to zero:

W =
1

m

∫ ∞

0

ω

(

−δ(ω0 + ω)P
1

ω0 − ω
+ δ(ω0 − ω)P

1

ω0 + ω

)

|U(ω)|2dω

where the first part of the integral is always zero. Therefore, this leads to:

W =
1

2m
|U(ω0)|

2 (6)

�

Note that T is the time from which the input is zero. This time can be either finite or

infinite.

Several remarks can be made about equation (6):

(1) The work W is always positive or nil, this is consistent with the fact that Hamil-

tonian systems are passive.

(2) If the control signal is a sinusoidal u(t) = sin(ωut), its Fourier transform is U(ω) =

δ(ωu − ω). Therefore, if ωu = ω0, the supplied energy tends to infinity due to the

resonance effect or else the supplied energy is zero.

(3) If the control signal is a unitary impulse u(t) = δ(t), its Fourier transform is the

unitary constant U(ω) = 1. The supplied energy is therefore W = 1
2m

. This is con-

sistent with the shock theory (conservation of the impulse). Indeed, by definition,

the impulse conservation is given by: uaverage∆t = m∆v = 1 (since u is a unitary

impulse). Moreover, the velocity before the impact is assumed to be zero so the

following relation v = 1
m

is obtained. Just after the impact, the supplied energy is

only the kinetic energy: Ek(v) =
1
2
mv2 = 1

2m
= W .

3.3. Energy Supplied to Eigenmodes

Consider the following Hamiltonian system:

{

ẋ(t) = J∇xH(x(t)) +Bu(t)

y(t) = Bt∇xH(x(t))
(7)
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with:

x =

[

q

p

]

and B =

[

0

b

]

Let Φ be the modal matrix transformation defined in Section 2.2 and assume (with

no loss of generality) that ΦtΦ = ΦΦt = In. Define Θ = diag{Φ,Φ} and consider the

following transformation x = Θx̃. By underlining that the gradient is a covariant vector

(∇x = Θ∇Θtx = Θ∇x̃) and that the modal transformation is a canonical transformation

(ΘtJΘ = J), the Hamiltonian system in its modal basis can be written as follows:

{
˙̃x(t) = J∇x̃H̃(x̃(t)) + B̃u(t)

y(t) = B̃t∇x̃H̃(x̃(t))
(8)

with:

x̃(t) =

[

q̃

p̃

]

and B̃ =

[

0

b̃

]

= ΘtB

H̃(x̃(t)) =
1

2
x̃t(t)Ẽx̃(t) and Ẽ = ΘtEΘ =

[

K̃ 0

0 M̃−1

]

M̃ = diag{m̃1, . . . , m̃n} and K̃ = diag{k̃1, . . . , k̃n}

As eigenmodes are orthogonal, the Hamiltonian function H̃ is the sum of the n Hamil-

tonian sub-functions H̃i of each following Hamiltonian sub-system (written in the energy

variable representation):

(

Ãi B̃i

C̃i D̃i

)

=







[

0 1
m̃i

−k̃i 0

] [

0

b̃i

]

[

0 c̃i

]

0







where b̃i is the ith entry of the vector b̃ and c̃i =
b̃i
m̃i

.

Now, using equation (6), ∀t ≥ T , the n Hamiltonian sub-functions H̃i can be written

as follows: H̃i(x̃i(t)) =
1
2
CiBi|U(ωi)|

2 (with ω2
i = ki

mi

and x̃i the associated modal state-

vector).
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H(x(t)) =

n∑

i=1

H̃i(x̃i(t)) =

n∑

i=1

1

2
CiBi|U(ωi)|

2 (9)

3.4. Example of Modal Energy Computation

In this section, consider the following system composed of 3 masses chained by 3 springs:

m1 m2 m3

k1 k2 k3 u
y

The input is a force u applied to the third mass and the output is the velocity y of the

same mass. This system can be described by the following matrices:

M = diag(m1,m2,m3); K =






k1 + k2 −k2 0

−k2 k2 + k3 −k3
0 −k3 k3




 ; b =






0

0

1




 ; and c = bt

The energy supplied to the 3 modes of the system is computed considering the 2

following cases:

(1) Rectangular input: u(t) = A ∀0 ≤ t ≤ T (u = 0 elsewhere)

(2) Exponential input: u(t) = A exp(−t/t0) ∀t ≥ 0 (u = 0 elsewhere)

The numerical results were obtained with: m1 = m2 = m3 = 1 kg and k1 = k2 = k3 =

4 N/m. The computed eigenfrequencies (in rad/s) are: ω1 = 0.8901, ω2 = 2.4940 and

ω3 = 3.6039.

• In case 1, the amplitude of the input was set with A = 1 and the length T of the

rectangular input was set at the specific value T = 8π/ω2 ≃ 10.0774 s. Figure 1

shows the outputs of the three modes and the output of the system on the left. On

the right, one can observe the energy supplied to the three eigenmodes and to the

whole system. The dashed lines refer to the computed values (using equations (6)

and (9)) of the 4 Hamiltonian functions of each eigenmode and the system. Note

that the energy related to the second eigenmode H2 is zero. This is due to the fact

that the length of the rectangular input is a multiple of 2π/ω2. Figure 2 shows the

modulus of the Bode system transfer function in the upper part and in the lower

part one can observe the modulus of the input Fourier transform. The 3 squares on

the curve show the values at the 3 eigenfrequencies. For the second eigenfrequency,

this value is zero which explains why H2 is equal to zero.
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0 5 10 15 20
−2

0

2
Mode 1 (m/s)

0 5 10 15 20
−0.2

0

0.2
Mode 2 (m/s)

0 5 10 15 20
−0.05

0

0.05
Mode 3 (m/s)

0 5 10 15 20
−2

0

2
System Output (m/s)

Time (s)

0 5 10 15 20
0

0.5

1

1.5
Mode 1 Energy (J)

0 5 10 15 20
0

0.1

0.2
Mode 2 Energy (J)

0 5 10 15 20
0

0.01

0.02
Mode 3 Energy (J)

0 5 10 15 20
0

0.5

1

1.5
System Output Energy (J)

Time (s)

Figure 1. Modal response and modal energy: case 1 (rectangular input).
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Figure 2. Bode diagram and input Fourier transform: case 1 (rectangular input).
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Figure 3. Modal response and modal energy: case 2 (exponential input).

• In case 2, the amplitude of the input was set with A = 1 and t0 was set at the

specific value t0 = 4 s. Figure 3 shows the outputs of the three modes and the

output of the system on the left. On the right, one can observe the energy supplied

to the three eigenmodes and to the whole system. The dashed lines refer to the

computed values (using equations (6) and (9)) of the 4 Hamiltonian functions of

each eigenmode and the system.
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Figure 4. Bode diagram and input Fourier transform: case 2 (exponential input).
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4. Energy-Based Modal Truncation

4.1. Truncation Step

Physically, it makes sense to keep the most energetic modes, i.e. the modes which have

stored most of the energy. This criterion, based on both the eigenfrequency and in-

put/output matrices, is dependent of the type of input signal. If the type of input signal

is previously known, its Fourier transform can be directly used to define the criterion

and perform a modal truncation in accordingly. In contrast, if there is no knowledge on

the type of input signal, the two following cases can be considered for the definition of

the criterion:

(1) Dirac (impulse) case: u(t) = δ(t) ⇋ U(ω) = 1 which leads to

H(x(t)) =

n∑

i=1

H̃i(x̃i(t)) =

n∑

i=1

1

2
CiBi ∀t > 0 (10)

(2) Heaviside (step) case: u(t) = Γ(t) ⇋ U(ω) = P 1
ω

+ 1
2
δ(ω) which leads to

H(x(∞)) =

n∑

i=1

H̃i(x̃i(∞)) =

n∑

i=1

1

2
CiBi

1

ω2
i

(11)

These signals are suggested for two main reasons:

(1) Firstly, these functions are frequently used in system analysis (impulse for the

study of the impulse response and step for the study of second order struc-

tured system) and reduction. When a balanced truncation is performed on an

asymptotic stable system, the reachability gramian WA considered is solution

of the Lyapunov equation AWA + WAA
t + BBt = 0 but can also be un-

derstood as WA =
∫∞
0

xδ(τ)x
t
δ(τ)dτ where xδ is the state impulse response.

Indeed, WA =
∫∞
0

(∫ t

0
exp(A(t− τ))Bδ(τ)dτ

)(∫ t

0
exp(A(t− τ))Bδ(τ)dτ

)t

dt =
∫∞
0

exp(At)BBt exp(Att)dt.

(2) Secondly, when the impulse function is used, the criterion is only based on the input

output matrices (independently of the eigenfrequencies since its Fourier transform

is a constant). When the primitive of the impulse (namely the step) is used, the

Fourier transform can be seen as a penalty function which tends to favorise eigen-

modes with small eigenfrequencies. Which can be a trade-off between the proposed

approach and the classical approach (remove the higher eigenfrequencies).

Although there is no theoretical link between them, it is worth underlining that there is

a strong similarity between the second case (equation (11)) and the truncation criterion

based on the H∞-norm in the damped case. In fact, if the damping matrix is not equal
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to zero, then the modal matrices Ai can be written as:

Ãi =

[

0 1
m̃i

−k̃i −2ξiωi

]

The H∞-norm of the ith Hamiltonian sub-system can be approximated by: ‖G̃i‖∞ ≃
1
2
CiBi

1
ξiωi

. Indeed, in the SISO (single input single output) case, the H∞-norm corre-

sponds to the peak gain of the frequency response. This peak occurs at the pseudo-

eigenfrequency which is close to the eigenfrequency. Therefore, the following approxima-

tion can be made: ‖Gi‖∞ ≃ σmax(Gi(ωi)). Using the triangle inequality, the following

relation, quite similar to the relation (11), is then obtained:

‖G‖∞ ≤

n∑

i=1

‖G̃i‖∞ =

n∑

i=1

1

2
CiBi

1

ξiωi
(12)

4.2. Example of Reduction

Consider a system of the form (7) with

x =

[

q

p

]

B =

[

0

b

]

H(x) =
1

2
xt

[

K 0

0 M−1

]

x

M = I3 K =






1.7494 0.6791 1.0438

0.6791 3.7234 1.3394

1.0438 1.3394 2.5272




 and b =






−0.8669

0.5428

6.9967






The eigenfrequencies of the system: ω2
1 = 1, ω2

2 = 2 and ω2
3 = 5 (in rad/s) were set

arbitrary. The matrices K and b were generated pseudo-randomly.

The corresponding state-space representation of this system is composed of 6 states (3

generalized positions and 3 generalized velocities). In order to reduce it by removing one

eigenmode, two energy-based modal reductions were performed:

(1) The first one was computed using a unitary impulse function (denoted by the

superscript ↑). The energy supplied to the 3 eigenmodes is given in the following

table:

Index mode i 1 2 3

Eigenfrequency (rad/s) ωi 1.0000 1.4142 2.2361

Energy (J) H↑
i 12.4997 4.5002 8.0000
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Figure 5. Bode Diagram obtained for impulse-based reduction and step-based reduction.

As H↑
1 > H↑

3 > H↑
2, the eigenmode to be removed is the second one (H↑

2 =

4.5002 J).

(2) The second one was computed using a Heaviside (step) function with a unitary

amplitude (denoted by the superscript �). The energy supplied to the 3 eigen-

modes is given in the following table:

Index mode i 1 2 3

Eigenfrequency (rad/s) ωi 1.0000 1.4142 2.2361

Energy (J) H�
i 12.5003 2.2501 1.6000

As H�
1 > H�

2 > H�
3, the eigenmode to be removed is the third one (H�

3 =

2.2361 J).

The difference between H↑
1 and H�

1 is only due to numerical approximation.

Figure 5 shows the Bode diagram of the original system and the 2 reduced systems.

In this example, the truncation with respect to a step function gives the same results

as the conventional modal truncation, since the Hamiltonian sub-functions are ordered

as their corresponding eigenfrequencies. On the other hand, the truncation with respect

to an impulse function does not remove the same eigenmodes.

As the H∞-norm (or L∞-norm) cannot be computed, the responses to an impulse and

a step input are plotted in figure 6 in order to compare the reduced models.
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Figure 6. Impulse and Step responses of the original system, impulse-based reduction system and

step-based reduction system.
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5. Conclusion

This paper has discussed the limitations of traditional modal truncation and proposed

a new method for the selection of the eigenmodes to be left out. This approach is based

on an energetic criterion defined in the same way as the ones for damped system (modal

truncation based on the H∞-norm or balanced truncation based on the Hankel singular

values). The new criterions considers the dynamics of the system on the one hand, and,

on the other hand the input/output matrices. So, the approach is satisfactory from the

point-of-view of a system and control theory. This study focused on conservative systems

but the proposed method can be applied on dissipative systems. Further work will propose

a trade-off between the energy supplied and the energy dissipated with each eigenmode

in order to select the states to be neglected for dissipative systems.
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