
HAL Id: hal-00982538
https://hal.science/hal-00982538

Submitted on 24 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On labeled birooted tree languages: algebras, automata
and logic
David Janin

To cite this version:
David Janin. On labeled birooted tree languages: algebras, automata and logic. Information and
Computation, 2015, 243, pp.222 - 248. �10.1016/j.ic.2014.12.016�. �hal-00982538�

https://hal.science/hal-00982538
https://hal.archives-ouvertes.fr

On labeled birooted tree languages:

algebras, automata and logic

David Janin ∗†

Université de Bordeaux, IPB,

LaBRI, CNRS UMR 5800,

351, cours de la Libération,

F-33405 Talence, FRANCE

janin@labri.fr

April 24, 2014

Abstract

With an aim to developing expressive language theoretical tools ap-
plicable to inverse semigroup languages, that is, subsets of inverse semi-
groups, this paper explores the language theory of finite labeled birooted
trees: Munn’s birooted trees extended with vertex labeling.

To this purpose, we define a notion of finite state birooted tree au-
tomata that simply extends finite state word automata semantics. This
notion is shown to capture the class of languages that are definable in
Monadic Second Order Logic and upward closed with respect to the nat-
ural order defined in the inverse monoid structure induced by labeled
birooted trees.

Then, we derive from these automata the notion of quasi-recognizable
languages, that is, languages recognizable by means of (adequate) premor-
phisms into finite (adequately) ordered monoids. This notion is shown to
capture finite Boolean combinations of languages as above. Applied to a
simple encoding of finite (mono-rooted) labeled tree languages in of la-
beled birooted trees, we show that classical regular languages of finite
(mono-rooted) trees are quasi-recognizable in the above sense.

The notion of quasi-recognizability thus appears as an adequate rem-
edy to the known collapse of the expressive power of classical algebraic
tools when applied to inverse semigroups.

Illustrative examples, in relation to other known algebraic or automata
theoretic frameworks for defining languages of finite trees, are provided
throughout.

∗Partially funded by project INEDIT, ANR-12-CORD-0009
†Temporary research fellow at CNRS/INS2I (2013-2014)

1

Contents

1 Preliminaries: the free group and the free inverse monoid 7
1.1 The free group . 8
1.2 Inverse and free inverse monoid 8
1.3 From free monoids to free inverse monoids 10

2 The inverse monoid of labeled birooted trees 11
2.1 Labeled birooted trees . 11
2.2 Properties of the inverse monoid of birooted F,A-trees 14
2.3 Disjoint product and strong decomposition 15
2.4 Ranked trees vs birooted trees 17
2.5 Unranked trees and forest vs birooted trees 21

3 Languages of labeled birooted trees 24
3.1 MSO logic on (non zero) birooted trees 24
3.2 Birooted tree automata . 28
3.3 MSO definability and birooted tree automata 31
3.4 Tree languages vs birooted tree languages 33

4 Quasi-recognizable languages of labeled birooted trees 33
4.1 Adequately ordered monoids . 34
4.2 Adequate premorphisms and quasi-recognizable languages 35
4.3 From birooted tree automata to quasi-recognizable languages . . 36
4.4 Examples: on positive Boolean birooted trees 38
4.5 From quasi-recognizability to MSO 40
4.6 Quasi-recognizable languages vs MSO definable languages 42
4.7 More on quasi-recognizable languages 43

5 Conclusion 44

Introduction

For decades, one of the main challenges faced by theoretical computer science
is to develop mathematical frameworks that can be used for the specification,
design and validation of computerized systems [63]. A formal method such as
event B [1], whose applicability to industry is clearly demonstrated regards to
its use in automated public transport, offers a especially good example of how
topics as varied as logic, proof theory, automata theory and formal languages
can be combined and shaped towards applications [63].

Since the early 80s [20, 47], many algebraic frameworks have been developed
for such a purpose. They are based on the general idea that models of complex
systems should be definable by means of combinations of the models of some
simpler subsystems. Various notions of sequential composition, alternative com-
position or parallel composition of system components have thus been defined
and studied accordingly.

2

However, some examples of system modeling show that such a distinction
does not necessarily fit the abstraction/refinement methodology that system
designers may follow [1]. For instance, the well known distributed algorithm for
leader election in a graph [9] is, at the abstract specification level, based upon
the sequential execution of two global phases: the construction of a spanning
tree followed by the pruning of that spanning tree. However, at the concrete
execution level these two phases may overlap in time. The pruning phase may
start locally as soon as the spanning tree phase is locally completed. In other
words, when composing two global computation phases one “after” the other,
a composition of this type is neither purely sequential nor purely parallel: it is
both !

Computational music, a field of application that is greatly in demand of
modular, multi-scale and hierarchical modeling tools that would allow, in a
single formalism, both the abstract modeling of the musical intention of the
composers and the concrete modeling of their music, also offers a plentiful supply
of examples of this type. The simplest notion of “starting the music at the same
time” is one of such example. At the concrete level of musical performance,
it should allow the first notes to be played at different time. At the more
abstract level of musical intention, it clearly means agreeing on some more
logical notion of start time. This is especially well illustrated by the notion of
musical anacrusis [29].

In other words, when composing models of system behaviors, one may need
a product that could be interpreted, on the abstract level, as a sequential com-
position, but that would also allow, on a more concrete level, parallel overlaps.
Thus we may seek for a structural means to combine graph structures with some
overlaps. An existing and well developed mathematical theory does happen to
be available for such a purpose: the theory of inverse semigroups [52, 40].

Experiments conducted in mathematical physics already show that some
notion of higher dimensional strings can be defined and applied to the local and
modular description of global quasi-crystal structures [36]. These studies led to
the definition of tiling semigroups with a notion of product of tiles that allows
partial overlaps [37, 38].

Experiments conducted in computational music such as [29, 2, 35], based
on earlier work [12], show that timed versions of the monoid of birooted words,
that is, the monoid of McAlister [45, 41], can effectively be used as a model of
complex system behaviors.

Further development in the field of functional programming for multimedia
applications led to the definition of a tiled extension of the notion of polymor-
phic temporal media (PTM) [23, 24]. Equipped with the related notion of tiled
product, this data type induces an algebraic structure that is also an inverse
monoid [25].

Modeling experiments conducted in the field of distributed algorithm [26]
also show that birooted trees, a central notion in inverse semigroup theory,
can be efficiently used for an incremental and modular description of some
distributed algorithms.

3

All these experiments give high incentive for developing a formal language
theory adapted to inverse semigroup language, that is, subsets of inverse semi-
groups. Such a theory will provide the robust mathematical framework that is
needed for defining some well founded specification, analysis and synthesis tools
for these newly emerging inverse semigroup based modeling techniques.

From the mathematical point of view, the existence of the free inverse
monoids [58, 48] says that it would suffice to develop the language theory of
birooted trees, that is, a certain kind of edge labeled trees with two distin-
guished vertices: their so called input and output roots. However, from the
computer science point of view, the trees most commonly encountered are trees
with labels on both edges and vertices.

In this paper, we develop the language theory of (edge and vertex) labeled
birooted trees, that is, Munn’s birooted trees extended with vertex labeling.

The fact is that languages of labeled birooted trees are more easily related
to the classical language theory of trees and, beyond, the known results on
the logical definability of tree languages [62]. Moreover, labeled birooted trees
induce inverse monoids that are simple quotients of free inverse monoids. It
follows that, despite this rather ad hoc extension by means of vertex labelings,
the mathematical robustness of inverse semigroup theory is preserved.

Outline

We briefly review in Section 1 the notion of inverse semigroups and the notion
of birooted trees that arise in free inverse monoids [58, 48]. This section can
be seen as a very short introduction to inverse semigroup theory. A thorough
description of such a theory can be found in [40].

Birooted labeled trees, called birooted F,A-trees, are presented in Section 2.
Equipped with an extension of Scheiblich-Munn’s product of (unlabeled) bi-
rooted trees [58, 48], the resulting algebraic structures are inverse monoids that
are quite similar to discrete instances of Kellendonk’s tiling semigroups [36, 37].

Links with classical definitions such as ranked trees (see Section 2.4) or
unranked trees and forests (see Section 2.5) are provided. They illustrate the
versatile modeling power of birooted F,A-trees.

Languages of (non zero) birooted trees are studied in Section 3. Preliminary
results on languages definable in Monadic Second Order (MSO) logic first led to
a simple refinement of the classical notion of tree automata that capture MSO
on birooted F,A-trees (Theorem 3.1.3).

A notion of birooted tree automata, that simply extends word automata
semantics to birooted trees, is then defined and studied. Examples of birooted
tree automata and languages are described in Section 3.2. They illustrate how
direction handling in birooted trees is a little more complex than in trees.

By construction, languages recognized by these finite automata are upward
closed in the natural order. It follows that they fail to capture all languages
definable by means of Monadic Second Order (MSO) formulae. However, this
loss of expressive power is shown to be limited to the property of upward closure.

4

We prove (Theorem 3.3.1) that every upward closed language of birooted
trees which is MSO definable is recognized by a finite state birooted tree au-
tomata.

As a case in point, when F is seen as a functional signature, by embedding
the classical F -terms (see [62]) into birooted F,A-trees, we show (Theorem 3.4.1)
that the birooted tree image of every regular language L of F -terms is of the
form UL ∩ DL for some MSO definable and upward closed (resp. downward
closed) language UL (resp. language DL).

The algebraic counterpart of birooted tree automata is presented in Sec-
tion 4. The notions of adequately ordered monoids and adequate premorphisms
are defined. The induced notion of quasi-recognizable languages of birooted
F,A-trees is shown to be effective (Theorem 4.2.3).

As for expressive power, it is shown that every birooted tree automaton
simply induces an adequate premorphism that recognizes the same language
(Theorem 4.3.1) and that every quasi-recognizable language is MSO definable
(Theorem 4.5.1). Languages of positive Boolean birooted are studied as exam-
ples in Section 4.4.

The picture is made complete by proving that quasi-recognizable languages
of birooted trees correspond exactly to finite Boolean combinations of upward
closed MSO definable languages (Theorem 4.6.1) : a class of language strictly
included into MSO definable languages (Theorem 4.7.1)

Together with Theorem 3.4.1, this result demonstrates that our proposal
can also be seen as yet another algebraic characterization of regular languages
of trees completing that previously obtained by means of preclones [15] or, to
some extent, by means of forest algebras [7].

Potential extensions of these results, especially in relation to a recent exten-
sion of the notion of recognizability by means of partial algebra [8], are discussed
as a conclusion.

Related works

Semigroup theory has amply demonstrated its considerable efficiency over the
years for the study and fine grain analysis of languages of finite words. These
results triggered the development of entire algebraic theories of languages of
various structures elaborated on the basis of richer algebraic frameworks such
as, among others, ω-semigroups for languages of infinite words [64, 50, 51],
preclones or forest algebra for languages of trees [15, 7, 6], or ω-hyperclones
for languages of infinite trees [3]. With an aim to describing the more subtle
properties of languages, several extensions of the notion of recognizability by
monoids and morphisms were also taken into consideration, e.g. recognizability
by monoids and relational morphisms [53] or recognizability by ordered monoids
and monotonic morphisms [54].

As (monotonic) morphisms are particular cases of premorphisms, the notion
of quasi-recognizability developed here, that is, recognizability by means of (ad-
equate) premorphisms into (adequately ordered) ordered monoids, can be seen

5

as a generalization of recognizability by (ordered) monoids and (monotonic)
morphisms [54].

Inverse semigroup theory itself is already known to have very close connec-
tions with classical tree language theory (see e.g. [43]). The development of a
birooted tree language theory has been initiated as such by Silva [60]. However,
it is known that the homomorphic image of an inverse monoid is an inverse
monoid. Then, the automata stemming from morphisms into finite monoids are
thus reversible in a certain sense [44, 60]. It follows that, when applied to inverse
monoids, classical recognizability has a relatively weak expressive power1. The
notion of quasi-recognizability, that almost captures the class MSO definable
languages, thus appears has as a remedy to such a collapse of expressive power.

The first definition of quasi-recognizability appears in the study of languages
of birooted words [28, 32] or, equivalently, subsets of the (inverse) monoid of
McAlister [41, 31]. The notion of birooted F,A-tree automata defined in this
paper is an extension of the notion previously defined [32] for languages of
birooted words.

Although closely related, we can observe that an extension of this type is by
no means straightforward. Going from the linear structure of overlapping tiles
to the tree shaped structure of birooted F,A-trees already induces a tangibly
increased level of complexity. Moreover, in overlapping tiles, all edges go in
the same direction while, in birooted F,A-trees, edges can go back and forth
(almost) arbitrarily. Proving Theorem 3.3.1 is thus much more complex than
proving an analogous result for overlapping tiles.

The automata theoretic tools that are developed in this paper are based on
the notion of non deterministic tree automata. The notion of tree walking au-
tomata (see [5]) offers an alternative automata theoretical approach for defining
languages of birooted trees.

As already observed by Péchuchet [49] for two-way automata, partial runs
of walking automata implicitly defines birooted structures: input roots being
defined as start nodes and output roots being defined as stop nodes. The algebra
of runs induced by two-way automata or walking automata is studied in [13]
and [33].

Extended with pebbles, tree walking automata induce a strict hierarchy of
classes of definable languages: from recognizable to quasi-recognizable languages
via rational languages [33]. The non deterministic birooted tree automata pre-
sented here can be seen as tree walking automata with infinitely many pebbles
that guarantee every vertex is labeled by a single state.

Comparing our proposal with other known algebraic characterizations of
languages of (mono-rooted) F -trees [15, 7] is not easy. Of course, our proposal
induces a larger class of definable languages since we are dealing with birooted
F,A-trees and not just F -trees. Of course Theorem 3.4.1 implies that all (en-
codings of) regular languages of trees are quasi-recognizable.

1This collapse of expressive power arises even in the absence of inverses themselves as
illustrated by the recognizable languages of positive birooted words studied in [31].

6

A more relevant comparison would be to compare the classification of lan-
guages that can be achieved by restricting even further the allowed recognizers:
be they preclones [15], forest algebras [6] or adequately ordered monoids as
proposed here. This is a study yet to be done.

More precisely, we illustrate the notion of birooted F,A-trees by providing
encodings of ranked tree and unranked tree algebras into birooted F,A-trees
(see Section 2.4). These encodings suggest that the language theory of labeled
birooted trees that is developed in this paper encompasses the language theory
defined by pre-clones [15] or forest algebras [6]. However, such a fact remains
to be precisely stated and proved.

A source of difficulty for such a comparison also comes from the fact that ad-
equate premorphisms are not morphisms : only disjoint products are preserved.
The notion of disjoint product is thus a partial product.

Rephrasing the language theory of birooted F,A-trees that is developed here
within the mathematical framework of partial algebra [8] has recently led to
the characterization of syntactic recognizers for languages of birooted trees [4]
that allows the characterization of both MSO definable and quasi-recognizable
languages. This extension goes far beyond the purpose of the present paper.
We refer the interested reader to [4] for a presentation of such a follow-up on
the material presented here.

Last, it must be mentioned that the notion of quasi-recognizability that
is presented here provides a rather unexpected application to the notion of
semigroup with local units, the study of which was initiated by Fountain [16,
17, 21, 19]. The first definition of quasi-recognizable languages was even stated
for languages of positive birooted words [28], that is, within the framework of
such monoids: quasi-inverse in some sense [27].

The notion of adequately ordered monoids that is used in this paper very
close connections, as detailed in [27], with the notion of semiadequate semi-
groups studied in [39] and the notion of Ehresmann semigroups studied in [39,
19].

The fact is that restricting our attention to languages of positive birooted
trees, that is, subsets of the free ample monoid [18], allows us to develop further
the available algebraic tools for the study of quasi-recognizable languages as
shown in [14].

Nota : this article is a revised and extended version of [30].

1 Preliminaries: the free group and the free in-
verse monoid

Before defining the notion of labeled birooted trees in the next section, we
review in this section the notion of the free group and the free inverse monoid
generated by a finite alphabet. This can be seen as a short introduction to
inverse semigroup theory. A thorough introduction to the theory of inverse
semigroups can be found in [40].

7

1.1 The free group

Let A be a finite alphabet and let Ā be a disjoint copy of A with, for every
letter a ∈ A, its copy ā ∈ Ā. Let (A + Ā)∗ be the free monoid generated by
A+ Ā with neutral element denoted by 1. In the sequel, as for any semigroup,
the product u · v of two elements of (A+ Ā) can simply be written uv.

Let u 7→ u−1 (sometimes also written u 7→ ū) be the syntactic inverse
mapping from (A+ Ā)∗ to itself inductively defined by

1−1 = 1 , (ua)−1 = ā u−1 , and (uā)−1 = a u−1 ,

for every u ∈ (A + Ā)∗ and every a ∈ A. This mapping is involutive,
that is, (u−1)−1 = u for every u ∈ (A + Ā)∗, and it is an anti-morphism,
that is, (uv)−1 = v−1 u−1 for every word u and v ∈ (A+ Ā)∗.

The free group FG(A) generated by A is defined as the quotient of (A+ Ā)∗

by the least semigroup congruence ≃G such that, for every letter a ∈ A,

aā ≃G 1 and āa ≃G 1

A word u ∈ (A+ Ā)∗ is said to be reduced when it contains no factors of the
form aā nor āa for a ∈ A. Clearly, every class [u] ∈ FG(A) contains a unique
reduced element red(u), the reduced form of u.

The free group FG(A) is thus represented by the set of reduced words
equipped with the product the product u · v of every two reduced words u
and v ∈ FG(A) defined by u · v = red(uv).

We check that for every u ∈ FG(A), we have u·1 = u, 1·u = u and u·u−1 = 1
hence FG(A) is a group. The syntactic inverse u−1 of u ∈ FG(A) is the group
inverse of u. Moreover, for every group G, for every mapping ϕ : A → G,
there is a unique group morphism ψ : FG(A) → G such that ψ|A, that is, the
restriction of ψ to the set A, equals ϕ. It follows that FG(A) is the free group
generated by A.

Elements of FG(A), represented by reduced words, are ordered by the (syn-
tactic) prefix order relation ≤p. This relation is defined, for every (reduced word)
u and v ∈ FG(A) by u ≤p v when there exists (a reduced word) w ∈ FG(A)
such that red(uw) = uw = v in the free monoid2. The associated predecessor
relation ≺p is then defined, for every v and w ∈ FG(A), by v ≺p w when v ≤p w
and w = vx for some x ∈ A+ Ā.

1.2 Inverse and free inverse monoid

A monoid M is an inverse monoid when, for every x ∈ M there exists a unique
x−1 ∈ M such that

xx−1x = x and x−1xx−1 = x−1

Such an element x−1 is the semigroup inverse of the element x.

2in such a case, it is common to say that the product u·w in F G(A) is reduced as presented.

8

Clearly, every group is an inverse monoid. But the converse is false as
shown, for instance, by the free inverse monoid FIM(A) generated by A which
definition is reviewed below.

There are two possible presentations of the free inverse monoid FIM(A).
The first one is due to Scheiblich [58]. It can be seen as a fairly compact way
to represent the second one, more graphical, independently due to Munn [48].
Here, in both cases, elements of the free monoid are called birooted trees.

Following Scheiblich’s presentation, a birooted tree on the alphabet A is a
pair

B = (P, u)

where P ⊆ FG(A) is a finite prefix closed subset of the free group generated
by A, henceforth with 1 ∈ P called the input root, and u ∈ P is a distinguished
vertex called the output root.

Following Munn’s presentation, every such a pair can be depicted as a di-
rected (tree shaped) birooted graph with edges labeled on the alphabet A

MB = (V, {Ea}a∈A, in, out)

defined by:

⊲ the set of vertices V = P with the distinguished input root vertex in = 1
and the distinguished output root vertex out = u,

⊲ for every a ∈ A, the set of edges Ea defined by all pairs (v, w) ∈ V × V
such that v · a = w.

Such a definition is depicted in Figure 1, with the name of the vertices marked

(1)

(a)

(bā)

(ac̄)

(b)

(ab)

•

•

a

•

c

•b

•

a

•

b

Figure 1: The birooted tree M(P,u) with domain P = {1, a, b, ab, ac̄, bā} and
output root bā

between parentheses, and the input and output roots marked by dangling input
and output arrows.

We observe that on Munn’s representations, the underlying tree-shaped
graphs are both forward and backward deterministic in the edge alphabet A.
This means that every vertex is uniquely determined by the unique (reduced)
word on the alphabet A + Ā defined by the shortest path from the input root
to that vertex.

9

This shows that vertex names, as depicted in the above figure, are redundant
with the underlying graph structure and can thus be omitted. Moreover, this
also shows that Munn’s and Scheiblich’s representations are, as expected, in a
bijective correspondance.

The product of two birooted trees B1 = (P1, u1) and B2 = (P2, u2) is de-
fined by

B1 ·B2 = (P1 ∪ u1 · P2, u1 · u2)

The resulting algebra, denoted by FIM(A), is an inverse monoid. The unit is
given by 1 = ({1}, 1) and, for every birooted tree B = (P, u) the inverse B−1 of
B given by

B−1 = (u−1 · P, u−1)

Scheiblich-Munn theorem [58, 48] states that FIM(A) is the free inverse
monoid generated by A. In other words, for every inverse monoid M , for
every mapping ϕ : A → M there is a unique morphism of inverse monoid
ψ : FIM(A) → M such that ψ|A equals ϕ.

1.3 From free monoids to free inverse monoids

Inverse semigroup theory provides another characterization of free inverse monoids,
due to Wagner [52, 40], that is worth being recalled. It is obtained as follows.
Let ≃W be the least semigroup congruence on the monoid (A+ Ā)∗) such that

uu−1u ≃W u and uu−1vv−1 ≃W vv−1uu−1

for every u ∈ (A + Ā)∗ and let θ : (A + Ā)∗ → (A + Ā)∗/ ≃W be the induced
canonical surjective morphism.

Then, Wagner theorem states that the free inverse monoid FIM(A) gener-
ated by A is (isomorphic to) the quotient of the free monoid (A + Ā)∗ by the
congruence ≃W .

This result first makes explicit an alternative definition of inverse semigroup.
The first identity states the existence of semigroup inverses. Since idempo-
tent elements are self inverse, the second identity states the commutation of
idempotent elements. It is well known (see [52, 40]), that the commutation of
idempotents implies the unicity of the semigroup inverses.

Interpreting every letter a ∈ A (resp. ā ∈ Ā) as the forward traversal (resp.
backward traversal) of an a-labeled edge, this results also shows that every word
u ∈ (A+ Ā)∗ defines a complete traversal (or walk) from the input root to the
output root of the birooted tree θ(u) it induces. This observation motivates the
extension of tree walking automata semantics to birooted trees as done in [32].

Last, as studied for instance in [42], this result also shows that one can define
certain classes of A-generated inverse semigroups by the set of words identities
over the (image of the) free monoid (A+ Ā)∗ these inverse semigroups satisfies.
Then, every such a class clearly admits a free algebra simply defined as the
quotient of the free inverse monoid generated by A under the least congruence
generated by these identities.

10

The inverse monoid of (partially) labeled birooted tree that is defined in the
next section is such a kind of free algebra. This means in particular that the
language theory developed here may well be adapted to other quotients of this
type.

2 The inverse monoid of labeled birooted trees

We define in this section the notion of (vertex labeled) birooted F,A-trees and
the related birooted F,A-tree product. This defines the inverse monoid of la-
beled birooted trees B(F,A).

Beyond the study of the basic properties of this monoid, the modeling power
of labeled birooted trees is also illustrated at the end of the section by encoding
ranked and unranked trees or forests into birooted F,A-trees.

2.1 Labeled birooted trees

Definition 2.1.1 (Birooted F,A-trees) Let F be finite vertex alphabet. Let
A be a non empty edge alphabet. A labeled birooted tree is a pair x = 〈r, u〉
where r : FG(A) → F ∪ {⊤} is a partial mapping with a finite prefix-closed
domain dom(r) ⊆ FG(A) and u ∈ dom(r) is a distinguished vertex called the
output root. The unit vertex 1 ∈ dom(r) is called the input root.

In the case where the alphabet F contains at least two elements3, the set of
birooted trees is extended by a zero element 0. The set of all birooted trees is
denoted by B(F,A).

Two examples of birooted F,A-trees B1 and B2 are depicted in Figure 2,
with A-labeled arrows defining edges and an additional dangling input arrow
(resp. output arrow) marking the input root (resp. the output root).

(B1)
(1)

(a)

(aa)(ab̄)

g

f

a

ga⊤

b

(B2)

(1)

(a)

(ab)

(ac̄)

(b)

(ab̄)

f

⊤

a fb

g
c

fb

g
b

Figure 2: Two labeled birooted F,A-trees B1 = 〈{1 7→ g, a 7→ f, ab̄ 7→ ⊤, aa 7→
g}, a〉 and B2 = 〈{1 7→ f, b 7→ f, a 7→ ⊤, ab̄ 7→ g, ab 7→ f, ac̄ 7→ g}, ab̄〉.

Definition 2.1.2 (Birooted F,A-tree product) The product B · C of two
non-zero birooted trees B = 〈r, u〉 and C = 〈s, v〉 is the birooted tree 〈t, w〉

3otherwise, there is no need of a zero

11

where

dom(t) = dom(r) ∪ u · dom(s)

and, for every z ∈ dom(t),

t(z) =







r(z) if z ∈ dom(r) − u · dom(s) ,
s(u−1 · z) if z ∈ u · dom(s) − dom(r) ,
r(z) ∧ s(u−1 · z) if z ∈ dom(r) ∩ u · dom(s) .

The meet in the last clause of the definition is computed with respect to the
trivial order on F ∪ {⊤} where x ≤ y iff x = y or y = ⊤. The product
is set to 0 if, for some z, the above meet does not exists, i.e., the labels of
r and s at the respective places disagree. We extend the product to 0 by
defining B · 0 = 0 = 0 · B for all B ∈ B(F,A). As usual, we may omit the dot
and simply write BC instead of B · C.

As an example, the product of the birooted F,A-trees B1 and B2 from the
Figure 2 above is depicted in Figure 3. In that picture, the circle marks the

(B1 ·B2)
(1)

(a)

(ab̄)

g

f

a

g

a

⊤

b
(a)

(aa)

(aab)

(aac̄)

(ab)

(aab̄)

f

g

a fb

g

c

fb

g

b

Figure 3: The non zero product B1 · B2 of the two birooted F,A-trees B1 and
B2 given by B1 ·B2 = 〈{1 7→ g, a 7→ f, ab̄ 7→ ⊤, ab 7→ f, aa 7→ g, aab 7→ f, aab̄ 7→
g, aac̄ 7→ g}, aab̄〉.

synchronization vertex that results from the merging of the output root of B1

and the input root of B2. The edge f a
→ g from (a) to (aa) in the product

results from the fusion of the edge f a
→ g from (a) to (aa) in B1 and the edge

f
a

→ ⊤ from (1) to (a) in B2. This illustrates the fact that overlaps may occurs
in a product, the product being set to zero when these overlaps fails to match.

One can check that the product of birooted F,A-tree is associative. With
the unit 1 = 〈{1 7→ ⊤}, 1〉, the resulting structure is a monoid still denoted by
B(F,A). It is the monoid of birooted F,A-trees.

Remark Observe that, the set of labeled F,A-trees which nodes are only
labeled by ⊤ form a submonoid that is isomorphic to FIM(A), the free inverse
monoid generated by A. In particular, when F is empty, the semigroup B(∅, A)
is itself (isomorphic to) the free monoid FIM(A).

12

Definition 2.1.3 (Elementary birooted trees) A birooted tree is said to be
elementary when it is either 0 or 1, or of the from Bf = 〈{1 7→ f}, 1〉 for some
f ∈ F , or of the form Bx = 〈{1 7→ ⊤, x 7→ ⊤}, x〉 for some letter x ∈ A+ Ā.

Non zero elementary trees are depicted in Figure 4. In the sequel, for every

f(Bf)

⊤(1) ⊤ ⊤
a

(Ba)

⊤ ⊤
a

(Bā)

Figure 4: The elementary birooted F,A-trees 1 (or B⊤), Bf , Ba and Bā

f ∈ F or a ∈ A, we may write f , a or ā in place for the elementary trees Bf ,
Ba or Bā.

Clearly, since both F and A are finite, the monoid B(F,A) is finitely gener-
ated from Ba, Bā and Bf for a ∈ A and f ∈ F . This observation can be refined
a bit further.

Theorem 2.1.4 Let η : FIM(A+F) → B(F,A) be the (inverse) monoid mor-
phism generated by η(a) = Ba, η(f) = Bf for all (birooted image of) a ∈ A and
f ∈ F . Let ≃η be the kernel of the morphism η, that is, the monoid congruence
≃η over FIM(A+ F) defined for all birooted trees B1, B2 ∈ FIM(A+ F) by

B1 ≃η B2 iff η(B1) = η(B2)

Then, ≃η is the least congruence such that:

ff ≃ f (henceforth f = f̄) and fg ≃ 0

for every (birooted image of) f, g ∈ F with f 6= g.

Proof Let f ∈ F . Since Bf is idempotent then ≃η satisfies the identity
ff = f . Moreover, since Bf is idempotent, then Bf is self inverse and thus ≃η

also satisfies the identity f = f̄ . Given f, g ∈ F with f 6= g, we have Bf ◦Bg = 0
hence ≃η also satisfies the identity fg = 0 when f 6= g. This implies that, given
≃F the least inverse semigroup congruence defined over FIM(A + F) by the
identities ff = f and fg = 0 for every f, g ∈ F with f 6= g, then the quotient
morphism η/ ≃F : FIM(A+ F)/ ≃F → B(F,A) is well defined and surjective.

The fact that this morphism is also injective can be proven by induction on
the size of the strings of (F+F̄+A+Ā)∗ that generates elements of FIM(A+F).
More precisely, it can be shown that every such a string reduces via (≃F ∪ ≃W)∗

to a unique string u ∈ (A + Ā + F) that corresponds to a complete canonical
traversal from the input root to the output root of the birooted labeled tree
induced by u, that is, the birooted labeled tree η ◦ θ(u) ∈ B(F,A). ✷

13

Remark Following the terminology of inverse semigroup theory [40], when
|F | ≤ 1, the monoid B(F,A) contains no zero. It is a typical E-unitary inverse
monoid. When |F | > 1, the monoid B(F,A) contains a zero. It is a typical
0, E-unitary inverse monoid defined as a Rees quotient of a E-unitary inverse
monoid: the inverse monoid defined by the identity ff = f , which correspond
to the monoid of birooted tree labeled by subsets of F .

2.2 Properties of the inverse monoid of birooted F, A-trees

The monoid of birooted F,A-trees is an inverse monoid. We check that 0−1 = 0
and for every non zero birooted F,A-tree 〈t, u〉, we have

〈t, u〉−1 = 〈tu, u
−1〉

where tu : FG(A) → (F ∪ {⊤}) is defined by dom(tu) = u−1 · dom(t) with
tu(u−1v) = t(uu−1v) for every v ∈ dom(t).

Graphically, as depicted in Figure 5, taking the inverse of a birooted F,A-
tree just amount to invert the input and output roots.

(B) (1)

(a)

(aa)(ab̄)

g

f

a

ga⊤

b (B−1) (ā)

(1)

(a)(b̄)

g

f

a

ga⊤

b

Figure 5: A birooted F,A-tree B and its inverse B−1.

Definition 2.2.1 (Left and right projections) The right projection BR

(resp. the left projection BL) of a birooted tree B is defined to be BR = BB−1

(resp. BL = B−1B).
When B is a non zero birooted tree of the form B = 〈t, u〉, the left (resp.

right) projection is equivalently defined to be BR = 〈t, 1〉 (resp. BL = 〈tu, 1〉).
The right projection BR of B is also called the reset of B.

These projections are depicted in Figure 6 below. Both projections are

(BR) (1)

(a)

(aa)(ab̄)

g

f

a

ga⊤

b (BL) (ā)

(1)

(a)(b̄)

g

f

a

ga⊤

b

Figure 6: The projections BR = B · B−1 and BL = B−1 · B of the birooted
F,A-tree B.

14

idempotent and we check that we have BR · B = B = B · BL. Moreover, since
idempotents in an inverse semigroup are self inverse and commute, we have
BL = B = BR, for every idempotent birooted F,A-trees B. In other words,
the left and the right projection mappings are indeed projections from the set
of birooted trees onto the set of idempotents.

Since B(F,A) is a inverse monoid, there is the natural order [40] defined as
follows.

Definition 2.2.2 (Natural order) Elements of B(F,A) are ordered by the
natural order defined, for everyB and C ∈ B(F,A) byB ≤ C whenB = BB−1C
(equivalently B = CB−1B).

One can check that 0 is the least element and, for every non zero labeled
birooted trees 〈r, u〉 and 〈s, v〉 we have 〈r, u〉 ≤ 〈s, v〉 if and only if u = v,
dom(r) ⊇ dom(s) and, for every w ∈ dom(s), t(w) ≤ s(w) in the trivial order
on F ∪ {⊤} defined by x < y if and only if x ∈ F and y = ⊤. In other words,
increasing in the natural order amounts to removing either removing some ver-
tex labels or removing some vertices out the path from the input to the output
roots.

An instance of the natural order on non zero birooted trees is depicted in
Figure 7. Observe that, on non zero idempotent birooted trees, the natural

(C) (1)

(a)

(ab)

(ac̄)

(b)

(ab̄)

f

⊤

a fb

g
c

fb

g
b (C ′) (1)

(a)

(ab)

(b)

(ab̄)

f

⊤

a fb

⊤

b

Figure 7: Two naturally ordered birooted F,A-trees with C ≤ C ′.

order is the reverse of the prefix order on trees. In particular, the bigger is the
size of a birooted tree, the smaller is the birooted tree in the natural order.

2.3 Disjoint product and strong decomposition

In this section, we prove that there is a restricted notion of product of birooted
F,A-trees, called the disjoint product, which suffice, together with the left and
the right projections, to finitely generate the monoid of birooted F,A-trees. This
notion will be extensively used in the remainder of the text.

Definition 2.3.1 (Disjoint product) The product B1 · B2 of two non zero
birooted trees B1 = 〈t1, u1〉 and B2 = 〈t2, u2〉 is a disjoint product when both
conditions B1 ·B2 6= 0 and dom(t1) ∩ u1 · dom(t2) = {u1} are satisfied.

15

Remark This restricted product is called a disjoint product because the con-
dition dom(t1) ∩ u1 · dom(t2) = {u1} implies that the set of edges in B1 · B2 is
the disjoint union of the set of edges of B1 and the set of edges of B2.

Lemma 2.3.2 (Strong decomposition) For every non zero B ∈ B(F,A),
the birooted F,A-tree B can be decomposed into a finite combination of elemen-
tary birooted trees by disjoint products and right projections (resets).

Proof Let B = 〈t, u〉 be a non zero birooted F,A-tree. We aim at proving
that it can be decomposed as stated above. This is done by induction on the
size of dom(t).

For the ground case, when dom(t) = {1}, we have u = 1 and B = Bt(1)

hence the statement is true.
For the inductive step, we use elementary trees of the form Bx with x ∈ A+Ā

to encode connecting edges between (some notion of) idempotent sub-birooted
trees. These sub-birooted trees are induced by the prefix order ≤p (and the
associated successor relation ≺p) on the elements of birooted tree domains, also
distinguishing the vertices that are on the path between the roots from the other
vertices.

More precisely, edges are simply encoded as follows. For every vertex v and
w ∈ dom(t) such that v ≺p w, that is, when (v, w) defines an edge in B, let Bp

v,w

be the two vertices birooted F,A-tree defined by Bp
v,w = Bx where x = v−1w in

FG(A). The definition of the sub-birooted trees is slightly more technical. Let

U = {v ∈ dom(t) : 1 ≤p v ≤p u}

be the set of vertices that appears on the path from the input root 1 to the output
root u. For every v ∈ dom(t), let Dp(v) be the greatest prefix closed subset of
the set {w ∈ dom(tv) : v ≤p vw, vw ∈ U ⇒ w = 1} and let Bp

v = 〈tv|Dp(v), 1〉
be the idempotent birooted tree obtained from B by restricting the subtree tv
rooted at the vertex v to the domain Dp(v). In the case F = ∅, the notion of
sub-birooted trees is depicted in the Figure 8 below.

Then, the proof proceeds as follows. In the case B is idempotent, that is,
when U = {1}, let N be the set of (directed) edge labels that can be read from
the roots, that is, N = dom(t) ∩ (A+ Ā). We observe that we have

B =
∏

{
(
Bp

1,x ·Bp
x

)R
: x ∈ N}

with only disjoint products and resets. Moreover, for every x ∈ N , we have
|dom(B)| > |dom(Bp

x)|. It follows that the induction hypothesis applies.
In the case B is not idempotent, this means that U 6= {1}. Let then

u0 = 1 ≺p u1 ≺p u2 ≺p · · · ≺p un−1 ≺p un = u

be the increasing sequence (under the prefix order) of the elements of U . We
observe that

B = Bp
u0
Bp

u0,u1
Bp

u1
· · ·Bp

un−1
Bp

un−1,un
Bp

un

16

(B)

(1)

(b)b

(bā)

a (bāb)b(b̄) b

(c) c

(bābb)b

(bābc)c

(bāc)
c

(bāb̄)

b

(b̄b̄)b

(Bp
1)

(1)

(b̄) b

(c) c

(b̄b̄)b
(Bp

bā)

(1)

(c) c (b̄)b

(Bp
b,bā)

(1)

(ā)a

Figure 8: A birooted tree B and some elements of its (inductive) decomposition
process.

with only disjoint products. Moreover, for every v ∈ U , the birooted tree Bp
v is

idempotent and we have |dom(B)| > |dom(Bp
v)|. It follows that the induction

hypothesis also applies and this concludes the proof. ✷

The decomposition of a birooted F,A-tree B as a combination of elemen-
tary birooted trees by disjoint products and right projections is called a strong
decomposition of the birooted F,A-tree B. In the case F = ∅, that is, when
B(F,A) is the free inverse monoid FIM(A), a similar decomposition was already
considered in [11].

2.4 Ranked trees vs birooted trees

We show here how free ranked trees (or terms) algebras can be embedded into
the monoid of labeled birooted trees. This allows us, later in the text, to relate
languages of trees with languages of labeled birooted trees.

Assume till the end of that section that the set F is a finite functional
signature, that is, a finite non empty set of function symbols equipped with
some arity mapping ρ : F → P(A) that maps every function symbol f to the
set of its arguments’ names ρ(f) ⊆ A.

Definition 2.4.1 (Ranked trees) A ranked tree, also called F -tree or F -
term, is a partial function t : A∗ → F with prefix closed finite domain dom(t)
such that for every u ∈ dom(t), every a ∈ A, if ua ∈ dom(t) then a ∈ ρ(t(u)).
A finite F -term t is said to be complete when, moreover, for every u ∈ dom(t),
for every a ∈ A, if a ∈ ρ(t(u)) then ua ∈ dom(t). The set of F -term is denoted
by T (F).

17

Definition 2.4.2 (Birooted encoding of ranked trees) We define the en-
coding mapping ϕ : T (F) → B(F,A) that maps every F -tree t ∈ T (F) to the
labeled birooted tree ϕ(t) = 〈t, 1〉. It is called the birooted image of the F -tree t.

Clearly, the mapping ϕ from F -term to labeled birooted tree that is injective.
Now we aim at studying to which extent the above encoding preserves the

structure of F -term. For that purpose, we first show that the syntactic applica-
tion of a function symbol f ∈ F to a set of argument {ta}a∈ρ(f) can be encoded
into birooted tree operation. This construction is then generalized to the notion
of linear F -tree context application and, even more, to the notion of multilinear
F -tree contexts.

Definition 2.4.3 (f-application) Let f ∈ F be a functional symbol and, for
every a ∈ ρ(f), let ta be an F -tree. We define the application f((ta)a∈ρ(f)) of
the symbol f to the arguments {tA}a∈ρ(a) to be the F -tree defined by:

⊲ dom(f((ta)a∈ρ(f))) =
⋃

a∈ρ(f) a · dom(ta),

⊲ f((ta)a∈ρ(f))(1) = f and f((ta)a∈ρ(f))(au) = ta(u) for every a ∈ ρ(f),
every u ∈ dom(ta),

The syntactic application can be uniformly defined over birooted (encodings of)
F -trees as stated in the next lemma and depicted in Figure 9.

f

(a1) (a) (ak)

a1
a

ak

ta1
tak

ta

f

ta

⊤

⊤

a

ϕ(f({ta})a∈ρ(f)) ϕ(ta) a f

Figure 9: Birooted tree uniform encoding of f({ta})a∈ρ(f) from the birooted
trees defined by f , {a}a∈ρ(f) and ϕ(ta) for every a ∈ ρ(f).

Lemma 2.4.4 For every function symbol f ∈ F , for every indexed set of F -tree
(ta)a∈ρ(f) we have

ϕ(f((ta)a∈ρ(f))) = f ·
∏

a∈ρ(f)

(a · ϕ(ta))R

and all the products are disjoint products.

As expected, the product
∏

a∈ρ(f)(a ·ϕ(ta))R above is commutative since idem-
potents commute.

This construction is generalized to the notion of F -tree context application
as detailled below.

18

Definition 2.4.5 (Linear F -context and F -context application)
A linear F -context is a tree c : A∗ → F ∪ {⊤} such that there is a vertex
u ∈ dom(t) with ua /∈ dom(t) for every a ∈ A, i.e. u is a leaf node, and
c(u) = ⊤ such that, for every v ∈ dom(c), if c(v) = ⊤ then v = u. This ver-
tex u, necessarily unique, is called the hole of the context c. The set of linear
context is denoted by C1(F).

For every F -context c with hole u and F -tree t, we write c(t) for the F -tree
obtained by attaching into the context c the tree t at the hole u of c.

Definition 2.4.6 (Birooted encoding of ranked linear context) Every
F -context is encoded into a birooted tree via the mapping ψ : C1(F) → B(F,A)
defined, for every linear context c ∈ C1(F), by ψ(c) = 〈c, u〉 where u is the hole
of the context c.

Lemma 2.4.7 For every linear context c ∈ C1(F), every tree t ∈ T (F), we
have:

ϕ(c(t)) = (ψ(c) · ϕ(t))R

and the product is disjoint.

Proof Immediate from the definition. ✷

In other words, the context application operation is uniformly definable on the
encodings of linear contexts and trees into birooted trees.

This encoding can go even further. In [15], for arbitrary k ∈ N, there is the
notion of k-ary multilinear contexts. We show below how bilinear context can
also be encoded by means of (tree-shaped) quadruples of birooted F,A-trees.
Clearly, this construction generalizes to arbitrary k ≥ 2.

Definition 2.4.8 (Bilinear F -context and F -context application) A bi-
linear F -context is a tree c : A∗ → F ∪ {⊤1,⊤2} such that there is are two
distinct (unique) leaf vertices u1, u2 ∈ dom(t) such that c(u1) = ⊤1, c(u2) = ⊤2

and, for every v ∈ dom(c), if c(v) 6∈ F then v = u1 or v = u2. The vertices
u1 and u2 are called the holes of the context c. The set of bilinear context is
denoted by C2(F).

For every bilinear context c ∈ C2(F), every trees t1, t2 ∈ T (F) we write
c(t1, t2) for the trees obtained by attaching into the context c, the tree t1 at the
first hole u1 of c and the tree t2 at the second hole u2 of c.

Lemma 2.4.9 For every bilinear context c ∈ C2(F) with holes u1 ∈ dom(c) and
u2 ∈ dom(c), there are unique linear contexts c0, c1, c2 ∈ C1(F) and a unique
tree t ∈ T (F) such that, for every tree t1, t2 ∈ T (F), we have

ϕ(c(t1, t2) =




ψ(c0) · ϕ(t) · (ψ(c1) · ϕ(t1))R · (ψ(c2) · ϕ(t2))R

︸ ︷︷ ︸

commuting idempotents






R

and all the product are disjoint.

19

Proof Since u1 and u2 are distinct leaves in c, there necessarily exist (unique)
a1, a2 ∈ A and u0 ∈ A∗ such that a1 6= a2, u1 = u0 · a1 · u′

1 for some u′
1 ∈ A∗

and u2 = u0 · a2 · u′
2 for some u′

2 ∈ A∗. In particular, the node u0 is necessarily
the greatest common prefix u1 ∧p u2 of the two holes u1 and u2. This situation
is depicted in Figure 10.

(1)

(u0)

(u0a1) (u0a2)

(u1) (u2)

a1 a2

c0

c1 c2t

Figure 10: The disjoint decomposition of the bilinear context c into linear con-
texts and trees.

Then, the expected contexts and trees are necessarily defined as follows.
The context c0 is defined by

dom(c0) = dom(c) − u0A
∗

with c0(u0) = ⊤ and c0(v) = c(v) for every v ∈ dom(c0) − u0. For i = 1 or
i = 2, the context ci is defined by

dom(ci) = (ai(u0ai)−1dom(c)) ∩A∗

with ci(aiu
′
i) = ⊤ and ci(w) = c(u0w) for every w ∈ dom(c0) − aiu

′
i.

Last, the tree t, containing the remaining nodes, is defined by taking

dom(t) = (u−1
0 (dom(c) − u0dom(c1) − u0dom(c2))) ∩A∗

with t(w) = c(u0w) for every w ∈ dom(t).
The expected property and the unicity of such a decomposition are easily

checked. ✷

In other words, even bilinear context applications can uniformly be encoded via
quadruples of birooted trees.

The fact that the operations on F -tree and F -tree context defined above
can uniformly be defined on their birooted tree images by means of the disjoint
product and the right projection, says that every notion of birooted tree lan-
guage recognizability that preserves the disjoint product and the left and right
projections is applicable: the notion of quasi-recognizability defined below in
Section 4, and the more general notion of partial algebra recognizability defined
in [4].

20

2.5 Unranked trees and forest vs birooted trees

We show here in this section how (ordered) unranked trees and forests free
algebras can also be embedded into the monoid of labeled birooted trees.

Definition 2.5.1 (Unranked F -trees and F -forests [6]) Assume that F is
a non empty alphabet. The sets U(F) and F(F) of unranked trees and unranked
forest are mutually defined by the rules:

f(s) ∈ U(F) , (t1, t2, · · · , tn) ∈ F(F)

for every f ∈ F , every (possibly empty) finite sequence s ∈ F(F) and every
unranked trees t1, t2, ·, tn ∈ U(F).

Following [7, 6], the empty forest is denoted by 0 and the forest concatenation
is denoted by +. The resulting monoid of forest is denoted by HF and is called
the horizontal monoid.

Examples of unranked F -forests and F -trees are depicted in Figure 11, with
F = {a, b, c, d}.

b

c

d

a

c c

a

b

c

b

c

d

a

c c

t1 = b(c(0)) t2 = d(a(c(0) + c(0)) t3 = a(t1 + t1 + t2)

Figure 11: Three F -trees t1, t2 and t3.

Now, we aim at encoding unranked F -trees and F -forests into (ranked) bi-
rooted F,A-trees. For such a purpose, let A = {v, h}, with h standing for
vertical and v standing for horizontal. Up to the additional nodes labeled by
⊥, our encodings essentially follow the classical encoding of ω-trees in binary
trees [57] by means of the first child (almost vertical) relation and the next
sibling (horizontal) relation.

Definition 2.5.2 (Unranked F -trees and F -forests encodings)
The birooted tree encoding of every unranked F -tree and F -forest is defined
via the mappings ϕ1 : U(F) → B(F,A) and ϕ2 : F(F) → B(F,A) given by the
following (mutual) inductive rules:

ϕ1(f(s)) = (f · v · ϕ2(s))R

21

and
ϕ2(0) = 1 , ϕ2(t) = h · ϕ1(t) and ϕ2(t+ s) = ϕ2(t) · ϕ2(s)

for every f ∈ F , for every F -tree t ∈ U(F), also seen as a singleton F -forest
when in ψ2(t), and every s ∈ F(F), with all products that are disjoint products.

In particular, the mapping ϕ2 : F(F) → B(F,A) is not only a monoid
morphism but it also maps sums in F(F) to disjoint products in B(F,A).

Continuing the example depicted in Figure 11, the birooted encodings ϕ1(t1)
and ϕ1(t2) of the unranked F -trees t1 and t2 is depicted in Figure 12.

b

⊤

v

c
h

⊤

v

d

⊤

v

a
h

⊤

v

c
h

⊤

v

c
h

⊤

v

ϕ1(t1) ϕ1(t2)

Figure 12: The birooted F,A-tree encodings of t1 and t2.

Continuing the same example, the birooted encodings of the F -forest lifting of
t1 and t2 and the birooted encoding of the F -tree t3 are depicted in Figure 13.

⊤ b
h

ϕ1(t1)

⊤ d
h

ϕ1(t2)

a

⊤

v

b
h

ϕ1(t1)

b
h

ϕ1(t1)

d
h

ϕ1(t2)

ϕ2(t1) ϕ2(t2) ϕ1(t3) = a · v · ϕ2(t1) · ϕ2(t2)

Figure 13: Encodings of the F -forests t1 and t2 and the F -tree t3.

With the aim to generalizing the f -lifting of forests into trees, the notions
of unranked trees and forest are extended to the notion of linear unranked tree
and forest context as follows.

22

Definition 2.5.3 (Unranked F -tree and F -forest linear contexts [6])
Let Ω be a new forest symbol. The set CU (F) of unranked F -tree contexts
and the set CF (F) of unranked F -forest contexts are mutually defined by

Ω ∈ CF (F) , s1 + c+ s2 ∈ CF (F) and f(s) ∈ CU (F)

for every F -forest context c ∈ CF (F) and every F -forest s1, s2 ∈ F(F).
Then, the set CF (F) of F -forest contexts is turned into a monoid by defining

the composition product ◦ by

c1 ◦ c2 = c1[c2/Ω]

where c1[c2/Ω] is the F -forest context obtained from the context c1 by replacing
the hole Ω in c1 by the context c2.

In [7, 6], the monoid defined by CF (F) with unit Ω and product ◦ is denoted by
VF and is called the vertical monoid.

Remark In the definition above, F -forest contexts are still seen as non empty
sequences of F -trees and F -tree contexts. It follows that the operation + still
denotes the concatenation of sequences with the empty sequence 0 as unit. In
particular, the equations Ω + 0 = Ω and 0 + Ω = Ω hold.

Definition 2.5.4 (Unranked F -tree and F -forest contexts encodings) The
birooted encoding of every F -tree context or F -forest context is defined via the
mappings ψ1 : CU (F) → B(F,A) and ψ2 : CF (F) → B(F,A) given by the
following (mutual) inductive rules:

ψ1(f(c)) = f · v · ψ2(c)

and

ψ2(Ω) = h ·⊤ , ψ2(t) = h ·ψ1(t) and ψ2(s1 + c+s2) = ψ2(s1) ·ψ2(t) ·ϕ2(s2)

for every f ∈ F , F -tree context t ∈ CU (F), also seen as a singleton F -forest
context when in ψ2(t), every F -forest context c ∈ CF (F) and every F -forests
s1, s2 ∈ F(F), with all products that are disjoint products.

Then we have:

Lemma 2.5.5 For every context c ∈ CF (F) there exist a unique context
c1 ∈ CF (F) and a unique forest s ∈ F(f) such that c = c1 ◦ (Ω + s) and

ψ2(c ◦ c′) = ψ2(c1) · (ϕ2(s))R · ψ2(c′)

for every context c′ ∈ CF (F), with only disjoint products.

23

Proof In the case c = s1 + Ω + s2 for some forests s1, s2 ∈ F(F) then we
necessarily have c1 = s1 + Ω and s = s2. Otherwise, there exist f ∈ F and a
unique context c′

1 such that c = c′
1 ◦ f(s1 + Ω + s2) for some F -forests s1 and

s2. Then, by disjointness hypothesis on their encodings, we necessarily have
c1 = c′

1 · f(s1 + Ω) and s = s2. The equation above is easily verified. ✷

Remark We thus have proved that the free forest algebras defined in [7, 6]
can be uniformly encoded as birooted trees and pairs of birooted trees with only
disjoint products and resets.

We conjecture that, together with the notion of partial algebra recognizabil-
ity developed in [4], this encoding can be extended further to a full and faithful
encoding of the algebraic language theory induced by forest algebras and forest
morphisms.

3 Languages of labeled birooted trees

We are interested in languages of labeled birooted trees, that is, sets of non zero
birooted F,A-trees. We first examine definability in Monadic Second Order
(MSO) logic and a related notion of top down tree automata. Then, from
the notion of finite state word automata, we derive a notion of birooted tree
automata that is shown to capture languages that are definable in MSO and
upward closed in the natural order.

3.1 MSO logic on (non zero) birooted trees

Every non zero birooted F,A-tree B = 〈t, u〉 can be seen as a FO-structure
MB with constants in and out, disjoint unary relation symbols {Sf }f∈F and
binary relation symbols {Ea}a∈A defined over the domain dom(MB) = dom(t)
by in = 1 and out = u for the constants, the unary relation Sf = t−1(f) for
every f ∈ F , and the binary relation Ea = {(v, w) ∈ dom(t) × dom(t) : va = w}
for every a ∈ A.

Definition 3.1.1 (MSO-definable languages) A language L ⊆ B(F,A) of
non zero labeled birooted trees is definable in monadic second order logic (MSO),
or simply MSO-definable, when L = {B ∈ B(F,A) : MB |= ϕ} for some closed
MSO formula ϕ on the above FO-signature.

The classical notion of tree automata [62], that characterizes MSO definable
languages of trees, is applicable to birooted F,A-trees. Indeed, as depicted in
Figure 14, every birooted tree on the vertex alphabet F and the edge alphabet
A can be seen as mono rooted trees on the vertex alphabet F × {0, 1} and the
edge alphabet A+ Ā, with a unique vertex labeled in F × {1}: the output root.

However, such an encoding of the output root is not very convenient for it
changes the underlying signature hence the tree automata that can be defined on
birooted trees. Instead, we propose a notion of normalized top down automata

24

f
g

a fb

g
c

fb

g
b

f
a

(f, 0)
(g, 0)

a (f, 0)b

(g, 0)
c̄

(f, 0)b

(g, 1)
b̄

(f, 0)
a

Figure 14: From birooted F,A-trees to mono-rooted F -trees with (A+Ā)-labeled
edges.

that will runs on the birooted tree signature, handling the output root just by
checking its state labeling.

Definition 3.1.2 (Normalized top down birooted tree automaton)
A normalized top down tree automaton on the alphabets A + Ā and F is a
triple

A = 〈Q, I,O, δ, T 〉

where Q is a finite set of states, I,O, T ⊆ Q are distinguished sets of states
respectively called initial, output and terminal (or accepting) states, and

δ : Q× (F ∪ {⊤}) → P(P((A+ Ā) ×Q))

is a transition function.
An accepting run of the tree automaton A on a birooted tree B = 〈t, u〉 is a

mapping
ρ : dom(t) → Q

such that:

⊲ Roots condition: ρ(1) ∈ I, ρ(u) ∈ O,

⊲ Transition condition: for every v ∈ dom(t),

{(x, ρ(vx)) ∈ (A+ Ā) ×Q : v ≺p vx, vx ∈ dom(t)} ∈ δ(ρ(v), t(v))

⊲ Accepting condition: if u ∈ dom(t) is maximal for the prefix order, that
is, if u is a leaf, then ρ(u) ∈ T .

The language L(A) ⊆ B(F,A) recognized by the automaton A is then defined
as the set of non zero labeled birooted tree B ∈ B(F,A) such that there is an
accepting run of A on B.

Theorem 3.1.3 A language L ⊆ B(F,A) of non zero birooted tree is definable
in MSO if and only if there exists a finite state normalized tree automaton A
such that L = L(A).

25

Proof Since L is definable in MSO, the theorem of Doner, Thatcher and
Wright applies (see Theorem 3.8 in [62]). Thus, with minor variations on clas-
sical definition, there exists a finite state top down tree automaton of the form
A′ = 〈Q′, q′

0, δ
′, T ′〉 with finite set of states Q′, initial state q′

0 ∈ Q′, transition
function

δ′ : Q′ × ((F ∪ {⊤}) × {0, 1}) → P(P((A+ Ā) ×Q))

and terminal states T ′ ⊆ Q′, that recognizes (the tree encodings of) L among
the set of deterministic trees with edge labeled on the alphabet A+Ā and vertex
labeled on the alphabet F × {0, 1}.

More precisely, following [62], for every birooted tree B = 〈t, u〉, an accepting
run of A′ on B is a mapping ρ : dom(t) → Q such that ρ(1) = q′

0,

{(x, ρ(vx)) ∈ (A+ Ā) ×Q : v ≺p vx} ∈ δ(q, (t(v), bv))

for every v ∈ dom(t) with bv = 1 if and only if u = v, and, additionally, ρ(v) ∈ T
when v is a leaf for the prefix order.

By definition of the accepting runs, we may assume, without loss of gener-
ality, that for every q′ ∈ Q′, every f ∈ F ∪ {⊤} and every m′ ∈ δ′(q′, (f, x))
with x = 0, 1 then m′ is the relation of a partial function from A+ Ā to Q′, i.e.
|m′(a)| ≤ 1 for every y ∈ A+ Ā,

We define the expected automaton A = 〈Q, I,O, δ, T 〉 by Q = Q′ × {0, 1, 2},
I = {q0} × {0, 1}, O = Q× {1}, T = T ′ × {0, 1, 2} and, for every state q of the
form (q′, x) ∈ Q, every vertex label f ∈ F ∪ {⊤}, by defining δ(q, f) to be the
set of all m ⊆ (A+ Ā) ×Q, functional, such that, given

m′ = {(a, q′
a) ∈ (A+ Ā) ×Q′ : ∃xa ∈ {0, 1, 2}, (a, (q′

a, xa)) ∈ m}

we have m′ ∈ δ′(q′, (f, x mod 2)) and, moreover,

⊲ if x = 0 then there exists one and only one a ∈ A+ Ā such that we have
(a, (q′

a, xa)) ∈ m(a) for some qa ∈ Q with xa = 0 or xa = 1,

⊲ if x = 1 or x = 2 then for all a ∈ A+Ā, if (a, (q′
a, xa)) ∈ m(a) then xa = 2.

Then, we check that L(A) = L(A′) by observing that, for every birooted F,A-
tree B = 〈t, u〉, for every mapping

ρ : dom(t) → Q′ × {0, 1, 2}

given the mapping
ρ′ : dom(t) → Q′

defined as the first projection π1(ρ) of the mapping ρ, then the following prop-
erties are equivalent:

⊲ ρ is an accepting run of the automaton A on B,

⊲ ρ′ is an accepting run of the automaton A′ on B with the additional
property that, for every v ∈ dom(t), we have:

26

– ρ(v) ∈ Q′ × {0} if and only if 1 ≤p v <p u, i.e. v is distinct from the
output root and located on the path from the input to output root,

– ρ(v) ∈ Q′ × {1} if and only if v = u, i.e. v is the output root,

– ρ(v) ∈ Q′ × {2} if and only if v 6≤p u, i.e. v is strictly above the
output root in the prefix order.

✷

This automata theoretic characterization of MSO definable language also leads
to an automata theoretic characterization of a smaller class of languages: the
MSO definable languages of labeled birooted trees that are moreover upward
closed with respect to the natural order.

Definition 3.1.4 (Upward closed normalized automaton) A normalized
top down tree automaton A = 〈Q, I,O, δ, T 〉 is an upward closed top down tree
automaton when T = Q and for every (q, f) ∈ Q×(F ∪{⊤}), the set of relations
δ(q, f) ⊆ P((A+ Ā) ×Q) is downward closed with respect to the inclusion order
with, moreover, δ(q, f) ⊆ δ(q,⊤).

Then we have:

Theorem 3.1.5 Let L be a language L ⊆ B(F,A) of non zero labeled birooted
trees. Then L is MSO definable and upward closed with respect to the natural
order if and only if there exists a finite state upward closed normalized tree
automaton A such that L = L(A).

Proof (⇒) Assume that L is MSO definable and upward closed. In the case
L is the empty set, then any upward closed automaton with empty output set
states O recognizes L.

Otherwise, by applying Theorem 3.1.3, let A = 〈Q, I,O, δ, T 〉 be a normal-
ized automaton that recognizes L. Let then, A′ = 〈Q′, I ′, O′, δ′, T ′〉 be the
automaton defined by Q′ = Q, I ′ = I, O′ = O, T ′ = Q and δ′(q, f) defined,
for every q ∈ Q, for every f ∈ F ∪ ⊤, as the downward closure (under relation
inclusion) of the set of relations δ(q,⊤) ∪

⋃

g∈F δ(q, g) when f = ⊤, or the set
of relations δ(q, f) when f 6= ⊤.

We check that L(A′) is the upward closure (under the natural order) of
the language L(A). But since L = L(A) is upward closed, we conclude that
L = L(A).

(⇐) Given an upward closed normalized automaton A it is routine to check
that L(A) is upward closed. ✷

In the sequel, such an upward closed tree-automaton may simply be denoted
by A = 〈Q, I,O, δ〉 omitting the (trivial) set of terminal states.

Remark Clearly, the class of languages of non zero labeled birooted trees
definable in MSO is closed under all Boolean connective.

In the proof above, we see that it is also closed under upward closure hence-
forth, by complement, also under (non zero) downward closure.

27

Generalizing the case of languages of birooted words presented in [31, 13],
the class of MSO definable languages is clearly closed under inverses and left
and right projections. It can easily be shown that it is closed under (non zero)
product, and, although the argument presented in [31, 13] no longer holds, it
can also be shown that it is closed under iterated product (Kleene star).

This says that the class of MSO definable languages of labeled birooted
trees is robust. However, in this paper, we focus our attention on the class of
quasi-recognizable languages that is defined later in the text. Proving the above
closure properties of the class of MSO-definable languages of birooted F,A-trees
goes out of the scope of this paper.

3.2 Birooted tree automata

In this section, we define the notion of birooted F,A-tree automata that is shown
to capture the class of languages of birooted F,A-trees that are upward closed
with respect to the natural order and definable in Monadic Second Order Logic
(MSO).

Definition 3.2.1 (Birooted tree automaton) A birooted F,A-tree (finite)
automaton with edge alphabet A is a triple of the form

A = 〈Q,∆,W 〉

with a (finite) set of states Q, a (non deterministic) transition table

∆ : (F +A) → P(Q×Q)

and a set of accepting pairs W ⊆ Q×Q.

Observe that in the above definition, the transition function is only defined on
F and A. There is no reference to the trivial vertex labeling ⊤ nor to the reverse
edge labeling alphabet Ā.

Definition 3.2.2 (Runs) A run of a birooted tree automaton A = 〈Q,∆,W 〉
on a non zero birooted F,A-tree B = 〈t, u〉 is a mapping

ρ : dom(t) → Q

such that for every v ∈ dom(t):

⊲ Vertex state coherence: if ρ(v) 6= ⊤ then (ρ(v), ρ(v)) ∈ ∆(t(v)),

⊲ Edge states coherence: for every a ∈ A,

– if va ∈ dom(t) then (ρ(v), ρ(va)) ∈ ∆(a),

– if vā ∈ dom(t) then (ρ(vā), ρ(v)) ∈ ∆(a).

The run ρ is an accepting run when (ρ(1), ρ(u)) ∈ W .
The language L(å) ⊆ B(F,A) recognized by the automaton A is then defined

to be the set of non zero birooted F,A-tree B such that there is an accepting
run of A on B.

28

Remark The definition of automaton runs relies on the intuition that vertex
labels can be seen instead as cyclic F -labeled edges on the vertices. In other
words, a birooted tree automaton is essentially a word automaton on the alpha-
bet F + A that is running over all paths of a birooted F,A-tree. However, a
birooted tree automaton is not a walking automaton since, in all these “runs”
on paths, every vertex is always labeled by the same state. A study of walking
automata on birooted trees can be found in [33].

The notion of birooted F,A-tree automata is illustrated till the end of the
section by showing that the language of idempotent birooted trees is recognized
by such a finite state automaton.

Though fairly simple, this language is not recognizable by means of a mor-
phism into a finite monoid. With an empty vertex alphabet F , that is within
the free inverse monoid FIM(A), its inverse image in the free monoid (A+ Ā)∗

is a typical context free (and regular) language: the Dyck language (see [60] for
a detailed study of the recognizable subsets of the free inverse monoid).

More precisely, let A = 〈Q,∆,W 〉 be the birooted F,A-tree automaton
defined by

⊲ states : Q = {∗} + (A+ Ā),

⊲ vertex transition: ∆(f) = {(q, q) ∈ Q×Q : q ∈ Q} for every f ∈ F ,

⊲ edge transition: ∆(a) = {(q, ā) : q ∈ Q} ∪ {(a, q) : q ∈ Q} for every a ∈ A,

⊲ acceptance condition: W = {(∗, ∗)}.

A run of automaton A on a birooted tree is depicted in Figure 15. Vertices
are labeled by automaton states. In that figure, we observe that every state

(B)

(∗)

(b̄)b

(a)
a (b̄)b(b) b

(c̄) c

(b̄)b

(c̄)c

(c̄)
c

(b)
b

(b)b

Figure 15: A run of the automaton A encoding of the prefix order via the
direction to the input root.

uniquely tells which edge to take to go towards the input root.
This example illustrates one of the main difficulty one is faced with birooted

tree automata. A priori, no global orientation is encoded in the birooted tree
edges: edge orientation are unrelated with the prefix order. A posteriori, a global
orientation from every vertex towards the input root can still be computed as
illustrated by the above example.

In other words, provided the input root is marked by the state ∗, a run of the
automaton A on a birooted tree B makes the prefix order or vertices explicit.

29

The following lemma makes this observation formal. It is worth being proved in
detail for it is used in one of the main arguments in the proof of Theorem 3.3.1
below.

Lemma 3.2.3 (Orientation) For every birooted F,A-tree B = 〈t, u〉 there is
a unique run of the automaton A on the birooted F,A-tree B such that ρ(1) = ∗.
Moreover, for every v ∈ dom(t), every x ∈ A + Ā such that v ≺p vx, we have
ρ(vx) = x̄, i.e. ρ(vx) gives the direction towards the input root.

Proof Let B = 〈t, u〉 be a non zero birooted F,A-tree. Clearly, the mapping
ρ : dom(t) → {∗} + A + Ā inductively defined on the length of reduced words
of dom(t) by

ρ(1) = ∗ and ρ(vx) = x̄

for every x ∈ A + Ā, every v ∈ dom(t) with v ≺p vx, is a valid run of the
automaton A on B.

Conversely, let ρ : dom(t) → {∗} + A + Ā be a valid run of A on B such
that ρ(1) = ∗. We prove, by induction on the length of elements of dom(t), the
announced property that also guarantees the unicity of such a run. ✷

Then we can conclude:

Corollary 3.2.4 The recognized language L(A) is the set of non zero idempo-
tent birooted F,A-trees.

Proof Let B = 〈t, u〉 be a non zero birooted F,A-tree. By applying the first
part of Lemma 3.2.3 there is a run ρ : dom(t) → Q with ρ(1) = ∗. If we assume
that B is idempotent then we have u = 1 hence (ρ(1), ρ(u)) = (∗, ∗) ∈ W , that
is, the run ρ is an accepting run.

Conversely, let ρ : dom(t) → Q be an accepting run of the automaton A on
the birooted F,A-tree B. Since ρ is accepting, this means that ρ(1) = ∗. Hence,
by applying the second part of Lemma 3.2.3, this means in particular that the
input root 1 is the unique vertex in dom(B) such labeled by state ∗ in the run ρ.
Now, since ρ is an accepting run, we know that (ρ(1), ρ(u)) ∈ W hence ρ(u) = ∗
and thus u = 1, that is, the birooted F,A-tree B is idempotent. ✷

Remark Defining the automaton A′ just like the automaton A but taking in-
stead W ′ = {(∗, q) : q 6= ∗} for the accepting condition, the recognized language
L(A′) is the set of non idempotent birooted F,A-trees.

One must not deduce from these two examples that the class of languages
recognizable by birooted tree automata is closed under complement. We will
show below that these languages are necessarily upward closed in the natural
order. Their complements are downward closed.

30

3.3 MSO definability and birooted tree automata

We aim now at relating the expressive power of finite birooted tree automata
with language definability in Monadic Second Order (MSO). We observe that
languages recognized by birooted F,A-tree automata are upward closed in the
natural order. Since every such a language is definable in MSO, this upward
closure property turns out to be the characteristic property of this class of
languages.

Theorem 3.3.1 Let L ⊆ B(F,A) be a language of birooted F,A-trees. The
language is recognized by a finite birooted F,A-tree automaton if and only if L
is MSO definable and upward closed in the natural order.

Proof Let L ⊆ B(F,A) be a language of birooted F,A-trees. We first prove
the easiest direction, from birooted tree automata to MSO. Then, we prove the
slightly more difficult direction from MSO to birooted tree automata.

From birooted tree automata to MSO Assume that L is recognizable by
a finite state birooted tree automaton A. Without loss of generality, since A is
finite, we assume that the set Q of states of A is such that Q ⊆ P({1, 2, · · · , n})
for some n ≥ log2 |Q|.

Then, checking that a birooted tree 〈t, u〉 belongs to L(A) just amounts to
checking that there exists an accepting run. Following a classical technique [62],
this can be done by means of an existential formula of monadic second order
logic of the form

∃X1X2 · · ·Xnϕ(X1, · · · , Xn)

with n set variables X1, X2, . . . , Xn and a universal first order formula ϕ.
The sets X1, · · · , Xn encode the mapping ρ : dom(t) → Q defined, for every
v ∈ dom(u) by

ρ(v) = {i ∈ [1, n] : v ∈ Xi}

Then, the formula ϕ, universally quantified, just checks that this run ρ is an
accepting run. This amounts to check in the formula ϕ that the vertex and the
state coherence conditions are satisfied, hence the mapping ρ is a run, and that
the acceptance condition are satisfied, hence it is an accepting run. Clearly, this
can be done by means of two universal FO-quantifiers. We incidentally check
that, indeed, the defined language is upward closed with respect to the natural
order.

From MSO to birooted tree automata Conversely, assume that L is up-
ward closed for the natural order and that L is definable in MSO. By applying
Theorem 3.1.5, there exists a finite state upward closed normalized tree automa-
ton A = 〈Q, I,O, T, δ〉 that recognizes L.

The intended birooted tree automaton A′ we are seeking for is then simply
defined as the automaton

A′ = 〈Q′,∆′, I ′ × F ′〉

31

with states, transitions and accepting pairs defined as follows.

First, the set of states Q′ is defined as the set of all tuples of the form

(x, q, f,m) ∈ (A+ Ā+ {∗}) ×Q× (F ∪ {⊤}) × P((A+ Ā) ×Q)

such that:

⊲ m ∈ δ(q, f),

⊲ if x 6= ∗ then m(x) = ∅.

Second, the transition function ∆′ is defined by:

⊲ for every g ∈ F , the set of transitions ∆′(g) ⊆ Q′ × Q′ is defined as the
set of all pairs of states of the form ((x, q, f,m), (x′, q′, f ′,m′)) ∈ Q′ ×Q′

with x = x′, q = q′, f = f ′ = g, and m = m′,

⊲ for every a ∈ A, the set of transitions ∆′(a) ⊆ Q′ × Q′ is defined as the
set of all pairs of states of the form ((x, q, g,m), (x′, q′, g′,m′)) ∈ Q′ ×Q′

such that any of the following condition is satisfied:

– forward transition: x′ = ā and q′ ∈ m(a),

– backward transition: x = a and q ∈ m′(ā).

Last, the set of accepting pairs is defined by the set I ′ × F ′ with:

⊲ the set of input root states I ′ ⊆ Q defined as the set of all states (x, q, f,m)
with x = ∗ and q ∈ I,

⊲ the set of output root states F ′ ⊆ Q defined as the set of all states
(x, q, f,m) with q ∈ F .

Intentionally, the birooted tree automaton A′ mimics the runs of the tree au-
tomaton A by encoding, into every state of the form (x, q, f,m) ∈ Q′ on a given
vertex the following information. The direction x ∈ {∗} + A + Ā marks the
direction to the input root just as stated and proved in Lemma 3.2.3. The state
q ∈ Q is the state of the vertex in the (simulated) run of the automaton A. The
label f is (smaller than or equal to) the vertex label (when ⊤). And m is the
transition that is chosen in the (simulated) run of the automaton A.

Making this intention explicit allows to prove that L(A) = L(A′). For that
purpose, let B = 〈t, u〉 be a birooted F,A-tree.

(⇒) Assume that B ∈ L(A), that is, let ρ : dom(t) → Q be an accepting run of
the tree automaton A on the birooted F,A-tree B.

Let ρ′ : dom(t) → Q′ be the mapping defined, for every v ∈ dom(t) to take
ρ′(v) = (x, ρ(v), t(v),m) such that x = ∗ when v = 1 and x 6= 1 when v = wx
for some w ∈ dom(t) with w ≺p v, and m = {(y, ρ(vy)) ∈ (A + Ā) × Q : vy ∈
dom(t), v ≺p vy}.

It is routine to check that the mapping ρ′ is an accepting run of the automa-
ton A′ on B hence B ∈ L(A′).

32

(⇐) Assume that B ∈ L(A′), that is, let ρ′ : dom(t) → Q′ be an accepting run
of the birooted tree automaton A′ on the birooted F,A-tree B.

Let ρ : dom(t) → Q be the mapping defined, for every v ∈ dom(t), by
ρ(v) = q when ρ′(v) is of the form (x, q, f,m) (henceforth with m ∈ δ(q, f) and
f ≤ t(v) in the trivial order on F ∪ {⊤}). Since the automaton A is assumed to
be an upward closed automaton (see Definition 3.1.4), it is also routine to check
that ρ is an accepting run of the automaton A on B. ✷

From now on, a language of birooted F,A-trees that is definable by a finite
birooted F,A-tree automaton is called a regular language of birooted F,A-trees.

3.4 Tree languages vs birooted tree languages

We aim now at relating languages of labeled birooted trees and languages of
F -trees when F is a functional signature with the arity mapping ρ : F → P(A).

Following Section 2.4, for every set X of F -trees, let LX be the language
LX = {〈t, 1〉 ∈ B(F,A) : t ∈ X} of the birooted tree images of the trees of X.
It is called the birooted tree image of the language X.

Remember that an F -tree t : A∗ → F is complete when, for every v ∈
dom(t), we have va ∈ dom(t) for all a ∈ ρ(t(v)).

Theorem 3.4.1 For every regular language X of complete finite F -trees, there
exists a regular language UX of birooted F,A-trees and the complement DX of
a regular language of birooted F,A-trees such that LX = UX ∩DX .

Proof This essentially follows from Theorem 3.3.1. More precisely, let X be
a regular language of finite F -tree.

We observe first that for every complete F -tree t1 and t2, their birooted
images 〈t1, 1〉 and 〈t2, 1〉 are incomparable in the natural order. It follows that
the elements of LX form an anti-chain in the natural order. It follows that,
given UX = {y ∈ B(F,A) : ∃x ∈ LX , x ≤ y} the upward closure of LX and
DX = {y ∈ B(F,A) : ∃x ∈ LX , y ≤ x} the downward closure of LX , we have
LX = UX ∩ LX . We conclude the proof by observing that if X is regular then
it is definable in MSO. This implies that the languages LX , DX and UX are
also definable in MSO. Since UX is upward closed and DX downward closed
hence his complement is upward closed, we conclude by applying Theorem 3.3.1
that ensures that both UX and the complement of DX are regular languages of
birooted trees. ✷

4 Quasi-recognizable languages of labeled birooted
trees

The notion of quasi-recognizable languages, that is, languages recognized by
adequate premorphisms into finite adequately ordered monoids, is defined in
this section. Then, its expressive power is studied and related to both birooted
automata and Monadic Second Order logic.

33

4.1 Adequately ordered monoids

A partially ordered monoid is a monoid M ordered by a relation ≤ that is
assumed to be stable under product, that is, if x ≤ y then xz ≤ yz and zx ≤ zy
for every x, y and z ∈ M .

Definition 4.1.1 (Adequately ordered monoids) Let M be a partially or-
dered monoid. Let U(M) = {y ∈ M : y ≤ 1} be the set of subunits of the
monoid M .

The partially ordered monoid M is an adequately ordered monoid when all
subunits of M are idempotents, and for every x ∈ M , both

xL = min{y ∈ U(M) : xy = x} and xR = min{y ∈ U(M) : yx = x}

exist.
The subunits xL ∈ U(M) and xR ∈ U(M) are respectively called the left

projection and the right projection of x.

Examples Every monoid M extended with the trivial order x ≤ y if, and only
if, x = y is an adequately ordered monoid with xL = xR = 1 for every x ∈ M .
These adequately ordered monoids are called trivial.

Every inverse monoid M ordered by the natural order is an adequately or-
dered monoid with xL = x−1x and xR = xx−1 for every x ∈ M . As a particular
case, the monoid B(F,A) ordered by the natural order is also an adequately
ordered monoid.

For every set Q, the monoid P(Q × Q) of all relations on Q ordered by
inclusion is also an adequately ordered monoid with, for every X ⊆ Q × Q,
the projections defined by XL = {(q, q) ∈ Q × Q : ∃p ∈ Q, (p, q) ∈ X} and
XR = {(p, p) ∈ Q×Q : ∃q ∈ Q, (p, q) ∈ X}.

The basic properties of the adequately ordered monoids are described in the
following Lemmas. We refere the reader to [27] for more details.

Lemma 4.1.2 The set U(M) = {z ∈ M : z ≤ 1} of the subunits of an ade-
quately ordered monoid M is a commutative submonoid and a meet semi-lattice
with product as meet.

Proof In fact, let x ≤ 1 and y ≤ 1 be two subunits. By stability, we have
xy ≤ 1 hence U(M) is a submonoid of M .

By stability again, we have xy ≤ x and xy ≤ y. Moreover, for every z ≤ 1,
if z ≤ x and z ≤ y then, by stability and idempotency of z, we have z ≤ xy.
Altogether, this proves that x ∧ y exists and x ∧ y = xy. ✷

Corollary 4.1.3 Every finite ordered monoid M with idempotent subunits is
also an adequately ordered monoid.

34

Proof Take xL =
∏

{y ∈ U(M) : xy = x} and xR =
∏

{y ∈ U(M) : yx = x}
for every x ∈ M . ✷

Lemma 4.1.4 In an adequately ordered monoid M , the left and right projec-
tions are projections from M to U(M), that is, for every subunit x ∈ U(M),
xL = x = xR.

Proof Let x ∈ U(M). By definition of xL, we have xxL = x hence we also
have x ≤ xL. Moreover, since xx = x, we also have xL ≤ x. It follows that
x = xL. A symmetrical argument proves that x = xR. ✷

Remark One can check that, in an adequately ordered monoid M , both the
left and right projections approximate the left and right Green classes [40].

More precisely, let x and y ∈ M . We say that x and y are L-equivalent when
we have x = z1y and y = z2x for some z1 and z2 ∈ M . Then, for every x and
y ∈ M , if xLy (resp. xRy) then we have xL = yL (resp. xR = yR).

In fact, from an equality of the form x = z1y we deduce that xyL = x and
thus xL ≤ yL. From an equality of the form y = z2x, we deduce that yxL = y
and thus yL ≤ xL. The case of the R-equivalence is proved similarly.

In general, the reverse implications do not necessarily hold as shown by any
trivial adequately ordered monoids with non trivial L and R-classes. However,
the reverse implications hold for inverse monoids [40].

4.2 Adequate premorphisms and quasi-recognizable lan-
guages

The notion of premorphism already appears in [46] in inverse semigroup theory
(see also [22]). It can be generalized to partially ordered monoid as follows.

Let M and N be two partially ordered monoid. A premorphism is a mapping
θ : M → N such that θ(1) = 1 and, for every x and y ∈ M , we have θ(xy) ≤
θ(x)θ(y), i.e. the mapping θ is “submultiplicative”, and if x ≤M y then θ(x) ≤
θ(y), i.e. the mapping θ is monotonic.

Definition 4.2.1 (Adequate premorphisms) Let M and N be two adequately
ordered monoids. Assume that a notion of disjoint product is defined on M .
Then, a premorphism ϕ : M → N is an adequate premorphism when for every
x and y ∈ M we have θ(xL) = (θ(x))L, θ(yR) = (θ(y))R and, if xy is a disjoint
product then θ(xy) = θ(x)θ(y).

Examples When M and N are trivially ordered monoids, then the premor-
phisms from M to N are exactly the monoid morphisms. Since they preserve
every product they are also adequate premorphisms.

WhenM andN are naturally ordered inverse semigroups then premorphisms
from M to N have already been studied in depth (see [40], Chap. 3). They

35

are already known to preserve left and right projections. However, no generic
notion of disjoint product is yet defined that would allow for studying, in the
abstract, adequate premorphisms between inverse semigroups.

Many other examples of adequate premorphisms derive from birooted tree
automata as shown in Theorem 4.3.1 below.

It as been shown [31], that premorphisms into finite ordered monoids may
recognize languages that are even not computable. The notion of quasi-recognizable
languages, built on the notions of adequately ordered monoids and adequate
premorphisms, is a remedy to this fact.

Definition 4.2.2 (Quasi-recognizable languages) A language L ⊆ B(F,A)
of non zero birooted trees is a quasi-recognizable language when there exists a
finite adequately ordered monoid M and an adequate premorphism

θ : B(F,A) → M

such that L = θ−1(θ(L)).

Remark Every recognizable subset of A∗ is also quasi-recognizable. As ob-
served above, every morphism from ϕ : A∗ → M with finite M is also an
adequate premorphism when A∗ and M are trivially ordered. This means that
the notion of quasi-recognizability defined here is a generalization of the classical
notion of recognizability by monoids.

Theorem 4.2.3 Let θ : FIM(A) → M be an adequate premorphism with finite
M . For every B ∈ B(F,A) the image θ(B) of the birooted F,A-tree B by
the adequate premorphism θ is uniquely determined by the structure of B, the
structure of M and the image by θ of elementary birooted F,A-trees. Moreover,
it is computable in time linear in the size of B.

Proof This essentially follows from the adequacy assumption and the strong
decomposition property (Lemma 2.3.2). ✷

4.3 From birooted tree automata to quasi-recognizable
languages

In this section, we show that every finite state birooted automaton induces an
adequate premorphism that recognizes the same language.

Theorem 4.3.1 Let L ⊆ B(F,A) be a language of birooted F,A-trees. If L is
recognizable by a finite state birooted tree automaton then it is recognizable by
an adequate premorphism into a finite adequately ordered monoid.

36

Proof Let L ⊆ B(F,A) and let A = 〈Q,∆,W 〉 be a finite birooted tree
automaton such that L = L(A).

We define the mapping ϕA : B(F,A) → P(Q×Q) by saying that ϕA(B) is,
for every labeled birooted tree B = 〈t, u〉 ∈ B(F,A), the set of all pairs of state
(p, q) ∈ Q × Q such that there exists a run ρ : dom(t) → Q such that p = ρ(1)
and q = ρ(u). The mapping ϕA is extended to 0 by taking ϕA(0) = ∅. We
observe that ϕ(1) = IQ = {(q, q) ∈ Q×Q : q ∈ Q}.

The fact P(Q × Q) is an adequately ordered monoid have already been
detailled in the examples above. By definition we have

L = ϕ−1(X) with X = {X ⊆ Q×Q : X ∩W 6= 0}

It thus remains to prove that ϕA is an adequate premorphism.

The fact ϕA is monotonic is immediate. For every birooted F,A-tree 〈s, u〉
and 〈t, v〉, if 〈s, u〉 ≤ 〈t, v〉 this means that u = v thus, for every run ρ :
dom(s) → Q of A on 〈s, u〉, the mapping ρ restricted to dom(t) is clearly a run
of A on 〈s|dom(t), u〉 = 〈t, u〉.

Left and right projections preservation immediately follows from their char-
acterizations in both B(F,A) and P(Q×Q) and the definition of ϕA.

We show that ϕA is submultiplicative. Let 〈s, u〉 and 〈t, v〉 be two birooted
trees. In the case 〈s, u〉 · 〈t, v〉 = 0 we are done, since ϕA(0) = ∅. Otherwise, let
ρ be a run of A on the product 〈s, u〉 · 〈t, v〉.

By definition of the product, the mapping ρ1 : dom(s) → Q defined by
ρ1(w) = ρ(w) for every w ∈ dom(s) is clearly a run of A on 〈s, u〉.

Similarly, the run ρ2 : dom(t) → Q defined by ρ2(w) = ρ(uw) for every
w ∈ dom(s) is also a run of A on 〈t, v〉. Now, since ρ1(u) = ρ2(1) and that
construction applies for every run ρ, this shows that

ϕA(〈s, u〉 · 〈t, v〉) ⊆ ϕA(〈s, u〉) · ϕA(〈t, v〉)

which proves submultiplicativity.

Last, it remains to show that ϕA preserves disjoint products. Assume that
the product 〈s, u〉 · 〈t, v〉 is disjoint. This means that s(u) ∧ t(1) is well-defined
in the trivial order on F ∪ {⊤} with dom(s) ∩ u · dom(t) = {u}.

Let (p, q) ∈ ϕA(〈s, u〉) · ϕA(〈t, v〉). By definition of the product of relations,
this means that there exists q′ ∈ Q, such that we have (p, q′) ∈ ϕA(〈s, u〉) and
(q′, q) ∈ ϕA(〈t, v〉). But then, by definition of ϕA this means that there exist a
run ρ1 : dom(s) → Q of A on 〈s, u〉 and a run ρ2 : dom(t) → Q of A on 〈t, v〉
such that ρ1(1) = p, ρ1(u) = q′, ρ2(1) = q′ and ρ2(v) = q.

Let then ρ : dom(s) ∪ u · dom(t) → Q defined by ρ(w) = ρ1(w) for every
w ∈ dom(s), and ρ(uw) = ρ2(w) for every w ∈ dom(t). Since the product of the
two birooted F,A-trees is a disjoint product, we have dom(s) ∩u ·dom(t) = {u}
with ρ1(u) = q′ = ρ2(1) hence ρ is well defined. As it is clearly a run of A on
the (non zero) product 〈s, u〉 · 〈t, v〉 with ρ(1) = p and ρ(uv) = q, this means we
have (p, q) ∈ ϕA(〈s, u〉 · 〈t, v〉).

37

As this holds for arbitrary pair of states (p, q) ∈ ϕA(〈s, u〉) · ϕA(〈t, v〉) this
proves that ϕA(〈s, u〉) · ϕA(〈t, v〉) ⊆ ϕA(〈s, u〉 · 〈t, v〉) and thus concludes the
proof. ✷

4.4 Examples: on positive Boolean birooted trees

The language of the positive Boolean birooted trees and the sublanguages of
these trees that evaluate to 1, are especially interesting since, following [56],
they allow for giving some finer details on the expressive power of our proposal.

Boolean birooted trees Positive Boolean birooted trees are defined from
the sets of vertex labels F = {∧,∨, 0, 1} and the set of edge labels A = {l, r}.

An example of a (partial) positive Boolean (birooted) tree is depicted in
Figure 16 below. Forward edges labeled by l or r are meant to define Boolean

∨

∧ ∧

1 ∨ 1 0

l r

l r l r

∧

0
rl

Figure 16: An (idempotent) partial positive Boolean birooted tree B

connective arguments and vertices labeled by 0 or 1 are meant to define Boolean
constant.

The set of (partial) positive birooted trees is recognized by the automaton
A1 = 〈Q1,∆1,W1〉 defined by:

⊲ states : Q1 = {f, c}, with state f standing for “function” and the state c
standing for “constant”,

⊲ vertex transitions : ∆1(∧) = ∆(∨) = {(f, f)}, ∆1(0) = ∆1(1) = {(c, c)},

⊲ edge transitions: ∆1(l) = ∆1(r) = {(q1, q2) ∈ Q1 ×Q1 : q1 = c},

⊲ accepting pairs: W1 = Q1 ×Q1.

One can check that the language recognized by A1 is the set of birooted F,A-
trees for which no edge exists a constant node, that is, a vertex labeled by 0
or 1.

38

True Boolean birooted trees Now, we want to restrict the above language
of birooted F,A-trees to the birooted trees that can be evaluated to true on the
input root. This can be done with the automaton A2 = 〈Q2,∆2,W2〉 defined
by

⊲ states : Q2 = B × B × B with the Boolean algebra B = {0, 1},

⊲ vertex transitions :

– constant: ∆2(x) = {(q, q) ∈ Q2 ×Q2 : q = (x, x, x)} for x = 0, 1,

– conjunction: ∆2(∧) = {(q, q) ∈ Q2 ×Q2 : q = (b1, b2, b3), b1 = b2 ·b3},

– disjunction: ∆2(∨) = {(q, q) ∈ Q2×Q2 : q = (b1, b2, b3), b1 = b2+b3}.

⊲ edge transitions:

– left-argument: ∆2(l) = {(q1, q2) ∈ Q2 ×Q2, π2(q1) = π1(q2)},

– right-argument: ∆2(r) = {(q1, q2) ∈ Q2 ×Q2, π3(q1) = π1(q2)},

with πi standing for the ith projection of triples,

⊲ accepting pairs : W2 = {(q1, q2) ∈ Q2 ×Q2 : π1(q1) = 1}.

Intendedly, in a run of the automaton A2 on a Boolean birooted tree, the first
component of every state is to be read as the possible Boolean value of the
corresponding vertex, the second component as the Boolean value of its left
argument, and the third component as the Boolean value of its right argument.
Such a run is depicted in Figure 17. In that picture, vertices are labeled by
pairs in F ×Q.

∨, (1, 1, 0)

∧, (1, 1, 1) ∧, (0, 1, 0)

1, (1, 1, 1) 1, (1, 1, 1) 1, (1, 1, 1) 0, (0, 0, 0)

l r

l r l r

∧, (0, 0, 1)

0, (0, 0, 0)

rl

Figure 17: The unique run of A2 on the tree B

Evaluating a partial birooted tree amounts to guessing some Boolean values
for its leaves that are not labeled by constant. Edge transitions ensure the bot-
tom up propagation (now following edge orientation) of Boolean values. Vertex
transitions ensure that such a propagation is coherent with the Boolean opera-
tors ∧ or ∨ and the constants 0 and 1 that are labeling birooted tree vertices.

This means that a birooted F,A-tree belongs to L(A2) if and only if its input
root can be evaluated to 1 with the missing constant leaves acting as unknown
Boolean values.

39

Induced adequately ordered monoid One can show that the adequately
ordered monoids induced by the automaton A2 (as given by Theorem 4.3.1) is
an aperiodic monoid. A software like SemiGroupe of Pin [55] allows for making
such a verification. It follows that the language of all Boolean birooted tree that
evaluate to true is quasi-recognized by an aperiodic monoid.

Since this language is not definable in FO, this indicates that, though we
use finite monoids as recognizers, the correspondance between definability in
FO and aperiodicity, that holds for recognizable languages of words, no longer
holds for quasi-recognizable languages of birooted F,A-trees.

A similar observation has already been made in a slightly different con-
text [56].

4.5 From quasi-recognizability to MSO

We show that every quasi-recognizable language of birooted F,A-trees is defin-
able in MSO.

Theorem 4.5.1 Let θ : FIM(A) → M be an adequate premorphism with finite
M . For every X ⊆ M , the language θ−1(X) is definable in Monadic Second
Order Logic.

Proof Let θ : FIM(A) → M as above and let X ⊆ M . Uniformly computing
the value of θ on every birooted tree by means of an MSO formula is done by
adapting Shelah’s decomposition techniques [59].

More precisely, we show that the strong decomposition provided by
Lemma 2.3.2 is definable in MSO. Then, the computation of the value of θ
on every birooted rooted B can be done from the value of θ on the elementary
birooted trees and the sub-birooted F,A-trees that occur in such a decomposi-
tion.

More precisely, we first show that the predecessor relation ≺p (and thus,
by transitive closure, the prefix relation ≤p as well) is definable in MSO. This
amounts to saying that there exists an MSO formula ϕp(x, y) such that, for every
birooted tree 〈t, u〉, for every vertex v and w ∈ dom(t), we have 〈t, u〉 |= ϕp(v, w)
if and only if v ≺p w.

Defining ϕp(x, y) amounts to saying that there exists a partition of dom(t)
in three sets of vertices X0, X1 and X2 such that the (input) root 1 belongs
to X0, all its neighbors (or immediate successors) belong to X1, and for every
vertex z ∈ Z distinct from the input root, given i ∈ {0, 1, 2} such that z ∈ Xi,
given j = i− 1 mod 3 and k = i+ 1 mod 3, the vertex z has a single neighbor
in Xj (the unique predecessor of z in the predecessor relation ≺p) and all other
neighbors of z belong to Xk (the successors of z in the predecessor relation ≺p).

As a consequence, since the reflexive and transitive closure of a definable
binary relation is also definable in MSO, there exists a formula ϕ∗

p(x, y) such
that 〈t, u〉 |= ϕ∗

p(v, w) if and only v ≤p w. This also means that for every
birooted tree B = 〈t, u〉, the set

U = {z ∈ dom(t) : 1 ≤p z ≤p u}

40

is also MSO definable in every birooted tree 〈t, u〉 and, as well, for every vertex
v ∈ dom(t), the sub-birooted tree Bp

v .
Here, by saying the birooted F,A-tree Bp

v is definable in MSO we mean that
its domain Dp(v) (defined in the proof of Lemma 2.3.2) is definable and thus its
structure: the vertex labels and the edge relations, is just obtained by restricting
those of B to the domain Dp(v).

The next step is then the following. Given a finite collection of set variables
{Ys}s∈U(M), one variable Ys per element s ∈ U(M), writing Y for the tuple of
such variables, we claim that there exists a formula ϕ(Y) such that for every
birooted F,A-tree 〈t, u〉 for every v ∈ dom(t), for every subunit s ∈ U(M), we
have 〈t, u〉 |= ∃Y (v ∈ Ys ∧ ϕ(Y)) if and only if θ(Bp

v) = s.
This amounts to saying that {Ys}s∈U(M) form a partition (with possible

empty sets) of dom(t) such that, for every vertex v ∈ dom(t), if v is a leaf with
respect to the prefix order ≤p then s = θ(Bp

v) = θ(Bt(v)) and we check that v
belongs to Ys. If v is not a leaf, then we must have v ∈ Xs with, by adequacy
assumption on θ, the value of s that is uniquely determined by

s =
∏

{(θ(Bp
v,w) · sw)R : v ≺p w}

with sw ∈ M is the unique element of M such that w ∈ Ysw
.

By the proof of Lemma 2.3.2, we know that

Bp
v =

∏

{
(
Bp

v,w ·Bp
w

)R
: w ∈ dom(r), v ≺p w}

with disjoint products only and the adequacy assumption applies. As the prod-
uct is of a bounded size, we can check that v ∈ Ys.

Then, for every birooted tree B = 〈t, u〉, given the ordered prefixes of u
described by u0 = 1 <p u1 <p u2 <p · · · <p un−1 <p un = u, we know, by
applying Lemma 2.3.2, that

B = Bp
u0

·Bp
u0,u1

·Bp
u1

· · ·Bp
un−1

·Bp
un−1,un

·Bp
un

with disjoint products only. It follows, by adequacy of θ, that the value of θ(B)
can be computed as the element s ∈ M defined by

s = θ(Bp
u0

)θ(Bp
u0,u1

)θ(Bp
u1

) · · · θ(Bp
un−1

)θ(Bp
un−1,un

)θ(Bp
un

)

All these values are computable, either as image by θ of elementary birooted
trees, or, by induction, by observing that for every prefix u′ of u we have
θ(Bp

u′) = s′ if and only if u′ ∈ Ys′ . Then, checking that v ∈ Ys by “com-
puting” in MSO the value s can be done, say, by a left to right “traversal” of
the path from 1 to u, simulating the underlying finite state word automaton
induced by M on the (images of) elementary birooted trees. ✷

41

4.6 Quasi-recognizable languages vs MSO definable lan-
guages

For the picture to be complete, it remains to characterize the class of quasi-
recognizable languages with respect to the class of languages definable in Monadic
Second Order Logic.

Theorem 4.6.1 Let L ⊆ B(F,A) be a language of birooted F,A-trees. The
following properties are equivalent:

(1) the language L is quasi-recognizable,

(2) the language L is a finite Boolean combination of upward closed MSO
definable languages,

(3) the language L is a finite Boolean combination of languages recognized by
finite state birooted tree automata.

Proof The fact that (1) implies (2) essentially follows from Theorem 4.5.1.
The fact (2) implies (3) immediately follows from Theorem 3.3.1. Last, we
prove, by a classical argument (e.g. cartesian product of monoids) that the
class of quasi-recognizable languages is closed under Boolean operations. Then,
by applying Theorem 4.3.1 this proves that (3) implies (1).
More precisely, let L ⊆ B(F,A) be a language of birooted F,A-trees.

(1) implies (2) We assume that L is recognized by some adequate premor-
phism θ : B(F,A) → M . By definition, we have L = θ−1(θ(L)) hence

θ−1(θ(L)) =
⋃

x∈θ(L)

θ−1(Dx) ∩ θ−1(Ux)

with Ux = {y ∈ M : x ≤ y} and Dx = {y ∈ M : y ≤ x} for every x ∈ M . For
every x ∈ M , we have θ−1(x) = θ−1(Ux) ∩ θ−1(Dx). The inclusion θ−1(x) ⊆
θ−1(Ux) ∩ θ−1(Dx) is immediate. Conversely, let B ∈ θ−1(Ux) ∩ θ−1(Dx). Since
B ∈ θ−1(Ux) we have x ≤ θ(B) and since B ∈ θ−1(Dx) we have θ(B) ≤ x hence
θ(B) = x and thus B ∈ θ−1(x).

We prove (2) by observing that both θ−1(Ux) and θ−1(Dx) = θ−1(M −Dx)
are upward closed (and recognized by θ) hence, by Theorem 4.5.1, they are MSO
definable.

(2) implies (3) This immediately follows from Theorem 3.3.1 that ensures
that every upward closed and MSO definable languages is recognized by a finite
state birooted tree automaton.

42

(3) implies (1) Assume that L is a finite Boolean combination of languages
recognized by birooted tree automata. We want to show that L is quasi-
recognizable.

By Theorem 4.3.1, every such a regular language is quasi-recognizable. Since
the class of quasi-recognizable languages is obviously closed under complement
it suffices to prove that it is closed under intersection.

This is done using classical algebraic tools on monoids [54]. More precisely,
given two adequate premorphisms θ1 : B(F,A) → M1 and θ2 : B(F,A) → M2,
the mapping θ : B(F,A) → M1 × M2 defined by ϕ(B) = (ϕ1(B), ϕ2(B)) is an
adequate premorphism in the product monoid M1 ×M2 ordered by the product
order. Then, for every X ⊆ M1 and Y ⊆ M2 we have ϕ−1

1 (X) ∩ ϕ−1
2 (Y) =

ϕ−1(X × Y). This concludes the proof. ✷

Corollary 4.6.2 The birooted image of every regular languages of F -tree is
recognizable by an adequate premorphism in a finite adequately ordered monoid.

Proof This follows from Theorem 3.4.1 and Theorem 4.6.1. ✷

4.7 More on quasi-recognizable languages

The following separation Theorem is based on an example that was suggested
by Marc Zeitoun.

Theorem 4.7.1 There exists an MSO definable language of birooted F,A-trees
that is not quasi-recognizable.

Proof Let F = {•} and A = {a} be the trivial alphabets. Let Ba be the
elementary birooted tree defined by Ba = 〈t, a〉 with dom(t) = {1, a}. Let then
L1 = {B2n

a : n ∈ N} and let L2 = {B2n
a · B−2n

a : n ∈ N}. These birooted trees
are depicted in Figure 18 below.

(C0) • ∈ L2

(C1) • 6∈ L2•
a

(C2) • ∈ L2•
a

•
a

(C3) • 6∈ L2•
a

•
a

•
a

(C4) • ∈ L2•
a

•
a

•
a

•
a

Figure 18: The birooted trees Cn = Bn
a ·B−n

a with C0 < C1 < C2 < C3 < C4 <
· · · .

Obviously, both the languages L1 and L2 are definable in MSO. Moreover,
L2 = (L1 ·L−1

1) ∩U with U the set of idempotent birooted trees. We prove that
L2 is not quasi-recognizable.

43

Assume there is an adequate premorphism ϕ : B(F,A) → M into an ade-
quately ordered monoid. We observe that the sequence {Bn

a ·B−n
a }n∈N is strictly

decreasing in the natural order. By monotonicity, this means that the sequence
{ϕ(Bn

a ·B−n
a)}n∈N is also decreasing.

Now, if we assume that ϕ recognizes the language L2, this means that M
is finite and since we have B2n

a · B−2n
a ∈ L2 while B2n+1

a · B−2n−1
a /∈ L2 this

also implies that the sequence {ϕ(Bn
a · B−n

a)}n∈N is strictly decreasing which
contradicts the finiteness of M . ✷

Remark The above example shows that the class of quasi-recognizable lan-
guages is not closed under product. Curiously enough to be mentioned, clo-
sure under product is true when restricting to positive birooted F,A-trees, that
is, birooted F,A-trees with output roots that belongs to A∗. The induced
language theory is worth being studied as already started in the case of bi-
rooted words [14]. With trivial vertex labeling alphabet, the monoid of positive
birooted-trees is already known in algebra: it is the free ample monoid generated
by the alphabet A [18].

5 Conclusion

Studying languages of birooted F,A-trees, structures that generalize F -terms
and F -forests, we have thus defined a notion of birooted tree automata, a re-
lated notion of quasi-recognizability and we have characterized quite in depth
their expressive power in relationship with language definability in Monadic
Second Order Logic. As a particular case, our results provide a new algebraic
characterization of the regular languages of finite F -trees.

Potential links with the preclones approach [15] or the forest algebra ap-
proach [7, 6] need to be investigated further. It has been shown [4] that quasi-
recognizability can also be seen as a particular case of recognizability in the set-
ting of partial algebras [8]. In this more general framework, a notion of (partial
algebra) syntactic congruence is available. Restating the language classification
results obtained in [7, 6] in this new framework remains to be done.

We have already mentioned the application of this theory in computational
music. Beyond these applications, it is expected that inverse semigroup the-
ory can be developed much further towards application in computer science
and engineering [34]. Thanks to Stephen’s representation theorem [61], Munn’s
graphical representation theorem can be generalized to arbitrary inverse semi-
group S generated by a distinguished subset A ⊆ S. It follows that, via quotient
by adequate equations, the language theory that is developed here may go far
beyond the study of languages of birooted trees themselves, possibly in link with
recognizable languages of graphs [10].

44

Acknowledgment

The author wishes to express his gratitude to the anonymous referees for pro-
viding many helpful comments on earlier versions of this work.

References

[1] J.-R. Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, Cambridge, 2010.

[2] F. Berthaut, D. Janin, and B. Martin. Advanced synchronization of audio
or symbolic musical patterns: an algebraic approach. International Journal
of Semantic Computing, 6(4):409–427, 2012.

[3] A. Blumensath. Recognisability for algebras of infinite trees. Theoretical
Comp. Science, 412(29):3463–3486, 2011.

[4] A. Blumensath and D. Janin. A syntactic congruence for languages of bi-
rooted trees. Research report RR-1478-14, LaBRI, Université de Bordeaux,
2014.

[5] M. Bojańczyk. Tree-walking automata. In 2nd Int. Conf. on Language
and Automata Theory and Applications (LATA), volume 5196 of LNCS.
Springer, 2008.

[6] M. Bojanczyk, H. Straubing, and I. Walukiewicz. Wreath products of forest
algebras, with applications to tree logics. Logical Methods in Computer
Science, 8(3), 2012.

[7] M. Bojańczyk and I. Walukiewicz. Forest algebras. In Logic and Automata,
pages 107–132. Amsterdam University Press, 2008.

[8] P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

[9] J. Chalopin and Y. Métivier. An efficient message passing election algo-
rithm based on mazurkiewicz’s algorithm. Fundam. Inform., 80(1-3):221–
246, 2007.

[10] B. Courcelle and J. Engelfriet. Graph structure and monadic second-order
logic, a language theoretic approach, volume 138 of Encyclopedia of math-
ematics and its applications. Cambridge University Press, 2012.

[11] T. Deis, J. Meakin, and G. Sénizergues. Equations in free inverse monoids.
International Journal of Algebra and Computation, 17(4):761–795, 2007.

[12] P. Desain and H. Honing. LOCO: a composition microworld in Logo. Com-
puter Music Journal, 12(3):30–42, 1988.

45

[13] A. Dicky and D. Janin. Two-way automata and regular languages of over-
lapping tiles. Research report RR-1463-12, LaBRI, Université de Bordeaux,
2013.

[14] E. Dubourg and D. Janin. Algebraic tools for the overlapping tile product.
In Language and Automata Theory and Applications (LATA), volume 8370
of LNCS, pages 335 – 346. Springer, 2014.

[15] Z. Ésik and P. Weil. On logically defined recognizable tree languages. In
Found. of Soft. tech and Theor. Comp. Science (FSTTCS), pages 195–207,
2003.

[16] J. Fountain. Right PP monoids with central idempotents. Semigroup Fo-
rum, 13:229–237, 1977.

[17] J. Fountain. Adequate semigroups. Proc. Edinburgh Math. Soc.,
22(2):113–125, 1979.

[18] J. Fountain, G. Gomes, and V. Gould. The free ample monoid. Int. Jour.
of Algebra and Computation, 19:527–554, 2009.

[19] V. Gould. Restriction and Ehresmann semigroups. In Proceedings of the
International Conference on Algebra 2010. World Scientific, 2010.

[20] C.A.R. Hoare. Communicating Sequential Processing. Prentice-Hall Inter-
national Series in Computer Science. Prentice-Hall International, 1985.

[21] C. D. Hollings. From right PP monoids to restriction semigroups: a survey.
European Journal of Pure and Applied Mathematics, 2(1):21–57, 2009.

[22] C. D. Hollings. The Ehresmann-Schein-Nambooripad Theorem and its suc-
cessors. European Journal of Pure and Applied Mathematics, 5(4):414–450,
2012.

[23] P. Hudak. An algebraic theory of polymorphic temporal media. In Pro-
ceedings of PADL’04: 6th International Workshop on Practical Aspects of
Declarative Languages, pages 1–15. Springer Verlag LNCS 3057, June 2004.

[24] P. Hudak. A sound and complete axiomatization of polymorphic temporal
media. Technical Report RR-1259, Department of Computer Science, Yale
University, 2008.

[25] P. Hudak and D. Janin. Tiled polymorphic temporal media. Research
report RR-1478-14, LaBRI, Université de Bordeaux, 2014.

[26] D. Janin. A lazy real-time system architecture for interactive music. In
Actes des Journées d’informatique Musicale (JIM), pages 133–139, 2012.

[27] D. Janin. Quasi-inverse monoids (and premorphisms). Research report
RR-1459-12, LaBRI, Université de Bordeaux, 2012.

46

[28] D. Janin. Quasi-recognizable vs MSO definable languages of one-
dimensional overlapping tiles. In Mathematical Found. of Comp. Science
(MFCS), volume 7464 of LNCS, pages 516–528, 2012.

[29] D. Janin. Vers une modélisation combinatoire des structures rythmiques
simples de la musique. Revue Francophone d’Informatique Musicale
(RFIM), 2, 2012.

[30] D. Janin. Algebras, automata and logic for languages of labeled birooted
trees. In Int. Col. on Aut., Lang. and Programming (ICALP), volume 7966
of LNCS, pages 318–329. Springer, 2013.

[31] D. Janin. On languages of one-dimensional overlapping tiles. In Int. Conf.
on Current Trends in Theo. and Prac. of Comp. Science (SOFSEM), vol-
ume 7741 of LNCS, pages 244–256. Springer, 2013.

[32] D. Janin. Overlaping tile automata. In 8th International Computer Sci-
ence Symposium in Russia (CSR), volume 7913 of LNCS, pages 431–443.
Springer, 2013.

[33] D. Janin. Walking automata in the free inverse monoid. Research report
RR-1464-12, LaBRI, Université de Bordeaux, 2013.

[34] D. Janin. Towards a higher dimensional string theory for the modeling of
computerized systems. In Int. Conf. on Current Trends in Theo. and Prac.
of Comp. Science (SOFSEM), volume 8327 of LNCS, pages 7–20. Springer,
2014.

[35] D. Janin, F. Berthaut, and M. DeSainteCatherine. Multi-scale design of
interactive music systems : the libTuiles experiment. In Sound and Music
Computing (SMC), 2013.

[36] J. Kellendonk. The local structure of tilings and their integer group of
coinvariants. Comm. Math. Phys., 187:115–157, 1997.

[37] J. Kellendonk and M. V. Lawson. Tiling semigroups. Journal of Algebra,
224(1):140 – 150, 2000.

[38] J. Kellendonk and M. V. Lawson. Universal groups for point-sets and
tilings. Journal of Algebra, 276:462–492, 2004.

[39] M. V. Lawson. Semigroups and ordered categories. I. the reduced case.
Journal of Algebra, 141(2):422 – 462, 1991.

[40] M. V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[41] M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 –
294, 1998.

47

[42] M. Lohrey and N. Ondrusch. Inverse monoids: Decidability and complexity
of algebraic questions. Information and Computation, 205(8):1212 – 1234,
2007.

[43] S. W. Margolis and J. C. Meakin. Inverse monoids, trees and context-free
languages. Trans. Amer. Math. Soc., 335:259–276, 1993.

[44] S. W. Margolis and J.-E. Pin. Languages and inverse semigroups. In Int.
Col. on Aut., Lang. and Programming (ICALP), volume 172 of LNCS,
pages 337–346. Springer, 1984.

[45] D.B. McAlister. Inverse semigroups which are separated over a subsemi-
groups. Trans. Amer. Math. Soc., 182:85–117, 1973.

[46] D.B. McAlister and N. R. Reilly. E-unitary covers for inverse semigroups.
Pacific Journal of Mathematics, 68:178–206, 1977.

[47] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[48] W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathe-
matical Society, 29(3):385–404, 1974.

[49] J.-P. Pécuchet. Automates boustrophedon, semi-groupe de Birget et
monoide inversif libre. ITA, 19(1):71–100, 1985.

[50] D. Perrin and J.-E. Pin. Semigroups and automata on infinite words. In
Semigroups, Formal Languages and Groups, NATO Advanced Study Insti-
tute, pages 49–72. Kluwer academic, 1995.

[51] D. Perrin and J.-E. Pin. Infinite Words: Automata, Semigroups, Logic and
Games, volume 141 of Pure and Applied Mathematics. Elsevier, 2004.

[52] M. Pietrich. Inverse semigroups. Wiley, 1984.

[53] J.-E. Pin. Relational morphisms, transductions and operations on lan-
guages. In Formal Properties of Finite Automata and Applications, volume
386 of LNCS, pages 34–55. Springer, 1989.

[54] J-.E. Pin. Chap. 10. Syntactic semigroups. In Handbook of formal lan-
guages, Vol. I, pages 679–746. Springer-Verlag, 1997.

[55] J.-E. Pin. Semigroupe version 2.0. http://www.liafa.jussieu.fr/~jep/

semigroupes.html, 2009.

[56] A. Potthoff. First-order logic on finite trees. In Theory and Practice of
Software Development (TAPSOFT), volume 915 of LNCS, pages 125–139.
Springer, 1995.

[57] M. O. Rabin. Weakly definable relations and special automata. In Math-
ematical Logic and Foundation of Set Theory, pages 1–23. North Holland,
1970.

48

[58] H. E. Scheiblich. Free inverse semigroups. Semigroup Forum, 4:351–359,
1972.

[59] S. Shelah. The monadic theory of order. Annals of Mathematics, 102:379–
419, 1975.

[60] P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.

[61] J.B. Stephen. Presentations of inverse monoids. Journal of Pure and Ap-
plied Algebra, 63:81–112, 1990.

[62] W. Thomas. Chap. 7. Languages, automata, and logic. In Handbook of
Formal Languages, Vol. III, pages 389–455. Springer-Verlag, Berlin Heidel-
berg, 1997.

[63] W. Thomas. Logic for computer science: The engineering challenge. In
Informatics - 10 Years Back, 10 Years Ahead., volume 2000 of LNCS,
pages 257–267, Dagstuhl, 2001. Springer.

[64] T. Wilke. An algebraic theory for regular languages of finite and infinite
words. Int. J. Alg. Comput, 3:447–489, 1993.

49

