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Cutting edges at random in large recursive trees

Erich Baur∗ and Jean Bertoin†

ENS Lyon and Universität Zürich

Abstract

We comment on old and new results related to the destruction of a random recursive

tree (RRT), in which its edges are cut one after the other in a uniform random order. In

particular, we study the number of steps needed to isolate or disconnect certain distin-

guished vertices when the size of the tree tends to infinity. New probabilistic explanations

are given in terms of the so-called cut-tree and the tree of component sizes, which both

encode different aspects of the destruction process. Finally, we establish the connection

to Bernoulli bond percolation on large RRT’s and present recent results on the cluster

sizes in the supercritical regime.

Key words: Random recursive tree, destruction of graphs, isolation of nodes, disconnection,

supercritical percolation, cluster sizes, fluctuations.

1 Introduction

Imagine that we destroy a connected graph by removing or cutting its edges one after the other,

in a uniform random order. The study of such a procedure was initiated by Meir and Moon

in [32]. They were interested in the number of steps needed to isolate a distinguished vertex

in a (random) Cayley tree, when the edges are removed uniformly at random from the current

component containing this vertex. Later on, Meir and Moon [33] extended their analysis to

random recursive trees. The latter form an important family of increasingly labeled trees (see

Section 2 for the definition), and it is the goal of this paper to shed light on issues related to

the destruction of such trees.

Mahmoud and Smythe [31] surveyed a multitude of results and applications for random

recursive trees. Their recursive structure make them particularly amenable to mathematical
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Figure 1

A recursive tree on the vertex set {0, 1, . . . , 10}.

analysis, from both a combinatorial and probabilistic point of view. We focus on the probabilis-

tic side. Our main tools include the fundamental splitting property, a coupling due to Iksanov

and Möhle [23] and the so-called cut-tree (see [10]), which records the key information about

the destruction process. The cut-tree allows us to re-prove the results of Kuba and Panholzer

[29] on the multiple isolation of nodes. Moreover, we gain information on the number of steps

needed to disconnect a finite family nodes.

Finally, we relate the destruction of a random recursive tree to Bernoulli bond percolation

on the same tree. We explain several recent results concerning the sizes of percolation clusters

in the supercritical regime, where the root cluster forms the unique giant cluster.

2 Main tools

In this section, we present some basic tools in the study of random recursive trees which will

be useful to our purposes.

2.1 The recursive construction, Yule process and Polya urn

Consider a finite and totally ordered set of vertices, say V . A tree on V is naturally rooted

at the smallest element of V , and is called increasing if and only if the sequence of vertices

along a segment from the root to an arbitrary vertex increases. Most of the time we shall take

V = {0, 1, . . . , n}, which induces of course no loss of generality. More precisely, it is convenient

to introduce the following notion. For an arbitrary totally ordered set V with cardinality

|V | = n + 1, we call the bijective map from V to {0, 1, . . . , n} which preserves the order,

the canonical relabeling of vertices. Plainly the canonical relabeling transforms an increasing
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tree on V into an increasing tree on {0, 1, . . . , n}. Such relabelings enable us to focus on the

structure of the rooted tree without retaining specifically the elements of V .

A random recursive tree (in short, RRT) on {0, 1, . . . , n} is a tree picked uniformly at random

amongst all the increasing trees on {0, 1, . . . , n}; it shall be denoted henceforth by Tn. In

particular, Tn has n edges and size (i.e. number of vertices) |Tn| = n + 1. The terminology

stems from the easy observation that a version of Tn can be constructed by the following simple

recursive random algorithm in which vertices are incorporated one after the other. The vertex 1

is naturally connected by an edge to the root 0, then 2 is connected either to 0 or to 1 with equal

probability 1/2, and more generally, the parent of the vertex i is chosen uniformly at random

amongst 0, 1, . . . , i− 1 and independently of the other vertices. This recursive construction is a

close relative to the famous Chinese Restaurant construction of uniform random permutations

(see, for instance, Section 3.1 in Pitman [35]), and in particular the number of increasing trees

of size n+ 1 equals n!.

Another useful observation is that this recursive construction can be interpreted in terms of

the genealogy of a Yule process. Recall that a Yule process describes the evolution in continuous

time of a pure birth process in which each individual gives birth to a child at unit rate and

independently of the other individuals. We label individuals in the increasing order of their

birth times, the ancestor receiving by convention the label 0. If we let the process evolve until

the population reaches size n+ 1, then its genealogical tree, that is the tree where individuals

are viewed as vertices and edges connect children to their parent, is clearly a RRT. Here is an

application to percolation on Tn which will be useful later on.

Lemma 1 Perform a Bernoulli bond percolation on Tn with parameter 0 < p < 1 (i.e. each

edge of Tn is deleted with probability 1 − p, independently of the other edges), and let C0
n(p)

denote the size of the cluster containing the root. Then

lim
n→∞

n−pC0
n(p) = C0(p) in distribution,

where C0(p) > 0 a.s. is some random variable.

Proof: We view Tn as the genealogical tree of a standard Yule process (Ys)s≥0 up to time

ρn = inf{s ≥ 0 : Ys = n + 1}. It is well-known that the process e−sYs is a martingale which

converges a.s. to some random variable W with the exponential distribution, and it follows

that

lim
n→∞

n−1eρn = 1/W a.s.

In this setting, performing a Bernoulli bond percolation can be interpreted as superposing

neutral mutations to the genealogical tree, namely each child is a clone of its parent with
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probability p and a mutant with a new genetic type with probability 1 − p, independently of

the other children. Neutrality means that the rate of birth does not depend on the genetic

type. Then the process (Ys(p))s≥0 of the number of individuals with the same genetic type as

the ancestor is again a Yule process, but now with birth rate p. As a consequence

lim
s→∞

e−psYs(p) = W (p) a.s.,

where W (p) denotes another exponentially distributed random variable. We then observe that

C0
n(p) = Yρn(p) ∼ W (p)epρn ∼ W (p)W−pnp,

which completes the proof. �

Plainly, the recursive construction can also be interpreted in terms of urns, and we conclude

this section by exemplifying this connection. Specifically, the size of the root cluster C0
n(p) in

the above lemma can be identified as the number of red balls in the following Polya-Hoppe urn.

Start with one red ball which represents the root of the tree. A draw is effected as follows: (i)

Choose a ball at random from the urn, observe its color, and put the ball back to the urn. (ii)

If its color was red, add a red ball to the urn with probability p, and add a black ball to the

urn with probability 1 − p. If its color was black, add another black ball to the urn. Then,

after n draws, the number of red balls is given by C0
n(p), and in this way, Lemma 1 yields a

limit theorem for the proportion of red balls.

The choice p = 1 in this urn scheme corresponds to the usual Polya urn. Here, if one starts

with one red ball and k black balls, then the number of red balls after n−k draws is distributed

as the size of the subtree T k
n of a RRT Tn that stems from the vertex k. It is well-known from the

theory of Polya urns that this number follows the beta-binomial distribution with parameters

(n− k, 1, k). Moreover,

lim
n→∞

n−1|T k
n | = β(1, k) in distribution, (1)

where β(1, k) is a beta(1, k)-distributed random variable. We will use this fact several times

below.

2.2 The splitting property

The splitting property (also called randomness preserving property) reveals the fractal nature of

RTT’s: roughly speaking, if one removes an edge from a RRT, then the two subtrees resulting

from the split are in turn, conditionally on their sizes, independent RRT’s. This is of course of

crucial importance when investigating the destruction of a RRT, as we can then apply iteratively
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the splitting property when removing the edges uniformly at random and one after the other.

We select an edge of Tn uniformly at random and remove it. Then Tn splits into two subtrees,

say τ 0n and τ ∗n, where τ 0n contains the root 0. We denote by T 0
n and T ∗

n the pair of increasing

trees which then result from the canonical relabelings of the vertices of τ 0n and τ ∗n, respectively.

Introduce also an integer-valued variable ξ with distribution

P(ξ = j) =
1

j(j + 1)
, j = 1, 2, . . . (2)

Proposition 1 (Meir and Moon [33]) In the notation above, |τ ∗n| = |T ∗
n | has the same law as

ξ conditioned on ξ ≤ n, that is

P(|T ∗
n | = j) =

n+ 1

nj(j + 1)
, j = 1, 2, . . . , n.

Further, conditionally on |T ∗
n | = j, T 0

n and T ∗
n are two independent RRT’s with respective sizes

n− j + 1 and j.

Proof: There are nn! configurations (t, e) given by an increasing tree t on {0, 1, . . . , n} and

a distinguished edge e. We remove the edge e and then relabel vertices canonically in each of

the resulting subtrees. Let us enumerate the configurations that yield a given pair (t0, t∗) of

increasing trees on {0, 1, . . . , n− j} and {0, 1, . . . , j − 1}, respectively.
Let k ∈ {0, 1, . . . , n− 1} denote the extremity of the edge e which is the closest to the root

0 in t, and V ∗ the set of vertices which are disconnected from k when e is removed. Since t is

increasing, all the vertices in V ∗ must be larger than k, and since we want |V ∗| = j, there are
(

n−k
j

)

ways of choosing V ∗ (note that this is possible if and only if k ≤ n−j). There are a unique

increasing tree structure on V ∗ and a unique increasing tree structure on {0, 1, . . . , n}\V ∗ that

yield respectively t∗ and t0 after the canonical relabelings.

Conversely, given t0, t∗, k ∈ {0, 1, . . . , n− j} and V ∗ ⊂ {k+1, . . . , n} with |V ∗| = j, there is

clearly a unique configuration (t, e) which yields the quadruple (k, V ∗, t0, t∗). Namely, relabel-

ing vertices in t0 and t∗ produces two increasing tree structures τ 0 and τ ∗ on {0, 1, . . . , n}\V ∗

and V ∗, respectively. We let e denote the edge (k,minV ∗) and then t is the increasing tree

obtained by connecting τ 0 and τ ∗ using e.

It follows from the analysis above that

P(T 0
n = t0, T ∗

n = t∗) =
1

nn!

n−j
∑

k=0

(

n−k
j

)

.
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Now recall that
n−j
∑

k=0

(

n−k
j

)

=
n

∑

ℓ=j

(

ℓ
j

)

=
(

n+1
j+1

)

to conclude that

P(T 0
n = t0, T ∗

n = t∗) =
n+ 1

n(n− j)!(j + 1)!
=

n+ 1

nj(j + 1)
× 1

(n− j)!(j − 1)!
.

Since there are (n − j)! increasing trees with size n − j + 1 and (j − 1)! increasing trees with

size j, this yields the claim. �

Remark. It can be easily checked that the splitting property holds more generally when one

removes a fixed edge, that is the edge connecting a given vertex k ∈ {1, . . . , n} to its parent. Of

course, the distribution of the sizes of the resulting subtrees then changes; see the connection

to Polya urns mentioned in the beginning.

2.3 The coupling of Iksanov and Möhle

The splitting property was used by Meir and Moon [33] to investigate the following random

algorithm for isolating the root 0 of a RRT. Starting from Tn, remove a first edge chosen

uniformly at random and discard the subtree which does not contain the root 0. Iterate the

procedure with the subtree containing 0 until the root is finally isolated, and denote by Xn the

number of steps of this random algorithm. In other words, Xn is the number of random cuts

that are needed to isolate 0 in Tn.

Iksanov and Möhle [23] derived from Proposition 1 a useful coupling involving an increasing

random walk with step distribution given by (2). Specifically, let ξ1, ξ2, . . . denote a sequence

of i.i.d. copies of ξ and set S0 = 0,

Sn = ξ1 + · · ·+ ξn. (3)

Further, introduce the last time that the random walk S remains below the level n,

L(n) = max{k ≥ 0 : Sk ≤ n}. (4)

Corollary 1 (Iksanov and Möhle [23]) One can construct on the same probability space a

random recursive tree Tn together with the random algorithm of isolation of the root, and a

version of the random walk S, such that if

T 0
n,0 = Tn ⊂ T 0

n,1 ⊂ · · · ⊂ T 0
n,Xn

= {0} (5)
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denotes the nested sequence of the subtrees containing the root induced by the algorithm, then

Xn ≥ L(n) and

(|T 0
n,0\T 0

n,1|, . . . , |T 0
n,L(n)−1\T 0

n,L(n)|) = (ξ1, . . . , ξL(n)). (6)

Proof: Let us agree for convenience that T 0
n,j = {0} for every j > Xn, and first work condition-

ally on (|T 0
n,i|)i≥1. Introduce a sequence ((εi, ηi))i≥1 of independent pairs of random variables

such that for each i, εi has the Bernoulli law with parameter 1/|T 0
n,i−1| = P(ξ ≥ |T 0

n,i−1|) and ηi

is an independent variable distributed as ξ conditioned on ξ ≥ |T 0
n,i−1|. Then define for every

i ≥ 1

ξi =

{

|T 0
n,i−1| − |T 0

n,i| if εi = 0

ηi if εi = 1

and the partial sums Si = ξ1 + · · · + ξi. Observe that εi = 1 if and only if ξi ≥ |T 0
n,i−1|, and

hence, by construction, there is the identity

min{i ≥ 1 : εi = 1} = min{i ≥ 1 : Si ≥ n+ 1}.

Therefore, (6) follows if we show that ξ1, ξ2 . . . are (unconditionally) i.i.d. copies of ξ. This is

essentially a consequence of the splitting property. Specifically, for j ≤ n, we have

P(ξ1 = j) = P(ε1 = 0)P(n+ 1− |T 0
n,1| = j) =

n

n+ 1
P(|T ∗

n | = j) =
1

j(j + 1)
,

where we used the notation and the result in Proposition 1, whereas for j > n we have

P(ξ1 = j) = P(ε1 = 1)P(ξ = j | ξ ≥ n+ 1) =
1

j(j + 1)
.

Next, consider the conditional law of ξ2 given ξ1 and |T 0
n,1|. Of course, |T 0

n,1| ≥ n+ 1− ξ1, and

this inequality is in fact an equality whenever ξ1 ≤ n. We know from the splitting property

that conditionally on its size, say |T 0
n,1| = m + 1 with m ≤ n − 1, T 0

n,1 is a RRT. Therefore

Proposition 1 yields again for j ≤ m

P
(

ξ2 = j | ξ1 and |T 0
n,1| = m+ 1

)

= P
(

ε2 = 0 | ξ1 and |T 0
n,1| = m+ 1

)

P(m+ 1− |T 0
n,2| = j | ξ1 and |T 0

n,1| = m+ 1)

=
m

m+ 1
P(|T ∗

m| = j)

=
1

j(j + 1)
.
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Similarly for j > m

P(ξ2 = j | ξ1 and |T 0
n,1| = m+ 1)

= P(ε2 = 1 | ξ1 and |T 0
n,1| = m+ 1)P(ξ = j | ξ ≥ m+ 1)

=
1

j(j + 1)
.

This shows that ξ2 has the same distribution as ξ and is independent of ξ1 and |T 0
n,1|. Iterating

this argument, we get that the ξi form a sequence of i.i.d. copies of ξ, which completes the

proof. �

3 The number of random cuts needed to isolate the root

Recall the algorithm of isolation of the root which was introduced in the preceding section, and

that Xn denotes its number of steps for Tn, i.e. Xn is the number of random cuts that are

needed to isolate the root 0 in Tn. Meir and Moon [33] used Proposition 1 to investigate the

first two moments of Xn and showed that

lim
n→∞

lnn

n
Xn = 1 in probability. (7)

The problem of specifying the fluctuations of Xn was left open until the work by Drmota et

al., who obtained the following remarkable result.

Theorem 1 (Drmota, Iksanov, Möhle and Rösler [17]) As n → ∞,

ln2 n

n
Xn − lnn− ln lnn

converges in distribution to a completely asymmetric Cauchy variable X with characteristic

function

E(exp(itX)) = exp
(

it ln |t| − π

2
|t|
)

, t ∈ R. (8)

In short, the starting point of the proof in [17] is the identity in distribution

Xn
(d)
= 1 +Xn−Dn

, (9)

where Dn is a random variable with the law of ξ given ξ ≤ n, and Dn is assumed to be

independent of X1, . . . , Xn. More precisely, (9) derives immediately from the splitting property

(Proposition 1). Drmota et al. deduce from (9) a PDE for the generating function of the
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variablesXn, and then singularity analysis provides the key tool for investigating the asymptotic

behavior of this generating function and elucidating the asymptotic behavior of Xn.

Iksanov and Möhle [23] developed an elegant probabilistic argument which explains the

unusual rescaling and the Cauchy limit law in Theorem 1. We shall now sketch this argument.

One starts observing that the distribution in (2) belongs to the domain of attraction of a

completely asymmetric Cauchy variable X whose law is determined by (8), namely

lim
n→∞

(

n−1Sn − lnn
)

= −X in distribution. (10)

Then one deduces from (10) that the asymptotic behavior of the last-passage time (4) is given

by

lim
n→∞

(

ln2 n

n
L(n)− lnn− ln lnn

)

= X in distribution, (11)

see Proposition 2 in [23]. This limit theorem resembles of course Theorem 1, and the relation

between the two is explained by the coupling of the algorithm of isolation of the root and the

random walk S stated in Corollary 1 as we shall now see.

Let the algorithm for isolating the root run for L(n) steps. Then the size of the remaining

subtree that contains the root is n+ 1− SL(n), and as a consequence, there are the bounds

L(n) ≤ Xn ≤ L(n) + n− SL(n),

since at most ℓ − 1 edge removals are needed to isolate the root in any tree of size ℓ. On the

other hand, specifying a renewal theorem of Erickson [18] for the increasing random walk S,

one gets that

lim
n→∞

ln(n− SL(n))/ lnn = U in distribution,

where U is a uniform [0, 1] random variable. In particular

lim
n→∞

ln2 n

n
(n− SL(n)) = 0 in probability.

Thus Theorem 1 follows from (11). �

It should be noted that there exists a vertex version of the isolation algorithm, where one

chooses a vertex at random and destroys it together with its descending subtree. The algorithm

continues until the root is chosen. Using an appropriate coupling with Xn, one readily shows

that the number of random vertex removals X
(v)
n needed to destroy a RRT Tn satisfies (Xn −

X
(v)
n ) = o(n/ ln2 n) in probability. Henceforth, we concentrate on cutting edges.

Remark. Weak limit theorems for the number of cuts to isolate the root vertex have also been

obtained for other tree models, like conditioned Galton-Watson trees including e.g. uniform
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Cayley trees and random binary trees (Panholzer [34] and, in greater generality, Janson [25]),

deterministic complete binary trees (Janson [24]) and random split trees (Holmgren [21, 22]).

More generally, Addario-Berry et al. [1] and Bertoin [6] found the asymptotic limit distribution

for the number of cuts required to isolate a fixed number ℓ ≥ 1 of vertices picked uniformly at

random in a uniform Cayley tree. This result was further extended by Bertoin and Miermont

[12] to conditioned Galton-Watson trees. We point to the remark after Corollary 3 for more on

this. Turning back to RRT’s, recent generalizations of Theorem 1 were found first by Kuba and

Panholzer [28, 29] and then by Bertoin [10], some of which will be discussed in the reminder of

this paper.

In [29], Kuba and Panholzer considered the situation when one wishes to isolate the first

ℓ vertices of a RRT Tn, 0, 1, . . . , ℓ − 1, where ℓ ≥ 1 is fixed. In this direction, one modifies

the algorithm of isolation of the sole root in an obvious way. A first edge picked uniformly at

random in Tn is removed. If one of the two resulting subtrees contains none of the vertices

0, 1, . . . , ℓ− 1, then it is discarded forever. Else, the two subtrees are kept. In both cases, one

iterates until each and every vertex 0, 1, . . . , ℓ− 1 has been isolated, and we write Xn,ℓ for the

number of steps of this algorithm.

The approach of Kuba and Panholzer follows analytic methods similar to the original proof

of Theorem 1 by Drmota et al. [17]. We point out here that the asymptotic behavior of

Xn,ℓ can also be deduced from Theorem 1 by a probabilistic argument based on the following

elementary observation, which enables us to couple the variables Xn,ℓ for different values of ℓ.

Specifically, we run the usual algorithm of isolation of the root, except that now, at each time

when a subtree becomes disconnected from the root, we keep it aside whenever it contains at

least one of the vertices 1, . . . , ℓ − 1, and discard it forever otherwise. Once the root 0 of Tn

has been isolated, we resume with the subtree containing 1 which was set aside, meaning that

we run a further algorithm on that subtree until its root 1 has been isolated, keeping aside the

further subtrees disconnected from 1 which contain at least one of the vertices 2, . . . , ℓ− 1. We

then continue with the subtree containing the vertex 2, and so on until each and every vertex

0, 1, . . . , ℓ−1 has been isolated. If we write X ′
n,ℓ for the number of steps of this algorithm, then

it should be plain that X ′
n,ℓ has the same law as Xn,ℓ, and further Xn = X ′

n,1 ≤ · · · ≤ X ′
n,ℓ.

We shall now investigate the asymptotic behavior of the increments ∆n,i = X ′
n,i+1 −X ′

n,i for

i ≥ 1 fixed. In this direction, suppose that we now remove the edges of Tn one after the other

in a uniform random order until the edge connecting the vertex i to its parent is removed. Let

τ in denote the subtree containing i that arises at this step.

Lemma 2 For each fixed i ≥ 1,

lim
n→∞

ln |τ in|
lnn

= U in distribution,
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where U is a uniform [0, 1] random variable.

For the moment, let us take Lemma 2 for granted and deduce the following.

Corollary 2 We have

lim
n→∞

ln∆n,i

lnn
= U in distribution,

where U is a uniform [0, 1] random variable.

Proof: Just observe that ∆n,i has the same law as the number of cuts needed to isolate the

root i of τ in, and recall from an iteration of the splitting property that conditionally on its size,

τ in is a RRT. Our statement now follows readily from (7) and Lemma 2. �

Writing X ′
n,ℓ = Xn +∆n,1 + · · ·+∆n,ℓ−1, we now see from Theorem 1 and Corollary 2 that

for each fixed ℓ ≥ 1, there is the weak convergence

lim
n→∞

(

ln2 n

n
X ′

n,ℓ − lnn− ln lnn

)

= X in distribution, (12)

which is Theorem 1 in [29]. We now proceed to the proof of Lemma 2.

Proof: Let T i
n denote the subtree of Tn that stems from the vertex i, and equip each edge e

of Tn with a uniform [0, 1] random variable Ue, independently of the other edges. Imagine that

the edge e is removed at time Ue, and for every time 0 ≤ s ≤ 1, write T i
n(s) for the subtree

of T i
n which contains i at time s. Hence, if we write U = Ue for e the edge connecting i to

its parent, then τ in = T i
n(U). Further, since U is independent of the other uniform variables,

conditionally on U and T i
n, τ

i
n can be viewed as the cluster that contains the root vertex i after

a Bernoulli bond percolation on T i
n with parameter 1−U . Thus, conditionally on |T i

n| = m+1

and U = 1− p, |τ in| has the same law as C0
m(p) in the notation of Lemma 1.

From (1) we know that n−1|T i
n| converges in distribution as n → ∞ to a beta variable with

parameters (1, i), say β, which is of course independent of U . On the other hand, conditionally

on its size, and after the usual canonical relabeling of its vertices, T i
n is also a RRT (see the

remark at the end of Section 2). It then follows from Lemma 1 that

lim
n→∞

ln |τ in|
lnn

= 1− U in probability,

which establishes our claim. �
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4 The destruction process and its tree representations

Imagine now that we remove the edges of Tn one after the other and in a uniform random order,

no matter whether they belong to the root component or not. We call this the destruction

process of Tn. After n steps, no edges are present anymore and all the vertices have been

isolated. In particular, the random variable which counts only the number of edge removals

from the root component can be identified with Xn from the previous section.

The purpose of this section is to introduce and study the asymptotic behavior of two trees

which can be naturally associated to this destruction process, namely the tree of component

sizes and the cut-tree. Furthermore, we give some applications of the cut-tree to the isolation

and disconnection of nodes and comment on ordered destruction of a RRT.

4.1 The tree of component sizes

In this part, we are interested in the sizes of the tree components produced by the destruction

process. Our analysis will also prove helpful for studying percolation clusters of a RRT in

Section 5.

The component sizes are naturally stored in a tree structure. As our index set, we use the

universal tree

U =
∞
⋃

k=0

N
k,

with the convention N
0 = {∅} and N = {1, 2, . . .}. In particular, an element u ∈ U is a

finite sequence of strictly positive integers (u1, . . . , uk), and its length |u| = k represents the

“generation” of u. The jth child of u is given by uj = (u1, . . . , uk, j), j ∈ N. The empty

sequence ∅ is the root of the tree and has length |∅| = 0. If no confusion occurs, we drop the

separating commas and write (u1 · · · uk) or simply u1 · · · uk instead of (u1, . . . , uk). Also, ∅u
represents the element u.

We define a tree-indexed process B(n) = (B(n)
u : u ∈ U), which encodes the sizes of the tree

components stemming from the destruction of Tn. We will directly identify a vertex u with its

label B(n)
u . Following the steps of the destruction process, we build this process dynamically

starting from the singleton B(n)
∅ = n + 1 and ending after n steps with the full process B(n).

More precisely, when the first edge of Tn is removed in the destruction process, Tn splits into

two subtrees, say τ 0n and τ ∗n, where τ
0
n contains the root 0. We stress that τ 0n is naturally rooted

at 0 and τ ∗n at its smallest vertex. The size |τ ∗n| is viewed as the first child of B(n)
∅ and denoted

by B(n)
1 . Now first suppose that the next edge which is removed connects two vertices in τ ∗n.

Then, τ ∗n splits into two tree components. The size of the component not containing the root of

τ ∗n is viewed as the first child of B(n)
1 and denoted by B(n)

11 . On the contrary, if the second edge

12



Figure 2

Left: A recursive tree with vertices labeled 0, 1, . . . , 10. The labels on the edges indicate the

order in which they are removed by the destruction process.

Right: The corresponding tree of component sizes, with the vertex sets of the tree

components. The elements B(n)
u of size 0 are omitted.

which is removed connects two vertices in τ 0n, then the size of the component not containing 0

is viewed as the second child of B(n)
∅ and denoted by B(n)

2 . It should now be plain how to iterate

this construction. After n steps, we have in this way defined n+ 1 variables B(n)
u with |u| ≤ n,

and we extend the definition to the full universal tree by letting B(n)
u = 0 for all the remaining

u ∈ U . We refer to Figure 2 for an example. The tree components whose sizes are encoded by

the elements B(n)
u with |u| = k are called the components of generation k.

To sum up, every time an edge is removed in the destruction process, a tree component τn

splits into two subtrees, and we adjoin the size of the subtree which does not contain the root of

τn as a new child to the vertex representing τn. Note that the root B(n)
∅ has Xn many nontrivial

children, and they represent the sizes of the tree components which were cut from the root one

after the other in the algorithm for isolating the root.

We now interpret B(n) as the genealogical tree of a multi-type population model, where the

type reflects the size of the tree component (and thus takes integer values). In particular the

ancestor ∅ has type n + 1; furthermore, a node u with B(n)
u = 0 corresponds to an empty

component and is therefore absent in the population model. We also stress that the type of

an individual is always given by the sum of the types of its children plus 1. As a consequence,

types can be recovered from the sole structure of the genealogical tree. More precisely, the

type of an individual is simply given by the total size of the subtree of the genealogical tree

stemming from that individual.

13



The splitting property of a RRT immediately transfers into a branching property for this

population model.

Lemma 3 The population model induced by the tree of component sizes B(n) is a multi-type

Galton-Watson process starting from one particle of type n + 1. The reproduction distribution

λi of an individual of type i ≥ 1 is given by the law of the sequence of the sizes of the non-root

subtrees which are produced in the algorithm for isolating the root of a RRT of size i.

Even though the coupling of Iksanov and Möhle is not sufficient to fully describe the repro-

duction law, it nonetheless provides essential information on λi in terms of a sequence of i.i.d.

copies of ξ. As we will see next, extreme value theory for the i.i.d. sequence then enables us

to specify asymptotics of the population model when the type n + 1 of the ancestor goes to

infinity.

To give a precise statement, we rank the children of each individual in the decreasing order

of their types. Formally, given the individual indexed by u ∈ U has exactly ℓ children of type

≥ 1, we let σu be the random permutation of {1, . . . , ℓ} which sorts the sequence of types

B(n)
u1 , . . . ,B(n)

uℓ in the decreasing order, i.e.

B(n)
uσu(1)

≥ B(n)
uσu(2)

≥ . . . ≥ B(n)
uσu(ℓ)

,

where in the case of ties, children of the same type are ranked uniformly at random. We extend

σu to a bijection σu : N → N by putting σu(i) = i for i > ℓ.

We then define the global random bijection σ = σ(n) : U → U recursively by setting σ(∅) = ∅,
σ(j) = σ∅(j), and then, given σ(u), σ(uj) = σ(u)σσ(u)(j), u ∈ U , j ∈ N. Note that σ preserves

the parent-child relationship, i.e. children of u are mapped into children of σ(u). We simply

write (B(n)↓
u : u ∈ U) = (B(n)

σ(u) : u ∈ U) for the process which is ranked in this way.

Now, if the sizes of the components of generation k are normalized by a factor lnk n/n, we

obtain finite-dimensional convergence of B(n)↓ towards the genealogical tree of a continuous-

state branching process with reproduction measure ν(da) = a−2da on (0,∞). More precisely,

the limit object is a tree-indexed process Z = (Zu : u ∈ U) with initial state Z∅ = 1, whose

distribution is characterized by induction on the generations as follows.

(a) Z∅ = 1 almost surely;

(b) for every k = 0, 1, 2, . . . , conditionally on (Zv : v ∈ U , |v| ≤ k), the sequences (Zuj)j∈N

for the vertices u ∈ U at generation |u| = k are independent, and each sequence (Zuj)j∈N

is distributed as the family of the atoms of a Poisson random measure on (0,∞) with

intensity Zuν, where the atoms are ranked in the decreasing order of their sizes.

14



Proposition 2 As n → ∞, there is the convergence in the sense of finite-dimensional distri-

butions,

Z(n) =

(

(lnn)|u|

n
B(n)↓
u : u ∈ U

)

=⇒ Z.

We only sketch the proof and refer to the forthcoming paper [5] for details. Basically, if ξ1, ξ2, . . .

is a sequence of of i.i.d. copies of ξ, then for a > 0, the number of indices j ≤ k such that

ξj ≥ an/ lnn is binomially distributed with parameters k and ⌈an/ lnn⌉−1. From (11) and

Theorem 16.16 in [26] we deduce that for a fixed integer j, the j largest among ξ1, . . . , ξL(n),

normalized by a factor lnn/n, converge in distribution to the j largest atoms of a Poisson

random measure on (0,∞) with intensity ν(da) = a−2da. Since n − SL(n) = o(n/ ln2 n) in

probability, finite-dimensional convergence of Z(n) restricted to generations ≤ 1 then follows

from (6). Lemma 3 enables us to transport the arguments to the next generations.

4.2 The cut-tree

Consider for a while a deterministic setting where T is an arbitrary tree on some finite set of

vertices V . Imagine that its edges are removed one after the other in some given order, so at

the end of the process, all the vertices of T have been disconnected from each other. We shall

encode the destruction of T by a rooted binary tree, which we call the cut-tree and denote1

by Cut(T ). The cut-tree has internal nodes given by the non-singleton connected components

which arise during the destruction, and leaves which correspond to the singletons and which

can thus be identified with the vertices in V . More precisely, the root of Cut(T ) is given by

V , and when the first edge of T is removed, disconnecting V into, say, V1 and V2, then V1 and

V2 are viewed as the two children of V and thus connected to V by a pair of edges. Suppose

that the next edge which is removed connects two vertices in V1, so removing this second edge

disconnects V1 into, say V1,1 and V1,2. Then V1,1 and V1,2 are viewed in turn as the two children

of V1. We iterate in an obvious way, see Figure 3 for an example.

It should be clear that the number of cuts required to isolate a given vertex v in the destruc-

tion of T (as previously, we only count the cuts occurring in the component which contains

v) corresponds precisely to the height of the leaf {v} in Cut(T ). More generally, the number

of cuts required to isolate k distinct vertices v1, . . . , vk coincides with the total length of the

cut-tree reduced to its root and the k leaves {v1}, . . . , {vk} minus (k − 1), where the length is

measured as usual by the graph distance on Cut(T ). In short, the cut-tree encapsulates all the

information about the numbers of cuts needed to isolate any subset of vertices.

1For the sake of simplicity, this notation does not record the order in which the edges are removed, although
the latter is of course crucial in the definition of the cut-tree. In this part, we are concerned with uniform
random edge removal, while in the last part of this section, we look at ordered destruction of a RRT, where
edges are removed in the order of their endpoints most distant from the root.
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Figure 3

Left: Tree T with vertices labeled a,...,i; edges are enumerated in the order of the cuts.

Right: Cut-tree Cut(T ) on the set of blocks recording the destruction of T .

We now return to our usual setting, that is Tn is a RRT of size n + 1, whose edges are

removed in a uniform random order, and we write Cut(Tn) for the corresponding cut-tree. We

point out that the genealogical tree of component sizes which was considered in the previous

section can easily be recovered from Cut(Tn). Specifically, the root {0, 1, . . . , n} of Cut(Tn) has

to be viewed as the ancestor of the population model, its type is of course n + 1. Then the

blocks of Cut(Tn) which are connected by an edge to the segment from the root {0, 1, . . . , n} to

the leaf {0} are the children of the ancestor in the population model, the type of a child being

given by the size of the corresponding block. The next generations of the population model are

then described similarly by an obvious iteration.

The segment of Cut(Tn) from its root {0, 1, . . . , n} to the leaf {0} is described by the nested

sequence (5), and the coupling of Iksanov and Möhle stated in Corollary 1 expresses the sequence

of the block-sizes along the portion of this segment starting from the root and with length

L(n), in terms of the random walk S. We shall refer to this portion as the trunk of Cut(Tn)

and denote it by Trunk(Tn). The connected components of the complement of the trunk,

Cut(Tn)\Trunk(Tn) are referred to as the branches of Cut(Tn).

Roughly speaking, it has been shown in [10] that upon rescaling the graph distance of

Cut(Tn) by a factor n−1 lnn, the latter converges to the unit interval. The precise mathematical
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statement involves the notion of convergence of pointed measured metric spaces in the sense of

the Gromov-Hausdorff-Prokhorov distance.

Theorem 2 Endow Cut(Tn) with the uniform probability measure on its leaves, and normalize

the graph distance by a factor n−1 lnn. As n → ∞, the latter converges in probability in the

sense of the pointed Gromov-Hausdorff-Prokhorov distance to the unit interval [0, 1] equipped

with the usual distance and the Lebesgue measure, and pointed at 0.

Providing the background on the Gromov-Hausdorff-Prokhorov distance needed to explain

rigorously the meaning of Theorem 2 would probably drive us too far away from the purpose of

this survey, so we shall content here to give an informal explanation. After the rescaling, each

edge of Cut(Tn) has length n−1 lnn, and it follows from (11) that the length n−1 lnn × L(n)

of Trunk(Tn) converges in probability to 1 as n → ∞. Because the trunk is merely a segment,

if we equip it with the uniform probability measure on its nodes, then we obtain a space close

to the unit interval endowed with the Lebesgue measure. The heart of the argument of the

proof in [10] is to observe that in turn, Trunk(Tn) is close to Cut(Tn) when n is large, both

in the sense of Hausdorff and in the sense of Prokhorov. First, as Trunk(Tn) is a subset of

Cut(Tn), the Hausdorff distance between Trunk(Tn) and Cut(Tn) corresponds to the maximal

depth of the branches of Cut(Tn), and one thus have to verify that all the branches are small

(recall that the graph distance has been rescaled by a factor n−1 lnn). Then, one needs to

check that the uniform probability measures, respectively on the set of leaves of Cut(Tn) and

on the nodes of Trunk(Tn), are also close to each other in the sense of the Prokhorov distance

between probability measures on a metric space. This is essentially a consequence of the law

of large numbers for the random walk defined in (3), namely

lim
n→∞

Sn

n lnn
= 1 in probability;

see (10).

4.3 Applications

Theorem 2 enables us to specify the asymptotic behavior of the number of cuts needed to isolate

randomly chosen vertices of Tn. For a given integer ℓ ≥ 1 and for each n ≥ 1, let U
(n)
1 , . . . , U

(n)
ℓ

denote a sequence of i.i.d. uniform variables in {0, 1, . . . , n}. We write Yn,ℓ for the number

of random cuts which are needed to isolate U
(n)
1 , . . . , U

(n)
ℓ . The following corollary, which is

excerpt from [10], is a multi-dimensional extension of Theorem 3 of Kuba and Panholzer [29].
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Corollary 3 As n → ∞, the random vector

(

lnn

n
Yn,1, . . . ,

lnn

n
Yn,ℓ

)

converges in distribution to

(U1,max{U1, U2}, . . . ,max{U1, . . . , Uℓ}) ,

where U1, . . . , Uℓ are i.i.d. uniform [0, 1] random variables. In particular, lnn
n
Yn,ℓ converges in

distribution to a beta(ℓ, 1) variable.

Proof: Recall that U
(n)
1 , . . . , U

(n)
ℓ are ℓ independent uniform vertices of Tn. Equivalently,

the singletons {U (n)
1 }, . . . , {U (n)

ℓ } form a sequence of ℓ i.i.d. leaves of Cut(Tn) distributed

according to the uniform law. Let also U1, . . . , Ul be a sequence of ℓ i.i.d. uniform variables on

[0, 1]. Denote by Rn,ℓ the reduction of Cut(Tn) to the ℓ leaves {U (n)
1 }, . . . , {U (n)

ℓ } and its root

{0, 1, . . . , n}, i.e. Rn,ℓ is the smallest subtree of Cut(Tn) which connects these nodes. Similarly,

write Rℓ for the reduction of I to U1, . . . , Uℓ and the origin 0. Both reduced trees are viewed

as combinatorial trees structures with edge lengths, and Theorem 2 entails that n−1 lnnRn,ℓ

converges in distribution to Rℓ as n → ∞. In particular, focusing on the lengths of those

reduced trees, there is the weak convergence

lim
n→∞

(

lnn

n
|Rn,1|, . . . ,

lnn

n
|Rn,ℓ|

)

= (|R1|, . . . , |Rℓ|) in distribution. (13)

This yields our claim, as plainly |Ri| = max{U1, . . . , Ui} for every i = 1, . . . , ℓ. �

Remark. The nearly trivial proof of this corollary exemplifies the power of Theorem 2, and

one might ask for convergence of the cut-tree for other tree models. In fact, employing the

work of Haas and Miermont [20], it has been shown in [6] that if T
(c)
n is a uniform Cayley tree

of size n, then n−1/2Cut(T
(c)
n ) converges weakly in the sense of Gromov-Hausdorff-Prokhorov

to the Brownian Continuum Random Tree (CRT), see Aldous [2]. Since the total length of the

CRT reduced to the root and ℓ i.i.d leaves picked according to its mass-measure follows the

Chi(2ℓ)-distribution, one readily obtains the statement corresponding to Corollary 3 for uniform

Cayley trees ([6] and also, by different means, [1]). Bertoin and Miermont [12] extended the

convergence of the cut-tree towards the CRT to the full family of critical Galton-Watson trees

with finite variance and conditioned to have size n, in the sense of Gromov-Prokhorov. As

a corollary, one obtains a multi-dimensional extension of Janson’s limit theorem [25]. Very

recently, Dieuleveut [15] proved the analog of [12] for the case of Galton-Watson trees with

offspring distribution belonging to the domain of attraction of a stable law of index α ∈ (1, 2).
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With Corollary 3 at hand, we can also study the number Zn,ℓ of random cuts which are

needed to isolate the ℓ last vertices of Tn, i.e. n − ℓ + 1, . . . , n, where ℓ ≥ 1 is again a given

integer. As Kuba and Panholzer [29] proved in their Theorem 2, Zn,ℓ has the same asymptotic

behavior in law as Yn,ℓ. The following multi-dimensional version was given in [10], relying on

Theorem 2 of [29]. Here we give a self-contained proof of the same statement.

Corollary 4 As n → ∞, the random vector

(

lnn

n
Zn,1, . . . ,

lnn

n
Zn,ℓ

)

converges in distribution to

(U1,max{U1, U2}, . . . ,max{U1, . . . , Uℓ}) ,

where U1, . . . , Uℓ are i.i.d. uniform [0, 1] random variables.

Proof: For ease of notation, we consider only the case ℓ = 1, the general case being similar.

The random variable Zn = Zn,1 counts the number of random cuts needed to isolate the vertex

n, which is a leaf of Tn. If we write v for the parent of n in Tn, then v is uniformly distributed

on {0, 1, . . . , n− 1}, and it follows that the number Y ′
n of cuts needed to isolate v has the same

limit behavior in law as Yn−1,1. In view of Corollary 3, it suffices therefore to verify that

lim
n→∞

lnn

n
(Y ′

n − Zn) = 0 in probability.

We now consider the algorithm for isolating the vertex v. Clearly, the number of steps of this

algorithm until the edge e joining v to n is removed is distributed as Zn. In particular, we

obtain a natural coupling between Y ′
n and Zn with Zn ≤ Y ′

n. Now denote by [0;n] the segment

of Tn from the root 0 to the leaf n. It is well-known that |[0;n]| ∼ lnn in probability, see for

example Theorem 6.17 of [16]. Keeping in mind that the isolation algorithm chooses its edges

uniformly at random inside the component containing v, we can therefore concentrate on the

event that before n is isolated, at least two edges different from e are removed from the segment

[0;n]. On this event, after the second time an edge from [0;n] is removed, the vertices v and n

lie in a tree component which can be interpreted as a tree component of the second generation

in the destruction process. As a consequence of Proposition 2, the size of this tree component

multiplied by factor lnn/n converges to zero in probability. Since the size of the component

gives an upper bound on the difference Y ′
n − Zn, the claim follows. �

As another application of the cut-tree, Theorem 2 allows us to determine the number of

cuts An,ℓ which are required to disconnect (and not necessarily isolate) ℓ ≥ 2 vertices in Tn
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chosen uniformly at random. For ease of description, let us assume that the sequence of vertices

U
(n)
1 , . . . , U

(n)
ℓ is chosen uniformly at random in {0, 1, . . . , n} without replacement. Note that

in the limit n → ∞, it makes no difference whether we sample with or without replacement.

We run the algorithm for isolating the vertices U
(n)
1 , . . . , U

(n)
ℓ , with the modification that we

discard emerging tree components which contain at most one of these ℓ vertices. We stop the

algorithm when U
(n)
1 , . . . , U

(n)
ℓ are totally disconnected from each other, i.e. lie in ℓ different

tree components. Write An,2 for the (random) number of steps of this algorithm until for the

first time, the vertices U
(n)
1 , . . . , U

(n)
ℓ do no longer belong to the same tree component, further

An,3 for the number of steps until for the first time, the ℓ vertices are spread out over three

distinct tree components, and so on, up to An,ℓ, the number of steps until the ℓ vertices are

totally disconnected. We obtain the following result.

Corollary 5 As n → ∞, the random vector

(

lnn

n
An,2, . . . ,

lnn

n
An,ℓ

)

converges in distribution to
(

U(1,ℓ), . . . , U(ℓ−1,ℓ)

)

,

where U(1,ℓ) ≤ U(2,ℓ) ≤ · · · ≤ U(ℓ−1,ℓ) denote the first ℓ − 1 order statistics of an i.i.d. sequence

U1, . . . , Uℓ of uniform [0, 1] random variables.

In particular, lnn
n
An,2 converges in distribution to a beta(1, ℓ) random variable, and lnn

n
An,ℓ

converges in distribution to a beta(ℓ− 1, 2) law.

Proof: Since the branches of Cut(Tn) are asymptotically small compared to the trunk (see

e.g. Proposition 1 in [10]), with probability tending to 1 as n → ∞ the ℓ vertices U
(n)
1 , . . . , U

(n)
ℓ

are cut from the root component one after the other, i.e. in no stage of the disconnection

algorithm, a non-root tree component will contain more than one of the U
(n)
1 , . . . , U

(n)
ℓ . On this

event, writing again Rn,ℓ for the reduction of Cut(Tn) to the ℓ leaves {U (n)
1 }, . . . , {U (n)

ℓ } and

its root {0, 1, . . . , n}, the variable An,i+1 − 1 is given by the length of the path in Rn,ℓ from the

root to the ith branch point. Now, if U1, . . . , Uℓ and Rℓ are defined as in the proof of Corollary

3, the distance in Rℓ from the root 0 to the ith smallest among U1, . . . , Uℓ is distributed as

U(i,ℓ). Together with (13), this proves the claim.

Remark. With a proof similar to that of Corollary 4, one sees that the statement of Corollary

5 does also hold if An,2, . . . , An,ℓ are replaced by the analogous quantities for disconnecting the

ℓ last vertices n− ℓ+1, . . . , n. On the other hand, if one is interested in disconnecting the first

ℓ vertices 0, . . . , ℓ− 1, and if Bn,2, . . . , Bn,ℓ denote in this case the quantities corresponding to
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An,2, . . . , An,ℓ, one first observes the trivial bound

Bn,2 ≤ · · · ≤ Bn,ℓ ≤ Xn,ℓ,

where Xn,ℓ is the number of steps needed to isolate 0, 1, . . . , ℓ− 1. Now, Bn,2 can be identified

with the number of steps in the algorithm for isolating the root until for the first time, an

edge connecting one of the vertices 1, . . . , ℓ − 1 to its parent is removed. By similar means

as in the proof of Lemma 2, one readily checks that at this time, the root component has a

size of order nβ, with β beta(ℓ − 1, 1)-distributed. In particular, we see that (Xn − Bn,2) =

o(n/ ln2 n) in probability, where Xn is the number of steps to isolate the root 0. But by (12),

also (Xn −Xn,ℓ) = o(n/ ln2 n) in probability. Therefore, the variables Bn,i have the same limit

behavior in law as Xn, that is as n → ∞, ln2 n
n

Bn,i − lnn− ln lnn, i = 2, . . . , ℓ, converge all to

the same completely asymmetric Cauchy variable X defined by (8).

4.4 Ordered destruction

Here, we consider briefly another natural destruction procedure of a RRT, where instead of

removing edges in a uniform random order, we remove them deterministically in their natural

order. That is the ith edge of Tn which is removed is now the one connecting the vertex i to

its parent, for i = 1, . . . , n.

We first point at the fact that the number of ordered edge removals which are now needed to

isolate the root (recall that we only take into account edge removals inside the current subtree

containing the root) can be expressed as dn(0) = β1 + · · · + βn, where βi = 1 if the parent of

vertex i in Tn is the root 0, and 0 otherwise. That is to say that dn(0) is the degree of the root.

Further the recursive construction entails the βi are independent variables, such that each βi

has the Bernoulli distribution with parameter 1/i. As is well-known, it then follows e.g. from

Lyapunov’s central limit theorem that

lim
n→∞

dn(0)− lnn√
lnn

= N (0, 1) in distribution.

We refer to Kuba and Panholzer [27] for many more results about the degree distributions in

random recursive trees.

We then turn our attention to the cut-tree described in Section 4.2, which encodes the

ordered destruction of Tn. We write Cutord(Tn) for the latter and observe that the recursive

construction of Tn implies that in turn, Cutord(Tn) can also be defined by a simple recursive

algorithm. Specifically, Cutord(T1) is the elementary complete binary tree with two leaves, {0}
and {1}, and root {0, 1}. Once Tn and hence Cutord(Tn) have been constructed, Tn+1 is obtained
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by incorporating the vertex n+ 1 and creating a new edge between n+ 1 and its parent Un+1,

which is chosen uniformly at random in {0, 1, . . . , n}. Note that this new edge is the last one

which will be removed in the ordered destruction of Tn+1. In terms of cut-trees, this means that

the leaf {Un+1} of Cutord(Tn) should be replaced by an internal node {Un+1, n + 1} to which

two leaves are attached, namely {Un+1} and {n + 1}. Further, any block (internal node) B of

Cutord(Tn) with Un+1 ∈ B should be replaced by B ∪ {n + 1}. The resulting complete binary

tree is then distributed as Cutord(Tn+1).

If we discard labels, this recursive construction of Cutord(Tn) corresponds precisely to the

dynamics of the Markov chain on complete binary trees described e.g. in Mahmoud [30] for

Binary Search Trees (in short, BST). We record this observation in the following proposition.

Proposition 3 The combinatorial tree structure of Cutord(Tn) is that of a BST with n + 1

leaves.

BST have been intensively studied in the literature, see Drmota [16] and references therein,

and the combination with Proposition 3 yields a number of precise results about the number of

ordered cuts which are needed to isolate vertices in Tn. For instance, the so-called saturation

level H̄n in a BST is the minimal level of a leaf, and can then be viewed as the smallest number

of ordered cuts after which some vertex of Tn has been isolated. Similarly, the height Hn is the

maximal level of a leaf, and thus corresponds to the maximal number of ordered cuts needed

to isolate a vertex in Tn. The asymptotic behaviors of the height and of the saturation level of

a large BST are described in Theorem 6.47 of Drmota [16], in particular one has

lim
n→∞

H̄n

lnn
= α− and lim

n→∞

Hn

lnn
= α+

where 0 < α− < α+ are the solutions to the equation α ln(2e/α) = 1. In the same vein, the

asymptotic results of Chauvin et al. on the profile of large BST can be translated into sharp

estimates for the number of vertices of Tn which are isolated after exactly k ordered cuts (see

in particular Theorem 3.1 in [14]).

Finally, let us look at component sizes when edges are removed in their natural order. Com-

pared to uniform random edge removal, the picture is fairly different. Indeed, when removing

an edge from Tn picked uniformly at random, the size of the subtree not containing 0 is dis-

tributed according to the law of ξ conditioned on ξ ≤ n. If, in contrast, the first edge to be

removed is the edge joining 1 to its parent 0, then we know from (1) that both originating sub-

trees are of order n. Since the splitting property still holds when we remove a fixed edge, the

component sizes again inherit a branching structure. In fact, it is an immediate consequence

of the definition that the structure of the tree of component sizes corresponding to the ordered
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destruction on Tn agrees with the structure of Tn and therefore yields the same RRT of size

n+ 1.

5 Supercritical percolation on RRT’s

5.1 Asymptotic sizes of percolation clusters

In Section 3 it has become apparent that Bernoulli bond percolation on Tn is a tool to study the

sizes of tree components which appear in isolation algorithms. Here, we take in a certain sense

the opposite point of view and obtain results on the sizes of percolation clusters using what

we know about the sizes of tree components. Throughout this section, we use the term cluster

to designate connected components induced by percolation, while we use the terminology tree

components for connected components arising from isolation algorithms.

More specifically, the algorithm for isolating the root can be interpreted as a dynamical per-

colation process in which components that do not contain the root are instantaneously frozen.

Imagine a continuous-time version of the algorithm, where each edge of Tn is equipped with an

independent exponential clock of some parameter α. When a clock rings, the corresponding

edge is removed if and only if it currently belongs to the root component. At time t > 0, the

root component can naturally be viewed as the root cluster of a Bernoulli bond percolation

on Tn with parameter p = exp(−αt). Moreover, under this coupling each percolation cluster

is contained in some tree component which was generated by the isolation process up to time

t. In order to discover the percolation clusters inside a non-root tree component T ′, the latter

has to be “de-freezed”, i.e. additional edges from T ′ have to be removed. In particular, the

percolation cluster containing the root of T ′ can again be identified as the root component of

an isolation process on T ′, stopped at an appropriate time.

These observations lead in [8] to the study of the asymptotic sizes of the largest and next

largest percolation clusters of Tn, when the percolation parameter p(n) satisfies

p(n) = 1− t

lnn
+ o(1/ lnn) for t > 0 fixed. (14)

This regime corresponds precisely to the supercritical regime, in the sense that the root cluster

is the unique giant cluster, and its complement in Tn has a size of order n, too. Indeed, the

height hn of a vertex u picked uniformly at random in a RRT of size n + 1 satisfies hn ∼ lnn.

Since the probability that u is connected to the root is given by the first moment of (n+1)−1C0,n,

where C0,n denotes the size of the root cluster, one obtains

E((n+ 1)−1C0,n) = E
(

p(n)hn

)

∼ e−t.
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A similar argument shows E((n−1C0,n)
2) ∼ e−2t, which proves limn→∞ n−1C0,n = e−t in L2(P).

Let us now consider the next largest clusters in the regime (14). We write C1,n, C2,n, . . . for

the sizes of the non-root percolation clusters of Tn, ranked in the decreasing order. We quote

from [8] the following limit result.

Proposition 4 For every fixed integer j ≥ 1,

(

lnn

n
C1,n, . . . ,

lnn

n
Cj,n

)

converges in distribution as n → ∞ towards

(x1, . . . , xj),

where x1 > x2 > . . . denotes the sequence of the atoms of a Poisson random measure on (0,∞)

with intensity te−tx−2dx.

The intensity is better understood as the image of the intensity measure a−2da ⊗ e−sds on

(0,∞) × (0, t) by the map (a, s) 7→ x = e−(t−s)a. In fact, from our introductory remarks

and Proposition 2 it should be clear that the first coordinate of an atom (a, s) stands for the

asymptotic (and normalized) size of the tree component containing the percolation cluster,

while the second encodes the time when the component was separated from the root. We come

back to this point of view further below, when we look at the full family of percolation clusters.

Instead of providing more details here, let us illustrate an alternative route to prove the

proposition, which was taken in [11] to generalize the results to scale-free random trees. These

random graphs form a family of increasing trees indexed by a parameter β ∈ (−1,∞) that

grow according to a preferential attachment algorithm, see [3]. In the boundary case β → ∞,

one obtains a RRT, while in the case β = 0, the ith vertex is added to one of the first i − 1

vertices with probability proportional to its current degree. In [11], the connection of scale-free

random trees to the genealogy of Yule processes was employed, and it should not come as a

surprise that this approach can be adapted to random recursive trees. In fact, the case of

RRT’s is considerably simpler, since one has not to keep track of the degree of vertices when

edges are deleted. Let us sketch the main changes. Denote by T (s) the genealogical tree of a

standard Yule process (Yr)r≥0 at time s. Similar to Section 3 of [11], we superpose Bernoulli

bond percolation with parameter p = p(n) to this construction. Namely, if a new vertex is

attached to the genealogical tree, we delete the edge connecting this vertex to its parent with

probability 1 − p. We write T (p)(s) for the resulting combinatorial structure at time s, and

T
(p)
0 (s), T

(p)
1 (s), . . . for the sequence of the subtrees at time s, enumerated in the increasing

order of their birth times. In particular, T
(p)
0 (s) is the subtree containing the root 0, and we
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use the convention that T
(p)
j (s) = ∅ if less than j edges have been deleted up to time s. Then

∑

i≥0 |T
(p)
i (s)| = Ys. Furthermore, the process Y(p) = (|T (p)

i (s)| : s ≥ 0, i ≥ 0) is a system

of branching processes with reproduction law given by the Dirac mass at 1, where (neutral)

mutations occur at rate 1−p per unit population size. As we already pointed out in the proof of

Lemma 1, e−sYs is a martingale with terminal value given by a standard exponential variable,

and one readily obtains the analogous statements of Section 2 and 3 in [11], leading to another

proof of Proposition 4.

5.2 The tree of cluster sizes

Our concern in this part is to extend the analysis of cluster sizes to the whole family of clusters.

We start with the observation that all percolation clusters can be obtained by de-freezing

certain tree components stemming from the destruction process. Specifically, imagine a continu-

ous-time version of the destruction process, where each edge of Tn is equipped with an inde-

pendent exponential variable of parameter 1/ lnn, say. Each edge is removed at the time given

by the corresponding variable. Then we obtain at time t(n) = −(lnn) ln p(n) ∼ t a Bernoulli

bond percolation on Tn with parameter p(n). Under this coupling, the tree components which

were successively produced by the destruction process up to time t(n) contain the percolation

clusters of Tn. More precisely, each percolation cluster can be identified with a root cluster

inside such a component.

The order in which the edges were removed in this dynamical version of a Bernoulli bond

percolation suggests the following classification of the percolation clusters into generations. The

root cluster containing 0 is the only cluster of generation 0. Then, a cluster with root node

w 6= 0 is called a cluster of generation k ∈ {1, . . . , n}, if the removal of the edge with outer

endpoint w disconnected w from the root node of a cluster of generation k− 1. In other words,

immediately before the edge joining w to its parent was removed, w was still connected to the

root of a cluster of generation k − 1. Following the order in which the edges were erased, we

assign in this way to each of the percolation clusters a unique generation k ∈ {0, 1, . . . , n}.
We now define recursively a process C(n) = (C(n)

u : u ∈ U) indexed by the universal tree,

which we call the tree of cluster sizes. The sizes of the clusters of generation k will be stored

by the elements C(n)
u with |u| = k. First, C(n)

∅ is the size of the root cluster of Tn. Next, we

let C(n)
1 , C(n)

2 , . . . , C(n)
ℓ(n) denote the decreasingly ranked sequence of the sizes of the clusters of

generation 1, where ℓ(n) ≤ n, and in the case of ties, clusters of the same size are ordered

uniformly at random.

The definition is iteratively continued as follows. Assume that for some u ∈ U with 1 ≤
|u| ≤ n− 1, C(n)

u has already been defined to be the size of some cluster of generation |u| with
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Figure 4

Left: Percolation on a recursive tree with vertices labeled 0, 1, . . . , 10. The edges which were

removed by the percolation are indicated by dashed lines, and the labels on these edges

indicate the order in which they were erased.

Right: The tree of cluster sizes, with the vertex sets of the corresponding clusters. Note that

several orderings of the edge removals give rise to the same tree.

root node v, say. We then let C(n)
u1 , C(n)

u2 , . . . , C(n)
uℓu(n)

be the decreasingly ranked sequence of the

sizes of those clusters of generation |u|+1, for which the removal of the edge joining their root

w to its parent had the effect of disconnecting v from w.

We complete the definition by putting C(n)
u = 0 for all C(n)

u which have not been specified in

the above way. In particular, C(n)
u = 0 for all u with |u| > n, and if C(n)

u = 0 for some u, then

all elements of the subtree rooted at u are set to zero. An example is given in Figure 4.

According to our explanations, we expect the tree of cluster sizes to converge to a limit

object which involves the process Z from Section 4, as well as the asymptotic birth times of

the tree components. We shall now describe this limit object.

We consider independently of Z a sequence (εu : u ∈ U\{∅}) of i.i.d. standard exponential

random variables. We let z∅ = ε∅ = 0 and, writing u = (u1 · · · uk) for u of length k ≥ 1,

zu = εu1
+ εu1u2

+ . . .+ εu1···uk
.

In words, zu is the sum of all the ε-values along the branch from the root to u and should be

viewed as the time at which the component indexed by the node u appears.

Then, the t-thinning of ((Zu, zu) : u ∈ U) is the process ((Z t
u, z

t
u) : u ∈ U) which is obtained

by “squeezing-out” the elements (Zu, zu) with zu ≥ t. Formally, conditionally on (zu : u ∈ U),
we define iteratively for each u ∈ U a map γu : N0 → N0 ∪ {∞} by setting γu(0) = 0, and then

for i = 1, 2, . . ., γu(i) = inf{j > γu(i − 1) : zuj < t}, with γu(i) = ∞ if the infimum is taken

over the empty set.
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Note that for almost all realizations of the sequence (zu : u ∈ U), any zu with zu < t has

infinitely many children zuj with zuj < t. On this event, we build out of the maps γu iteratively

a global injective map γ : U → U by setting γ(∅) = ∅, and then, given γ(u) for u ∈ U ,
γ(uj) = γ(u)γγ(u)(j) for j ∈ N. We then define (Z t

u, z
t
u) = (Zγ(u), zγ(u)) for all u ∈ U . For

completeness, we may simply put (Z t
u, z

t
u) = (Zu, zu) on the set of measure zero where γ is not

well-defined.

We now combine asymptotic component sizes with birth times by putting Gu = Z t
ue

−(t−ztu).

Similarly to the construction above for B(n)↓, we denote by G↓ = (G↓
u : u ∈ U) the process where

the children (Guj)j∈N of each element Gu are ranked in the decreasing order of their sizes, under

preservation of the parent-child relationship.

Theorem 3 As n → ∞, there is the convergence in the sense of finite-dimensional distribu-

tions,

G(n) =

(

(lnn)|u|

n
C(n)
u : u ∈ U

)

=⇒ G↓.

Remark. Basic properties of Poisson random measures entail that the law of ((Z t
u, z

t
u) : u ∈ U)

can also be specified as follows.

(a) (Z t
∅, z

t
∅) = (1, 0) almost surely;

(b) for every k = 0, 1, 2, . . . , conditionally on ((Z t
v, z

t
v) : v ∈ U , |v| ≤ k), the sequences

((Z t
uj, z

t
uj))j∈N for the vertices u ∈ U at generation |u| = k are independent, and each

sequence ((Z t
uj, z

t
uj−ztu))j∈N is distributed as the family of the atoms of a Poisson random

measure on (0,∞)× (0, t− ztu) with intensity Z t
ua

−2da⊗ e−rdr, ranked in the decreasing

order of the first coordinate.

Theorem 3 extends Proposition 4. Remark that the ℓ largest non-root clusters are given by

the ℓ largest clusters of the first generation. The splitting property enables us to transport the

arguments given in [8] from one generation to the next. We refer to [5] for more details.

5.3 Fluctuations of the root cluster

We finally take a closer look at the size of the root cluster C0,n for supercritical percolation

with parameter

p(n) = 1− t

lnn
.

As we have already discussed, C0,n satisfies a law of large numbers, but as we will point out

here, C0,n exhibits non-Gaussian fluctuations. This should be seen in sharp contrast to other

graph models, were asymptotic normality of the giant cluster has been established, e.g. for
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the complete graph on n vertices and percolation parameter c/n, c > 1 fixed (Stephanov [38],

Pittel [36], Barraez et al. [4]).

For RRT’s, the fluctuations can be obtained from a recent result of Schweinsberg [37]. Among

other things, he studied how the number of blocks in the Bolthausen-Sznitman coalescent

changes over time. The Bolthausen-Sznitman coalescent was introduced in [13] in the context

of spin glasses, and Goldschmidt and Martin [19] discovered the following connection to the

random cutting of RRT’s: Equip each edge of a RRT of size n on the vertex set {1, . . . , n} with

an independent standard exponential clock. If a clock rings, delete the corresponding edge, say

e, and the whole subtree rooted at the endpoint of e most distant from the root 1. Furthermore,

replace the label of the vertex of e which is closer to the root 1, say i, by the label set consisting

of i and all the vertex labels of the removed subtree. Then the sets of labels form a partition

of {1, . . . , n}, which evolves according to the dynamics of the Bolthausen-Sznitman coalescent

started from n blocks {1}, . . . , {n} (see Proposition 2.2 of [19] for details).

Note that in this framework, the variable Xn counting the number of steps in the algorithm

for isolating the root can be interpreted as the number of collision events which take place until

there is just one block left.

Theorem 1.7 in [37], rephrased in terms of C0,n, now reads as follows.

Theorem 4 (Schweinsberg [37]) There is the weak convergence

(

n−1C0,n − e−t
)

lnn− te−t ln lnn =⇒ te−t(X − ln t),

where X is a completely asymmetric Cauchy variable whose law is determined by (8).

This statement was re-proved in [9], with a different approach which does not rely on the

Bolthausen-Sznitman coalescent. Instead, three different growth phases of a RRT Tn are con-

sidered, and the effect of percolation is studied in each of these phases. This approach makes

again use of the coupling of Iksanov and Möhle and the connection to Yule processes, providing

an intuitive explanation for the correction terms in the statement.
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[23] Iksanov, A. and Möhle, M. A probabilistic proof of a weak limit law for the number of cuts

needed to isolate the root of a random recursive tree. Electron. Comm. Probab. 12 (2007),

28-35.

[24] Janson, S. Random records and cuttings in complete binary trees. In: M. Drmota, P. Fla-

jolet, D. Gardy, and B. Gittenberger (Eds). Mathematics and Computer Science III, Al-

gorithms, Trees, Combinatorics and Probabilities (Vienna 2004), Birkhäuser, Basel (2004)
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