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Abstract.   The purpose of this study is to calculate Stokes flow structures in relation to flow rate 
distribution in a junction of four orthogonal channels.   Particular attention was paid to the existence of 
recirculation flow inside the channels for low Reynolds numbers. The presence of this recirculation flow 
may be observed, but only when the flow rate is relatively low in at least one of the branches.   
 
Keywords.  Channels; Junction; Flow branches; Stokes eddies; Recirculation flow; Low Reynolds 
number;  Microflows 

1. Introduction 

The problem of viscous flow in a junction of flow branches is encountered in many fundamental and applied 

situations. Therefore, an understanding of the multiscale transport mechanisms at work at different stages in 

channel networks is of fundamental interest. Dispersion phenomena in a fracture network is a large-scale 

example for which the impact of the junction is considered to be a heterogeneity. [Adler and Brenner (1984); 

Adler and Thovert (1999); Berkowitz et al. (1994);  Bruderer and Barnabé (2001); Bryden and Brenner (1996); 

Dentz and Berkowitz (2003); Mourzenko et al. (2002); Park et al. (1999, 2001, 2003)]. On a microscopic scale, 

the junction is continuous but microhydrodynamic effects can cause recirculation, and the presence of these local 

hydrodynamic eddies causes nonuniform convective mass transport, as shown in a number of studies of wet 

chemical etching, and in microelectronics [Occhialini and Higdon (1992); Kondo and Fukui (1998); Driesen et 

al. (2000); Georgiado et al. (2000)]. Flow in channel networks: has numerous applications; larger-scale 

examples include pollutant transport, predictive tools for modelling water supply resources, and surface waters, 

whereas small-scale examples include flow in capillary networks (human body, microfluidics), the cooling of 

electronic compounds, and chemical etching for the process  of fabrication of electronic circuits.  This paper 

focuses on the problem of flow in channel networks on a microscopic scale, with particular attention accorded to 

the conditions under which eddies arise in Stokes regime. 

 

Recirculation motion in viscous flow is a problem of long-standing interest [Moffatt (1964), Taneda (1979), 

O'Neill (1983), Bourot (1984), Hellou  and  Coutanceau (1992), Pozrikidis (1992), Hajjam (1996), Wang (1996, 

2002), Shankar et al.(2003)]. Most of these works concern individual channels or cavities, whereas the 

recirculation flow in a network of channels has received much less attention. Jeong (2001) analyzed the flow in a 

compartmented channel; comprising an infinite channel in which a semi-infinite wall is placed on its axis 
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generating three semi-infinite channels. He studied the structure of the flow over a wide range of flow rates, 

showing the formation of recirculation motion in the channel of low flow rate, and illustrated how the fluid flows 

out by surrounding this motion. 

In this study, we investigate the possible Stokes flow structures in a fluid domain formed by four orthogonal 

channels or flow branches. We present a complete study covering a variety of flow rate distributions, with 

particular analysis of cases which exhibited eddies.   

 

2.   Fluid flow formulation 

The fluid flow domain indicated in figure 1a is formed by orthogonal flow channels of the same width 2y0, 

connected by walls whose equation is expressed in a local frame by the following equation:  

     1
b
Y

a
X m2

L
m2

L =⎟
⎠
⎞

⎜
⎝
⎛+⎟
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⎛      (1)  11 
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18 

where XL and YL are the coordinates in the local frame indicated in figure 1.  The parameters a and b represent 

the dimensions shown in figure 1 which permit to calculate the shape of the curve of connection given by 

equation (1). The values of a and b used are a=b=4y0 . To avoid errors in calculation, the shape described by this 

equation contains no sharp corners. In our case, we chose m=4, which leads to the shape described in figure 1. 

 

A viscous fluid of flow rates q1, α |q1|, β|q1| and γ|q1| respectively, flows through the four branches; where α, 

 β and γ are dimensionless flow rates  in branches 2, 3 and 4 with respect to the real flow rate |q1| in branch 1.  

The sign of α, β and γ must be consistent with the sign of ii nU rr
. , where iU

r
 represents the mean normal 

velocity vector at the inlet of every branch, and the external normal is 

19 

inr .  Furthermore, the values α , β and γ 

must respect the law of conservation as defined by the following equation: 

20 

21 

       01 =+++− γβα    (2) 22 

23 

24 

25 

 

The fluid is assumed to be Newtonian and isothermal, with viscosity μ and density ρ constant.  Let Ui be a 

characteristic value of the mean velocity in each branch.  The local Reynolds number is defined as: 

      
μ

ρ
0

yU2
Re i

i =     (3) 26 
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It is assumed to be less than unity in order to meet the requirements for Stokes regime. More detailed 

information about Stokes flow can be found in the following references: [Hasimoto and Sano (1980); Sangani 

and Acrivos (1982); Happel and Brenner (1986); Pozrikidis (1992); Hellou and Coutanceau (1992); Hajjam 

(1996); Higdon and Ford  (1996); Wang (1996, 2002, 2009, 2010)]. 

Since it is assumed that the flow is both slow and two dimensional, we chose to solve the problem using the 

stream function.  When inertia forces are negligible compared to viscous forces, the equation of two dimensional 

viscous flow known as Stokes equation  is:   

        0=ΔΔΨ                          (4)   8 

9 

10 

where Ψ is the stream function of the flow.  In the case of a parallel-walled channel, the solutions to equation (4) 

are found respectively in the conditions of a plane Poiseuille flow (parabolic velocity profile), antisymmetric 

(zero mean rate flow and ),(),( yxyx −=ΨΨ ) and symmetric flow (zero mean rate flow and 11 

),(),( yxyx −−= ΨΨ ).  The corresponding stream functions   (
iPΨ , 

iAΨ , 
iSΨ ) for each branch are given in 

appendix A; equations A6, A7 and A8.  The general solution is the combination of 

12 

iPΨ , 
iAΨ , 

iSΨ . 

Furthermore, a  solution 

13 

0Ψ  is found for the flow in the junction of the flow branches; it is also given in 

appendix A; equation A9.  

14 

15 

16  

To determine the unknown coefficients of the stream function solutions ( 0Ψ , 
iAΨ , 

iSΨ ) corresponding to 

each branch, and the stream function 

17 

0Ψ  in the junction,  the following boundary conditions must be satisfied:  18 

19     for branches 1 and 3                for branches 2 and 4 
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21 

22 

where the velocity components u and v, the pressure  p and the vorticity ξ are calculated using the following 

relationhips: 

y
u

∂
∂

=
Ψ

, 
x

v
∂

∂
−=

Ψ
, ΔΨξ −= ,  
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p

∂
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∂
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   (6) 23 
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It is worth noting that the stream function 
iPΨ  is entirely known when the flow rate in the corresponding 

channel is done. These boundary conditions result, on the one hand, from the non-slip conditions on the walls of 

the flow branches, and on the other hand, from matching the flow branches to the flow junction. The matching 

conditions correspond to the continuity of the velocity vectors and the stress components, and it is easy to show 

that the continuity of the stress components leads to equality of pressure and vorticity. In addition to the 

conditions represented by equations (6), we must write the non-slip conditions on the curved parts of the 

boundaries (corners on figure 1) denoted by cwi  . 

1 
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These conditions are: 

0)y,x(v  ,0)y,x(u
iiii cwcw0cwcw0 ==    (7)   9 

10 

11 

The quadratic minimisation method described in appendix B is applied to satisfy all the boundary conditions. 

The resulting equations are also developed in appendix B. The number of coefficients to be calculated is 

 where N0 , and   are the number of terms retained for the functions )NN(NN
ii S

4

1i
A0 ∑

=
++= iAN

iSN 0Ψ , 12 

iAΨ and  
iSΨ  respectively.   13 

14 

15 

16 

The width of the branches being equal, it was simple to take the same number of points on their interfaces with 

the central domain. Furthermore, the same number of terms in the series (A7) is considered for each branch.  The 

system of equations resulting from quadratic minimization is solved using gauss elimination.  The choice 

of , ,  and40mi = 40m0 = 20N
iA = 20N

iS =  is considered to be satisfactory to calculate the motion with 

accuracy. 
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3. Flow structures 

The conservation of mass and the hypothesis of two-dimensional Stokes flow lead to three independent 

configurations for the flow directions shown in figure 2. A parametric study is conducted by varying the flow 

rates in the channels. However, in order to limit the cases studied, particular flow rate distributions were 

analysed :  α =γ  and β variable, or α = 1 and β = ± γ  variable. Moreover, other original structures were selected.  

 

3.1  Configuration 1 (α=γ >0,  β ≥ 0 ) 

For β = 0, a flow of symmetrical cellular structure is established in branch 3, as illustrated in figure 3.1.  The 

fluid flows with open streamlines through branches 1, 2 and 4, however, the structure of the flow in branch 3 is 

radically different because of the occurrence of a recirculation flow as successive cells, symmetric to the axis, 
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are bounded by separating streamlines, which are attached to the walls of this branch. By increasing β slightly, 

the separating streamlines detach from the walls and the symmetrical cellular flow is consequently made up of 

only two recirculation cells, which are now located near the axis rather than being attached to the walls.  The 

fluid flows out of branch 3 by circumventing these cells.  The recirculation flow disappears when β  is greater 

than approximately 0.001.  In branch 3, a structure was obtained in which all streamlines were open. Hence, the 

flow in the overall domain is composed of three flows, distinguished by two separation lines in the vicinity of the 

vertices of the junction, attached to the walls of branch 3; the separation lines are attached to these vertices for 

β=1/3.  When β  approaches 0.98 (in this case α  and γ  approach 0.01), two cells appear, each of which is 

attached to the lower wall of both branches 2 and 4.  This cell grows as β  increases.  Finally for β = 1 (α =γ = 0) 

we obtain purely recirculation flow in branches 2 and 4. This flow is composed of a succession of antisymmetric 

eddies, whose properties were reported by Hellou and Coutanceau [1992].   

 

In order to show other possible structures for configuration 1, we have selected two examples given in figure 

3.2. Respectively, these examples show a case in which recirculation occurs in adjacent channels, and a case of 

dissymmetric structure (α ≠β ≠γ ). 

 

Flow reversal in branches 2 or 4 (inversion of the sign of α or γ)  leads to configuration 2, as seen in figure 2, 

while inversion of flow β leads to configuration 3. However, simultaneous reversing of flows α and β or β and γ 

or α and γ results in structures conforming to configuration 1. Figure 3.3 shows examples of structures when α 

and γ are reversed. It is worth noting that in this situation β is necessarily greater than 1. Thus, the structures 

obtained in figure 3.1 for β between 0 and 1, are now obtained for β∈ [1,  ∞[. For β=1, the structure in figure 3.1 

remains unchanged when the flows α and γ  are reversed. Nevertheless, the structures obtained when β approach 

zero exhibiting symmetric cells in branch number 3 (figure 3.1), can be obtained for flow reversal only for large 

values of |α| and |γ | as shown in figure 3.3 where flow rates are 1000 times greater than in branch 1. This 

example shows a structure closely similar to the structure shown in figure 3.1 corresponding to β=0.0005 but 

this situation would not be realistic under Stokes regime conditions. Finally, simultaneous inversion of the sign 

of α, β  and γ  leads to an impossible situation under 2D conditions. 

 

3.2.  Configuration 2 (α >0, γ = −β,  β ≥ 0 ) 
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The flow rate magnitude in branches 1 and 2 are assumed to be fixed at unity, and the flow rate magnitude 

β and γ  vary in the range [0, 1].  For β= 1,  the flow in the central field is divided into two equal, symmetrical 

parts either side of the straight line joining the opposite vertices common to branches 2-3 and branches 1-4 

(figure 4.1).  When β decreases, this line maintains a curved shape and moves towards the branches with the 

lowest flow rate. Recirculation cells appear in the channels 2 and 3 for β= 0.02 (or γ=- 0.02).  These cells grow 

in size as β decreases, producing tortuous streamlines in the outflow.  If β  is greater than unity, the structures 

obtained for β∈ [0, 1]  are now found for β∈ [1,∞].  

 

Figure 4.1 is completed by the structures given in figure 4.2 obtained when α = -γ and β = 1. In this case, the 

recirculation flow is found to be developed in the opposite channels 2 and 4 for flow rate α less than 0.02 and the 

corresponding cells are attached to opposite walls.  

 

3.3.  Configuration 3 (α > 0, γ = − β, β ≤ 0 ) 

This configuration is of interest as it shows the structure for the flows in counter current.  For | β | = 1,  the flow 

is divided into four equal parts, separated by the axes of the flow branches (see figure 5.1).  The centre of the 

junction is a saddle point (i.e. a point of intersection of two streamlines). When | β | decreases, the saddle point 

moves towards the common vertex between the branches of low flow rate. When | β | is close to 0.1, two 

separation streamlines become attached to the adjacent walls of the branches in which low flow occurs. 

Consequently, the communication between these branches is suppressed.  For |β | in the order of 0.02, a cell 

attached to the other wall of each of these branches (walls connected respectively with branches 1 and 2)  

appears, this cell will grow as | β |decreases.  At the limit (β=0), an antisymmetric sequence of eddies is formed. 

 

As was the case for the previous configurations, we complete the illustrations with the cases presented in figure 

5.2 corresponding to β = -1 and a ratio γ /α variable. Increasing this ratio leads to displacement of the saddle 

point along the axis of branches 2 and 4 towards the branch of small flow rate. In addition, we observe an 

original structure in the branch of small flow rate exhibiting two cells which each of them is attached separately 

to a wall of this branch. It is obvious that these cells will grow when γ /α more and more . A coalescing process 

would happen resulting in one cell of symmetric structure. 
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4. Conclusion 

We have conducted a study of the Stokes flow structures in flow branches linked by a junction, taking into 

consideration various flow rate distributions. The structures presented correspond to three possible 

configurations under 2D conditions, and particular streamline patterns exhibiting eddies were found. Such eddies 

develop within branches characterized by low or zero flow.  For zero flow rate,  these structures exhibit 

antisymmetric or symmetric closed streamlines, occupying the overall width of the channels in which they 

appear. For small flow rates, these eddies form original structures, occupying a part of the channel branches in 

which they develop, thus forcing the streamlines to surround them, creating positive pressure gradients. 

Although these eddy structures appear only in a limited range of flow rate, such structures may have 

consequences on transport processes.  
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Appendix A: Resolution of the Stokes equation 0=ΔΔΨ  1 

2 

3 

 

A1.  General solution 

The separation of variables method is used to solve the following equations 01 =ΔΨ  and  . Thus, 

writing 

1ΨΔΨ =4 

)y()x(1 ΘΦΨ =  the following equations are obtained: 5 

6         (A1)  
0)y()y(''

 0)x()x(''
2

2

=+

=−

ΘσΘ

ΦσΦ

where the constant σ may be either real or complex.  The solution of this system leads to the following 

expressions respectively for  

7 

0=σ  and 0≠σ :   8 

   DxyCyBxA
01 +++=Ψ       (A2)  9 

   )eDeC)(eBeA( ) yiy ix x 
1

σ
σ

σ
σ

σ
σ

σ

σ
σσ

Ψ −− ++=∑   (A3)  10 

11 where A, B, C, D  are real coefficients and are either real or complex coefficients.  The function σσσσ D ,C ,B ,A

σ
ΨΨΨ 111 0

+=  is harmonic, and consequently also biharmonic.  We can easily show that the functions 

 are biharmonic.  The sought stream function 

12 

1
22

11 )y(x  ,y  ,x ΨΨΨ + Ψ which satisfies  is thus:  0=ΔΔΨ13 

14  

1
22

111 )y(xyx ΨΨΨΨΨ ++++=    (A4) 15 

16 

17 

18 

19 

 

A2.  Solution in the case of a parallel-walled channel 

 

For a parallel-walled channel i,  the stream function (A4) is written as:   

20    
iii SAPi ΨΨΨΨ ++=      (A5) 

which reveals, on the one hand, a flow with non-zero mean rate,  represented by 
iPΨ , and on the other hand, the 

combination of two flows with zero mean rate, represented by 

21 

iAΨ and 
iSΨ .  The stream function

iAΨ is 

antisymmetric (

22 

)y,x(  )y,x( iiAiiiA i
−=ΨΨ ) while the stream function 

iSΨ is symmetric 

(

23 

)y,x( )y,x( iiiSiiSi
−−= ΨΨ ).  The co-ordinates (xi, yi)  are  dimensionless local co-ordinates (xi along  the axis 

of the channel i).   

24 

25 
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To ensure non-slip wall conditions, we must suppress the terms factor of x in equations (A2) and (A4).  When 

the flow rate is non-zero, the combination of the equations A2 and A4 gives the following solution:  

1 

2 

    )y
3
y(q

4
3A i

3
i*

iiPi
−−=Ψ      (A6) 3 

4 

5 

6 

which represents the dimensionless stream function of a flow of parabolic velocity profile (plane Poiseuille flow) 

corresponding to the dimensionless flow rate ; A*
iq i is an arbitrary constant. 

 

 When the flow rate is zero, the expressions of 
iAΨ and 

iSΨ are determined by considering the combination 7 

σσ
ΨΨ 11 y+  .  Writing μλσ i+= and after setting in real form, one finds:   8 
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The upper and lower signs of (A7) relate to the functions 
iAΨ and 

iSΨ  respectively.   

The parameters λ n  and μ n   are the eigenvalues of λ  and μ  which satisfy the following equations:   
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13 It is understood that equations (A7) are made non dimensional using  y0  and the absolute value of the flow 

rate
1

q  as references.  14 

The pairs ),(  ),,(  ),,( nnnnnn μλμλμλ −−−−  also satisfy equation (10).  We consider the pair 15 

)0,0( nn >> μλ for the negative semi-infinite field 0xi ≤<∞−  and 1y1 i ≤≤−  .   The pair ),( nn μλ −−  is 

valid for the positive semi-infinite field.  As coefficients B

16 

BBn  and Cn  are arbitrary, the pairs ),(  ),,( nnnn μλμλ −−  

do not change equation (A7).  It is worth noting that the values of 

17 

),( nn μλ  were calculated up to n=40 with a 

high degree of accuracy  [Bourot and Moreau, 1987].   

18 

19 

20  

Because equations (A8) are periodic, the stream functions 
iAΨ  and 

iSΨ of each channel are zero on certain lines 

joining the walls of this branch.  These lines are located periodically along this branch for each value of n.  Thus, 
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a flow with zero mean rate in a branch presents an infinite succession of lines known as separation lines 

delimiting recirculation cells [O’Neill, 1983; Bourot, 1984; Hellou and Coutanceau, 1992; Hellou, 2001].  

Previously, Moffatt [1964] showed that slow flow in a sharp corner presents this phenomenon when the angle is 

smaller than 146°3. 

 

A3.  Solution in the junction of the channels 

 

In the junction, called domain 0, the flow rate is non-zero.  In addition, it is assumed that no separation 

solutions can exist.  Therefore, according to (A2) and (A4), the stream function representing the flow in this field 

is given by:   

pm

p,m
p,m0 yxA∑=Ψ        (A9) 11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

where Am,p  are real coefficients, m and p are integers ranging from 0  to 3.  The pairs (2, 2),  (2, 3), (3, 2)  and  

(3, 3) are not permitted because they do not satisfy equation (A9). 

 

Appendix B: Quadratic minimisation method 

 

Let gi and g0 represent the expressions of velocity components, pressure or vorticity in channels 1 to 4 and in 

the junction domain respectively.  The expressions of cumulative quadratic errors committed on the matching 

conditions (equation (5)), and on the boundary conditions in the junction domain, equation (7), are respectively:  
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where mi and m0 respectively are the number of points on each interface and on the walls of the junction domain.  

The minimization of these errors is expressed by:    
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25 where Aj are the unknown coefficients.  Let us write gi and go in the following forms: 
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Of course in this setting, conveniently used to condense the expressions of velocity components, pressure and 

vorticity, the functions ,  and are different according to which of the aforementioned expressions they 

represent. They are obtained without any particular difficulty using equations (A6), (A7) and the relationships 

(7).  Applying minimization leads to writing the system of equations in the following condensed form:   
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where m is the total number of minimization points.  In this system, indices 0 and i, corresponding to the five 

domains, do not appear because of the classification of all the coefficients from 1 to N.  In the calculation, this 

classification requires the cancellation on each interface of the functions concerning the other interfaces.   

 

Notation  

  

an              complex roots of  equations     sin2ay0=±2ay0

p               Pressure 

V
r

 velocity vector  

u          x-velocity component 

v y-velocity component 

y0                        half width of a channel i 

Ui                    mean velocity in a channel i  

qi
                  flow rate in a channel numbered i 

0i

i*
i yU2

qq =  
non dimensioned flow rate 

α, β, γ    
values of the flow rates in the channels relatively to the flow 

rate of reference ( e.g. q1) 
1

3

1

3

1

2
q

q ,q
q ,q

q === γβα   

Δ               Laplacian operator 

λn, μn          real and complex values of the roots an 

Ψ  stream function 

ξ                Vorticity 
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Figure 1. Delineation of the  junction of four flow branches. The parabolic dashed lines 

represent the velocity profile at the inlet (far from the junction) if the flow rate is non null 
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Figure 2. Schematisation of the flow directions for a two-dimensional junction of flow branches 
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Figure 3.1 Streamline patterns for flow rates corresponding to configuration 1 under the 

following conditions :  –1, α > 0, β  > 0,γ=α. 
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Figure 3.2 Streamline patterns for flow rates corresponding to configuration 1 under the 
following conditions :  (a) –1, α > 0, α = β, γ > 0; (b) all the flow rates are different 
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Figure 3.3 Streamline patterns for flow rates corresponding to configuration 1 reversed, 
under the following conditions :   –1, α < 0, β >1, α = γ 
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Figure 4.1. Streamline patterns for flow rates corresponding to configuration 2, under the 
following conditions :   -1, α = 1, β  > 0, γ =-β.  
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Figure 4. Streamline patterns for the flow of configuration 2 

Figure 4.2  Streamline patterns for flow rates corresponding to configuration 2 under 
the following conditions : –1, α > 0, β = 1, α = - γ 
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Figure 5.1. Streamline patterns for flow rates corresponding to configuration 1 under the 

following conditions :   α =1,  β  < 0, γ =-β  
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Figure 5.2.  Two examples of streamline patterns when all the flow rates are different  

 

 

Figure 5 2/2 


	Hellou_09-053.pdf
	 
	4. Conclusion 
	5.  References 


	Figures 1-2.pdf
	Figures 3.pdf
	Figures 4.pdf
	Figure 5.pdf

