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Abstract. Geometric inversion is applied to two-dimensional Stokes flow in the objective to find new Stokes 

flow solutions. The principle of this method and the relations between the reference and inverse fluid velocity 

fields are presented. They are followed by applications to the flow between two parallel plates induced by a 

rotating or a translating cylinder. Thus hydrodynamic characteristics of flow around circular bodies obtained 

by inversion of the plates are straightforward deduced. Typically fluid flow patterns around two circular 

cylinders in contact placed in the centre of a rotating or a translating circular cylinder are illustrated.  
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1. Introduction 

Geometric inversion is a type of transformation of the Euclidean plane. This transformation 

preserve angles and map generalized circles into generalized circles, where a generalized circle 

means either a circle or a line (a circle with infinite radius). One of the main properties of this 

method is the transformation of a straight line to a circle. Many difficult problems in geometry 

become much more tractable when an inversion is applied.  

 

In engineering, the geometric inversion could be very useful to solve complex problems. For 

example, in fluid mechanics, the equation of two-dimensional Stokes flow remains valid in the 

new coordinates system obtained by inversion. Thus two-dimensional Stokes flow around certain 

bodies presenting circular shape appears less difficult to calculate by inversion of flow in 

channels of parallel walls than by direct calculation using polar coordinates. Although this 

method is rather general, we will apply it to the case of cellular flows (recirculation flow) 

presenting viscous eddies.  In fact these flows are characterized by the presence of dividing 

streamlines (separating streamlines) which also give by inversion in the new geometry dividing 

streamlines.  

 

Much attention has been paid to the steady viscous flow between parallel plates at low 

Reynolds number (Stokes flow) because of its theoretical importance and also its engineering 

applications. The particular case of the flow with vanishing velocity to zero when ∞→x
r

(i.e. 

flow with mean rate equal zero) has been widely studied by authors motivated among others by 

separation phenomena. Thus, after the pioneering work of [1], which presented predictions of 

cellular motion in Stokes regime between parallel walls, theoretical works like those of [2] and 

[3] demonstrate the existence of such flow. They showed that, independently of the motion 

source, any two-dimensional flow with mean rate null in a channel presented necessarily cellular 
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motion composed by successive counter rotating eddies bounded by separating streamlines 

reattaching the walls. In order to examine the influence of the motion source, accurate 

computations for various motion sources have been performed  [4-16]. Stokes flows and 

particularly cellular flows could be encountered in numerous applications in physics, biophysics, 

chemistry and MEMS (Micro and ElectroMechanical Systems) where microflows appear. The 

particularity of these applications is that they use microchannels[17-19]. Thus, several theoretical 

and numerical results are available. They could be useful to obtain by inversion transformation 

the structure and the features of Stokes flows around bodies of circular shape. This 

transformation is also useful to obtain flow around bodies with complex shape for which the 

direct calculation could be tiresome.  

 

2. Geometric inversion- Definitions and properties 

Inversion is the process of transforming points M to a corresponding set of points N known 

as their inverse points. Two points M and N are said to be inverses with respect to an inversion 

circle having inversion centre O  and inversion radius R0 if N is the perpendicular foot of the 

altitude of the triangle OQM, where Q is a point on the circle such that OQ ┴QM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Geometric inversion - definition 
 

 

If M and N are inverse points, then the line L through M and perpendicular to OM is called a 

"polar" with respect to point N, known as the "inversion pole". In addition, the curve to which a 

given curve is transformed under inversion is called its inverse curve (or more simply, its 

"inverse").  

From similar triangles, it immediately follows that the inverse points M and N obey to: 

      
ON

R

R

OM 0

0

=    or ONOMR
2

0 ×=    (1)  

where the quantity 2

0R  is known as the circle power or inversion power [20].  

The general equation for the inverse of the point )y,x(M relative to the inversion circle with 

inversion centre )y,x(O 00  and inversion radius 0R is given by  
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Note that a point on the circumference of the inversion circle is its own inverse point. In 

addition, any angle inverts to an opposite angle.  

 

Treating lines as circles of infinite radius, all circles invert to circles.  Furthermore, any two 

nonintersecting circles can be inverted into concentric circles by taking the inversion centre at 

one of the two so-called limiting points of the two circles [20], and any two circles can be 

inverted into themselves or into two equal circles. Orthogonal circles invert to orthogonal circles. 

The inversion circle itself, circles orthogonal to it, and lines through the inversion centre are 

invariant under inversion. Furthermore, inversion is a conformal map, so angles are preserved. 

Note that a point on the circumference of the inversion circle is its own inverse point. In 

addition, any angle inverts to an opposite angle.  

The property that inversion transforms circles and lines to circles or lines (and that inversion is 

conformal) makes it an extremely important tool of plane analytic geometry. Figure 2 shows a 

simple example of application of geometric inversion. 

 

 

 

 

 

 

 

 

Figure 2 Inversion of two parallel straight lines 

 

The circle with dashed lines is the inversion circle of centre O and radius 0R . Let take for 

example 1R0 = , the distance 2OM =  and the distance 5.0OP = . Let’s make inversion of the 

straight lines L and L’ with centre O and power 2

0R , we obtain the circles C and C’. The points N 

and Q are respectively the inverse images of the points M and P. The distances ON and OQ, 

calculated by using Eq. (1), are 5.0ON =  and 2OQ = . Thus the radii of the circles C and C’ are 

respectively 25.OR =  and 1R
' = . 

 

In figure 3 we present the classical example of inversion of a square relatively to a circle 

inscribed in this square. This inversion image becomes more complex if the number of squares is 

increased (see Mathematica Notebook presenting inversion of a grid). 
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Figure 3 Inversion of a square. The inversion centre coincides with the square centre. 

 

Figure 4 illustrates the inversion of parabola. This transformation leads to a cardiod defined in 

figure 4c. It’s worth to note that the change of the inversion centre leads to other figures of 

inversion. 

 

  

 
a 

inversion centre coincides with 

the focus of the parabola 

 

b 

inversion centre coincides with 

the cusp of the parabola 

 

c 

Cardioid can be defined as the 

trace of a point on a circle that 

rolls around a fixed circle of 

the same size without slipping. 
 

Figure 4  Inversion of a parabola (1996 © 2010 by Xah Lee). 

 

 

3. Inversion transformation of Stokes flow 

 Let  )z(ψ  be the stream function of a plane Stokes flow denoted F0 where )iexp(rz θ= . 

This flow is governed by the biharmonic equation : 

    0=ψΔΔ        (3) 

The function )z(ψ  is necessarily expressed by:  

     )z(X)z(X)z( z )z(z)z( +++= ϕϕψ    (4) 

R0 
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(see[21]). Introducing the complex variable
z

a
Z

2= , it follows that the function 

)z(
a

ZZ
)Z(

2
ψφ = can be written in a form similar to Eq. (3). Consequently )Z(φ  is likewise 

biharmonic and represents therefore the stream function of an other Stokes flow  denoted 

thereafter F1. 

 

Let ),r(M θ be a point of F0 and ),(N θρ  its homologous in the flow field F1 obtained by the 

positive inversion transformation of power a and centre O defined by Eq. (1). It follows:  

 
2

ar =ρ  (5) 

And it’s easy to show that :   

)M(
a

)N(
2

2 ψρφ =  (6) 

The velocity components in polar coordinates framework of centre O on the homologous points 

are readily found to be: 

    )M(V)N(V r=ρ  ; 
r

)M(2
)M(V)N(V

ψ
θθ −−=    (7) 

Hereafter, flow on which we apply the inversion method (Flow F0) is called reference flow. 

Now let F0 be a reference flow around a fixed body C0 and F1 is the equivalent flow in the 

proximity of the inverse fixed body C1. Assuming that the body C1 is at rest, by virtue of Eq. (7), 

the non slip conditions on C1 are satisfied only for 0=ψ on C0. However, we can add a constant 

which yields 0=ψ  on this body without modifying F0. In this condition, an additional velocity 

is therefore added to F1 in order to ensure the non slip conditions on C1. Hence, the knowledge 

of the stream function field of F0 permits to determine the features of F1. Nevertheless, the 

inversion of a streamline of F0 does not give a streamline of F1 unless this streamline is a circle 

or of value 0=ψ . Thus in order to draw the streamlines, it would be necessary to calculate the 

stream function field of F1 by using Eq. (6) and one can deduce straightforward the desired 

streamlines of F1. It is worth noting that the relations of equivalence between F0 and F1 for the 

other physical quantities (velocity, pressure, vorticity,…) can be determined without any 

particular problem. 

 

4. Characteristics of the cellular flow between parallel plane walls 

The stream function of two dimensional Stokes flow with zero mean rate between parallel 

walls of a long rectangular channel has been found by [3], [5], [7] and [8] to be : ∑ −=
n

n

x

n  )y(GeC)y,x( nαψ    (8) 

where the functions Gn(y) have the following expressions according to the flow is antisymmetric 

)y,x()y,x( −=ψψ (Eq. (9)), respectively symmetric )y,x()y,x( −−= ψψ  ((Eq. (10)):  

ysinycosyycosysiny  )y(G  n0nn0n0n αααα −=     (9) 

 

ysinycosyycosysiny  )y(G  n0n0n0nn αααα −=      (10) 

 

The linear combination of these basic flows can compose the stream function of a more general 

flow. The coefficientsCn are arbitrary complex coefficients to be determined by the boundary 

conditions and 2y0 represents the width of the channel. The parameters nnn iμλα +=  are the 
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complex roots of the following equations coming from the non slip conditions on the channel 

walls.   

00 y2y 2sin αα −=    (antisymmetric flow)  (11) 

00 y2y 2sin αα +=   (symmetric flow)  (12) 

The real coefficients
n

λ  and 
n

μ  have been accurately computed by Bourot & Moreau [5] ; their 

sign is chosen here such as  0 →ψ for x ∞→ .  

 

Each term of the stream function of Eq. (8) denoted 
n

ψ  is null infinitely many times as 

∞→x  whatever the motion source may be. There is an infinity of dividing streamlines of value ψn = 0 which attach the parallel walls where the stream function is likewise zero and divide thus 

the flow on successive eddies. The equation of these dividing streamlines is given by: 

)y(Q

)y(P
xtan

n

n

n =μ      (13) 

where Pn(y) and Qn(y) represent the real and imaginary parts of Gn(y).  

The equation (13) means that the location of the dividing streamlines is periodic in the 

longitudinal direction. Hence, the axial length of each class n of eddies is constant and readily 

given by: 

n

nL μ
π=       (14) 

Furthermore, angle at which the separating streamlines detach from the walls, i.e. the separation 

angle (angle T indicated in figure 5), satisfies the equation:  

n

n
2tan

3
tan λα −=      (15) 

 For n=1, the separation angle is 58°61 for an antisymmetric structure and 46°25 for a symmetric 

one. 

 

The ratio of the velocity on homologous points, i.e. points as S(x, y) and S’(x+Ln, y) (for 

example points S and S’indicated in figure 5), is given by:  

n

n

n expK μ
λπ=        (16) 

For the same value of n, the velocity of the symmetric flow decays more than the velocity of 

the antisymmetric one. Thus, practically an arbitrary Stokes flow of zero mean rate between 

parallel plates becomes antisymmetric far from the motion source except when this source is 

strictly symmetric. Of course, numerical calculation of this arbitrary flow in the proximity of the 

motion source requires to conserve a sufficient number of terms  nψ of the stream function, 

n=20 or more ([5], [7] and [8]). 
  

Figure 5 shows the streamlines of the theoretical flow corresponding to n=1 for 

antisymmetric and symmetric conditions between parallel plates. The sequences of the dividing 

streamlines drawn in figure 5 are located arbitrary since the motion source is not yet considered. 
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(a) antisymmetric flow between parallel walls 

 

(b) symmetric flow between parallel walls 

 

Figure 5 Theoretical flow between parallel walls 

      

 

The stream function of the separating streamlines is zero hence they can be directly 

transformed. Thus associating to a point ),r(M θ  of a separating streamline of F0 a point 

),
r

a
(N

2 θ , we obtain a point of the corresponding separating streamline of the new flow F1. 

Consequently, the infinite cellular flow between parallel plates leads by inversion transformation 

to a finite cellular flow within the corners between the transformed bodies which the shape 

depends closely on the position of the inversion centre.  
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 5. Applications  

 Antisymmetric and symmetric Stokes flows between parallel walls can be concretely realized 

by the uniform rotation respectively the uniform longitudinal translation of a cylinder midway 

between the parallel walls of a long rectangular channel filled with a viscous oil. The boundary 

conditions are the non slip conditions on the cylinder boundary and the matching conditions at 

x=0 between the two semi-infinite domains. Precisely, these conditions are written as following:  

 

 Antisymmetric flow induced by a rotating cylinder 

θθ cosV)y,x(v   ,sinV)y,x(u 0CC0CC 0000
=−=  with  2

0

2

C

2

C Ryx
00

=+ , 
2

0
πθ ≤≤ , 

00 yyR ,0)y,0(v <<= , 

00 yyR ,0)y,0(p ≤≤=    (17) 

where R0  represents the cylinder radius, V0 the cylinder velocity, u v the Cartesian components 

of the velocity and p the pressure  (see figure 6 for the notations).  

 

Symmetric flow induced by a translating cylinder along the channel axis 

0)y,x(v  ,V)y,x(u
00000 CCCC ==   , 

2
0

πθ ≤≤  

00 yyR ,0)y,0(v <<= , 

00 yyR  ,0
y

)y,0(p ≤≤=∂
∂

   (18) 

These flows, produced by rotating or translating cylinder, have been previously computed and 

examined by [22] and [8]. 

                                                    
Figure 6 Delineation of the domain of reference composed by two parallel walls and a rotating 

circle of radius R0 (dashed lines ---) and the inverse domain composed by two circles in contact 

set in a rotating circle of radius R1 (solid lines — ). In this sketch, the power of the 

transformation is 0ya = , thus 
0

2

0

1
R

y
R =  

 

Now let apply the positive inversion to the domain bounded by parallel infinite walls. The centre 

of the cylinder is chosen as the inversion centre. The choice of the power a is not important. This 

parameter modify only the scale of the inverse field; let take a=y0 here. The transformation of 

the lines b0 and d0 representing the parallel walls leads to the tangent circles b1 and d1 (Figure 6). 
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The rotating circle C0 of radius R0 gives a circle C1 of radius 
0

2

0

1
R

y
R = which rotates with the 

velocity
0

0

01
R

2
VV

ψ−−=  where 0ψ is the stream function on C0. In the case of translating cylinder 

on the axis or transversally to this axis with velocity 0V  the stream function on C0 is 

θψ sinRV 000 =  respectively θψ cosRV 000 = . By virtue of Eq. (7), we see that the translation 

motion of a cylinder is invariant when applying the inversion transformation relatively to the 

centre. Consequently, we obtain by inversion a circle C1 moving with the same velocity. Note 

that inversion of a circle animated by both rotation and translation motions relatively to its centre 

leads likewise to a circle with the same motion.  

 

 

 Using results of the reference flows F0, published in [7] and [8], the purpose is now to obtain 

by the inversion method, the flow around two cylinders in contact set in a rotating or translating 

one. In the interest of brevity, we focused our attention to only the streamlines patterns. 

 

The flow depicted in Figure 7b induced by a rotating cylinder around two fixed cylinders in 

contact is obtained by inversion of the flow presented in Figure 7a. It exhibits an important 

cellular motion which is theoretically composed by an infinite sequence of closed viscous eddies, 

as demonstrated by [1] for a sharp corner. Their size diminishes as we approach the cusp 

whereas the size of eddies between parallel walls remains constant. The velocity decay is not 

constant but is important comparatively to the reference flow, about 4400 between the first and 

the second eddy and decreases to the limit of 358 in the neighbourhood of the contact line. 

Furthermore, the angles are invariant in the inversion transformation hence the angles subtended 

by the dividing streamlines are equivalent to those of the antisymmetric flow between parallel 

plates and found to be equal to 46° for the first line and 58°61for the next lines [2], [3]. The first 

value of the contact angle is less than 58°61 because it is influenced by the motion source.  

               

In the case of the translating cylinder, two configurations seem to be possible depending on 

whether the framework is absolute or relative. The inversion of the stream visualized by an 

observer attached to the absolute framework gives an instantaneous image of the flow around 

two cylinders in contact placed in the centre of the fluid domain bounded by a cylinder 

translating in the direction parallel to the contact plane, Figure 8a. We see a symmetric cellular 

flow with an extent relatively small compared to the antisymmetric one. Note that adding the 

constant xV0

r− , leads to the more practical problem of two cylinders in contact translating  in a 

fixed cylindrical enclosure whose the streamlines are presented in Figure 8b. The relative 

reference flow regarded by an observer attached to the translating cylinder centre is equivalent to 

the flow around a fixed cylinder induced by translation of the walls. The inversion of this flow 

leads to the flow produced by two counter rotating cylinders in a fixed cylindrical enclosure, 

Figure 8c. There is no separating streamlines because the corresponding reference stream is not 

of zero mean rate. 
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(b)   

Streamline patterns of the flow around two cylinders 

in contact of radius 
1bR  centred inside an outer 

cylinder of radius 1R  ( 22.2
R

R

1b

1 = ) 

(structure obtained by inversion of structure a) 

 

(a)  

Streamline patterns of the flow 

between parallel plates induced by a 

rotating cylinder of radius 00 y9.0R =  

 

 

 

Figure 7 

a Streamline patterns of the flow between parallel plates induced by a rotating cylinder of 

radius 00 y9.0R =  

b  Streamline patterns of the flow around two cylinders in contact of radius 
1bR  centred inside 

an outer cylinder of radius 1R  ( 22.2
R

R

1b

1 = ) (structure obtained by inversion of structure a) 
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(a) Two  cylinders in contact 

fixed in a translating one 

 

 

 

(b) Two cylinders in contact 

translating in the direction 

of the contact plane inside 

a fixed cylinder enclosure 

    

      

(c) Two cylinders in contact 

rotating  inside a fixed 

cylinder enclosure 

 

Figure 8 Streamlines around two cylinders in contact of radius 
1b

R  centred inside 

an outer cylinder of radius 1R  ( 22.2
R

R

1b

1 = ). The point of contact is located at the 

enclosure centre.  



 12

Figure 9a present an example of a flow obtained by a rotating cylinder decentred from the 

axis of a channel of parallel plates with the distance δ. If the inversion centre coincides with the 

cylinder centre, the inversion of the parallel walls leads to two cylinders in contact of different 

radius. The inversion of the flow leads to the flow drawn in figure 9b.  

 

 

 

 

 

                 
 

 

 

(a) Original flow 

 

(b) Inversion of this flow 

 

Figure 9 Inversion of the fluid flow between parallel walls due to a rotating cylinder of radius 

R1=0.25y0 decentred with the quantity δ = 0.5 y0. Inversion of this flow 

 

 

 

6. Conclusion 

For a two dimensional Stokes field corresponds theoretically by inversion an infinity of 

Stokes flows because the inversion centre can be any point of the )y,x,O(
rr

plane. For example, 

in the case of the flow between parallel plates, choosing this centre position on the y
r

axis normal 

to the parallel plates, provide solutions to flows around two unequal cylinders in contact 

internally or externally or around a cylinder in contact with a plane. Nevertheless, this centre 

would be suitably chosen otherwise the motion source obtained by inversion can be out of 

physical sense. For example, the inversion of the flow relatively to a point which is not the centre 

of a rotating cylinder leads to a flow across the inverse cylinder. Thus, useful configurations 

seem to be obtained essentially when the inversion centre coincides with the cylinder centre. 

From a general point of view, the inversion transformation is an interesting method which can be 

wide with various problems even apart from the fluid mechanics (electricity, chemistry, 

engineering processes, …) but a precaution in the choice of the position of the centre of 

inversion is necessary.  
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