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Generation of Single Input Change Test Sequences

for Conformance Test of Programmable Logic

Controllers
Julien Provost, Member, IEEE, Jean-Marc Roussel, Jean-Marc Faure, Member, IEEE

Abstract—Conformance test is a functional test technique
which is aiming to check whether an implementation, seen as
a black-box with inputs/outputs, conforms to its specification.
Numerous theoretical worthwhile results have been obtained
in the domain of conformance test of finite state machines.
The optimization criterion which is usually selected to build
the test sequence is the minimum-length criterion. Based on
experimental results, this paper focuses on the generation of a
Single Input Change (SIC) test sequence from a specification
model represented as a Mealy machine; such a sequence is
aiming at preventing from erroneous test verdicts due to incorrect
detection of synchronous input changes by the Programmable
Logic Controller (PLC) under test. A method based on symbolic
calculus to obtain the part of the specification that can be tested
with a SIC sequence is first presented. Then, an algorithm to build
the SIC test sequence is detailed; three solutions are proposed,
according to the connectivity properties of the SIC-testable part.

Index Terms—Conformance test, Formal Methods, Pro-
grammable Logic Controller, Test Sequence, Mealy machine, Test
Verdict, Single Input Change

I. INTRODUCTION

PROGRAMMABLE LOGIC CONTROLLERS (PLCs) are

industrial automation components that are widely used

to implement control functions, even in critical systems like

power production and distribution, rail transport, chemical

processes, water distribution, etc. This explains why numerous

research works have been carried out since more than ten years

to develop methods that avoid flaws to be introduced during

the development of PLC software [1]. These researches are

based on two main approaches: model-based (model-driven)

engineering [2]–[5] and formal verification and validation

(V&V) techniques [6]–[9] or a combination of both [10].

Whatever the interest of the results obtained in these works,

it must be noted that all of them are based on models. Formal

V&V techniques for instance have been applied to models

of the specification of the control logic, in the form of IEC

60848 models, state-charts, Signal Interpreted Petri Nets, Net
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Condition Event Systems [11]–[13] or of PLC programs, in

IEC 61131-3 or IEC 61499 languages [14]–[19].

However, validation of a real PLC which executes a control

program requires the conformance test of this component be

performed, even if the specification and program models have

been verified and validated, and a certified code generator

has been used to produce the executable code. Conformance

test is a functional test, i.e. the system under test, named

implementation, is seen as a black-box (its internal structure

is unknown) with observable inputs/outputs; the overall aim

is to check whether this implementation behaves as specified

(see Fig. 1). Conformance test of PLCs is advocated by cer-

tification bodies and standards [20], [21], which explains the

growing interest of companies in several industrial domains for

efficient hardware-in-the-loop techniques [22]–[24] to improve

the existing practices.

Fig. 1. Place of the work in the life-cycle of PLC software

A promising solution to develop such techniques is to

benefit from the results of the researches of the Discrete

Event Systems community in the domain of conformance

test of formal models. In these works, the specification is

a formal model: a Mealy (or finite state) machine [25], a

transition system [26], [27], or a timed automaton [28] for

instance. The first formalism has been selected for this study

because it is well suited to the modeling of logic systems

specifications; moreover, functional correctness must be tested

before time correctness. As industrial specifications are not

expressed in formal languages but in standardized, tailored-

made languages, translation rules of industrial specification

languages into formal ones are to be developed in order to

use these theoretical results for conformance test of PLCs;

this issue has been solved in [29] where a method to obtain

c© 2014 IEEE - Author version. Citation information: DOI 10.1109/TII.2014.2315972, IEEE Transactions on Industrial Informatics
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Fig. 2. Aim of the conformance test. Left part: PLC with periodic I/O scanning cycle; right part: Mealy machine describing the specification of the control.

from a Grafcet [30] an equivalent Mealy machine is presented.

Once the formal model of the specification obtained, a

test objective is to be defined. It is possible, for instance,

to test whether some particular states that correspond to

hazardous or recovery states can be reached from the initial

state or whether some state changes or transition sequences are

possible for specific input combinations. When critical systems

are considered, as this is the case in this work, a usual test

objective is to cross at least once each edge of the directed

graph that represents the structure of the machine; this permits

to check every state change from each state of the formal

model. A test sequence that meets this test objective is termed

complete.

Then, the test sequence that will be applied to the PLC

during the execution of the test can be constructed from the

specification model. A test sequence is an ordered list of cou-

ples (input combination, expected output combination), termed

test steps, where the input and expected output combinations

correspond respectively to the left and right elements of the

label for the considered transition of the Mealy machine; in

other words, a test sequence represents the external view of

a PLC that executes a control code in conformance with its

specification. To avoid tedious, time-consuming and error-

prone tasks, the construction of a complete test sequence must

be automated; an usual solution is to select the algorithm

presented in [31] that minimizes the length of the sequence.

A minimum-length test sequence will indeed minimize the

duration of the execution of the test, if the duration of each

test step is constant.

However, extensive experimental studies have shown in that

the execution of a conformance test with a minimum-length

test sequence may lead to erroneous test verdicts because

synchronous input changes may be detected as asynchronous

by the PLC under test [32], [33]. The aim of this paper is to

propose another algorithm to construct test sequences. Rather

than looking for a minimum-length solution, the overall idea is

to construct a test sequence that does not contain synchronous

changes of two or more inputs from one test step to the

immediately following one. Such a sequence is termed a SIC

(Single Input Change) sequence because the value of only one

input is modified between two consecutive test steps. It must

be noted that the expression SIC (or adjacent) sequence has

been already introduced in another domain: test of electronic

circuits [34]–[40]. However, the valuable results of these works

cannot be directly applied to the issue that we address because

they were not focusing on the same type of fault: hardware

faults were considered while this work focuses on errors in

the PLC code. Moreover, a white-box test was possible in

those references whereas the structure of the implementation is

unknown in this work (black-box approach); the construction

of the test sequence cannot be based on the knowledge of this

structure but only of the specification.

Nevertheless, it has not been proved that it is always

possible to construct a complete SIC sequence starting from

the initial state of the specification model; this will be the

first issue addressed in this paper. Once this issue solved, a

solution to construct the SIC sequence will be proposed.

The next section reminds the notations used in this work.

The concept of SIC-testability, feature of a Mealy machine that

represents the possibility to build an initializable, consistent

and complete SIC test sequence from this machine is intro-

duced in the third section; a method to verify whether a Mealy

machine is fully SIC-testable as well as to determine the SIC-

testable part of a non-fully testable machine is also proposed

in this section. The fourth section focuses on the generation

of this sequence and provides three solutions according to

the connectivity properties of the SIC-testable part. Last,

conclusions and prospects for further works are given.

II. BACKGROUND

The aim of the section is to define the notations used in

this paper and to remind previous results. The notations and

definitions will be illustrated through an example with 4 logic

inputs (c, o, r and v), and 2 logic outputs (OG and CG); then,

16 input combinations (cI ) and 4 output combinations (cO)

can be defined. The PLC where this control is implemented is

presented in Fig. 2, left part; the control specification in the

form of a Mealy machine is presented in Fig. 2, right part.
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A. Notations of the input and output combinations

A PLC owns n logic input variables and m logic output

variables; the value of each of them is either true or false. 2n

input (2m output) combinations can then be constructed from

this set of input (output) variables by assigning a weight to

each variable. An input combination cI will be represented in

three different manners in this paper:

‚ The first representation, noted symbol(cI ), is the more

compact one; symbol(cI ) is indeed an integer that belongs

to r0, 2n ´ 1s and is defined as follows:

symbol(cI ) =

n´1
ÿ

i“0

cI rn ´ 1 ´ is ˆ 2
pn´1´iq, where:

– cI rn ´ 1 ´ is is an integer that belongs to r0, 1s and

is equal to 1 if the ith input variable is true and 0

otherwise,

– 2pn´1´iq is the weight of this variable1.

This representation will be used in the graphical and

tabular descriptions of a Mealy machine.

‚ The second representation, noted minterm(cI ), is a

Boolean expression. A minterm is the conjunction of all

the n logic input variables in their positive or comple-

mented form. This representation is very efficient for

symbolic calculus and will be used to check the SIC-

testability of a Mealy machine.

‚ The third representation, noted ✶pcIq, is that of the

set of the only variables which are true for the given

combination and is well appropriate when defining the

SIC relation between two combinations.

The same rules apply for the output combinations cO.

Table I gives the correspondence between these representations

for the example introduced in Fig. 2.

B. Formal definition of a Mealy machine

Conformance test of Mealy machines is a mature technique

that previously yielded numerous sound theoretical results;

good syntheses on this topic are available in [25], [41]. This

explains why this formalism was selected to represent formally

the specification model.

However, a Mealy machine is theoretically defined on two

event alphabets: the input and output alphabets. Since the

inputs and outputs of a PLC are logic variables and not events,

these two alphabets are to be built prior to defining the Mealy

machine that represents the specification of the controller. This

will be performed by considering each PLC input (respectively

output) combination as an input (resp. output) event.

Let us note I and O the non-empty sets of PLC inputs and

outputs (I and O contain logic variables). If the cardinality

of I (resp. O) is |I| (resp. |O|), there exist 2|I| (resp. 2|O|)

distinct input (resp. output) combinations cI (resp. cO). Let us

note CI the set of the input combinations and CO the set of

the output combinations.

Using this definition of input and output combinations,

the specification of a PLC that executes a control code can

be represented by a Mealy machine (S, sInit, CI , CO, δ, λ),

where:

1The weights are assigned arbitrarily to the variables.

‚ S is a non-empty set of states.

‚ sInit is the initial state, sInit P S.

‚ CI is the input alphabet, |CI | “ 2|I|.

‚ CO is the output alphabet, |CO| “ 2|O|.

‚ δ is the transition function, defined as follows:

δ : S ˆ CI Ñ S

pss, cIq ÞÑ st “ δpss, cIq
(1)

‚ λ is the output function, defined as follows:

λ : S ˆ CI Ñ CO

pss, cIq ÞÑ co “ λpss, cIq
(2)

The specification of the controller is compulsorily deter-

ministic: there is only one initial state and δ and λ are two

functions. Moreover, to avoid misinterpretation errors during

the test, the Mealy machine is:

‚ completely defined: δ and λ are total functions2;

@ps, cIq P S ˆ CI ,

"

D!δps, cIq P S

D!λps, cIq P CO
(3)

‚ limited to its reachable part;

@s P S, Drc0I , ¨ ¨ ¨ , cnI s P C˚
I |

$

&

%

s1 “ δpsInit, c
0

Iq
@k ě 1, sk`1 “ δpsk, ckI q
s “ sn

(4)

‚ without transient evolution, i.e. no inputs change intro-

duces successive changes of states or emitted outputs.

@ps, cIq P S ˆ CI ,

"

δpδps, cIq, cIq “ δps, cIq
λpδps, cIq, cIq “ λps, cIq

(5)

C. Formal definition of a test sequence

A test sequence is an ordered list of couples (input com-

bination, expected output combination) which represents the

external view of the expected behavior of a PLC that executes

a correct control code. Formally, a test sequence is defined as

follows:
“

pc0I , c
0

Oq, pc1I , c
1

Oq, ..., pcnI , c
n
Oq

‰

P pCI ˆ COq˚ (6)

However, the input combinations ckI and the expected output

combinations ckO are not independent. The expected output

combination cO is that associated to the transition which

goes from a source state ss to a target state st for the input

combination cI . Hence, an elementary conformance test step

et is defined by the following 4-tuple:

et “ pss, cI , st, cOq P S ˆ CI ˆ S ˆ CO

where

"

st “ δpss, cIq
cO “ λpss, cIq

(7)

A test sequence TS is an ordered list of elementary test

steps et which must be:

P1: initializable, i.e. the source state of the first test step is the

initial state of the PLC’s behavior model, and the input

combination c0I is such that the target state is stable:
$

’

&

’

%

s0 “ sInit

δpδps0, c0Iq, c0Iq “ δps0, c0Iq

λpδps0, c0Iq, c0Iq “ λps0, c0Iq

(8)

2D!: There exists exactly one.
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TABLE I
EQUIVALENCE BETWEEN THE DIFFERENT REPRESENTATIONS OF THE INPUT AND OUTPUT COMBINATIONS

(logic inputs,
weight)

(c,8) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(logic outputs,

weight)

(CG,2) 0 0 1 1
(o,4) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
(r,2) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

(OG,1) 0 1 0 1
(v,1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

symbol(cI ) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 symbol(cO) 0 1 2 3
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P2: consistent, i.e. the source state of the pk`1qth elementary

test step is equal to the target state of the kth elementary

test step.

TS “ rps0, c0I , δps0, c0Iq, λps0, c0Iqq, ¨ ¨ ¨ ,

psn, cnI , δpsn, cnI q, λpsn, cnI qqs |

@k ě 0, sk`1 “ δpsk, ckI q (9)

Moreover, if the test objective is to cross at least once each

transition of the Mealy machine (usual objective when the

control of critical systems is considered), the test sequence

must be:

P3: complete, i.e. there is at least one test step for each

element of the transition function:

@ps, cIq P pSzsInit ˆIq, ps, cI , δps, cIq, λps, cIqq P TS (10)

III. SIC-TESTABILITY

SIC-testability is a feature of a Mealy machine that repre-

sents the possibility to build an initializable, consistent and

complete SIC test sequence from this machine. This concept

is illustrated in Fig. 3. The example 3a) is non-SIC-testable

because the test step that corresponds to the self-loop on the

state s2 with the input combination a ¨ b cannot be preceded

by a test step with an input combination where only one of

the variables a and b is true; both possible preceding test

steps correspond to the input combination a ¨ b. This non-

SIC-testable transition may lead to a biased verdict: if the

input change from a ¨ b to a ¨ b when the machine is in the

state s2 is erroneously interpreted by the PLC, the target state

could be either s2 (as if it was correctly interpreted) or s1,

thus, potentially rejecting a correct implementation. A similar

reasoning is possible for the pinpointed transition of 3b); the

test step that corresponds to the transition from the state s2 to

the state s1 with the input combination a¨b cannot be preceded

by a test step with an input combination where only one of

the variables a and b is true; the only possible preceding test

step corresponds to the input combination a ¨ b. This non-SIC-

testable transition may lead to a non-valid verdict: whatever

the interpretation (correct or erroneous) of the input change

from a ¨b to a ¨b, the target state will be s1. Thus, it cannot be

ensured that this specific transition of the implementation has

been tested, and an incorrect implementation may be accepted.

On the opposite, the example 3c) is SIC-testable; it is possible

to find for any transition a preceding transition whose input

combination differs from only one input.

This section proposes first a formal definition of a SIC test

sequence, then presents a method to determine the SIC-testable

part of a Mealy machine, part of this machine from which

such a sequence can be built. If this part contains all test

steps that can be defined from the machine, the machine is

said fully SIC-testable, else a coverage rate of the test steps

can be defined.

A. Definition of a SIC test sequence

A SIC test sequence is an initializable and consistent

(relations (8) and (9) satisfied) test sequence that is based on

a SIC input sequence. To express formally this latter property,

the SIC relation between two input combinations must be

first defined. This definition relies on the representation of

an input combination by the subset of I that contains the only

variables which are true for this combination. Thus, two input

combinations cI and c1
I satisfy a SIC relation if and only if3:

cardpp✶pcIqz✶pc1
Iqq Y p✶pc1

Iqz✶pcIqqq “ 1 (11)

For example, the input combinations which are represented

by the minterms c¨o¨r¨v and c¨o¨r¨v satisfy a SIC relation since

cardpptr, vuztc, r, vuqYptc, r, vuztr, vuqq “ cardp∅Ytcuq “
1

In the remainder of this paper, this symmetrical relation is

noted4: cI RGray c1
I . It must be noted that n SIC relations

can be stated for each input combination cI of a PLC with n

logic inputs.

Hence, a test sequence TS is a SIC test sequence if and

only if it satisfies the following property:

P5: it is based on a SIC input sequence, i.e.:

@k ą 0, ck`1

I RGray ckI (12)

3cardpAq is the cardinality of set A.
✶pcIqz✶pc1

Iq is the subset of I composed with the elements of ✶pcIq which
are not in ✶pc1

Iq.
4The subscript Gray has been introduced because two combinations that

satisfy this relation may be seen as two adjacent combinations of a Gray
code.
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Fig. 3. Examples of non-SIC-testable Mealy machines: a) and b), and a SIC-testable Mealy machine: c)

B. Computation of the SIC-testable part of a Mealy machine

The SIC-testable part of a Mealy machine may be obtained

by computing a set RSIC of couples pss, cIq, where ss is

the source state of a transition of the Mealy machine and cI
an input combination. Each element of RSIC defines also an

elementary test step pss, cI , st, cOq because the target state st
and the output combination cO are then completely known

from the structure of the machine. The set RSIC is computed

iteratively by a fixed point calculation; the set at the ith

iteration of this calculation will be noted RSICpiq.

As the SIC sequence must be initializable, the initial set

RSICp0q contains the couples psInit, cIq where sInit is the

initial state, and cI is an input combination such that, if st is

the target state of the transition psInit, cI , st, cOq, δpst, cIq “
st, i.e. there exists a self-loop on st for this input combination.

RSICp0q “
 

psInit, c
0

Iq | c0I P CI , δpδpsInit, c
0

Iqq “ δpsInit, c
0

Iq
(

(13)

In practice, every logic input of a PLC which is connected

to a test bench can be set or reset before the initialization

of the PLC. Hence, the state st is a state that can become

and stay active when the PLC is initialized after a given input

combination has been defined.

The following sets RSICpk ` 1q are determined by using

the two following construction rules:

‚ If an elementary step pst, cI , st, cOq belongs to a SIC test

sequence, it is always possible to add to this sequence

an elementary step pst, c
1
I , δpst, c

1
Iq, λpst, c

1
Iqq where c1

I

satisfies: c1
I RGray cI .

‚ If an elementary test step pss, cI , st, cOq belongs to a SIC

test sequence, the elementary test step pst, cI , st, cOq can

be added to this sequence.

These rules can be formally expressed by the following

statement:

RSICpk ` 1q “ RSICpkq Y
#

`

sk, c
k`1

I

˘

Y
`

δ
`

sk, c
k`1

I

˘

, ck`1

I

˘

|

Dpsk, c
k
I q P RSICpkq |

"

δpsk, c
k
I q “ sk

ck`1

I RGray ckI

+

(14)

The computation stops when RSICpk ` 1q “ RSICpkq.

The Mealy machine is then SIC-testable if RSICpk ` 1q
contains as many couples as there are potential test steps.

Otherwise, the final set RSICpk`1q, denoted RMaxi
SIC , defines

the SIC-testable part. A SIC coverage rate, defined as follows,

permits to quantify the SIC-testability:

SIC coverage rate “
|RMaxi

SIC |

|SzsInit| ˆ |CI |
(15)

This rate can be seen as a metrics of the ability of the

specification to be used to build a complete SIC test sequence.

Improving the coverage rate requires the specification be

modified, which is not always possible for cost and time

reasons.

C. Illustration on the example

Table II presents the results of this calculation for the

example presented in Fig. 2. Each cell of the table contains the

value of the couple (δps, cIq, λps, cIq). A circled couple means

that the same state is both source and target of the transition

(self-loop structure: δps, cIq “ s). The behavior represented in

this table is deterministic and completely defined since every

cell contains one and only one state name. This behavior

does not contain any transient evolution since the value of

each cell is either a circled value or leads to a cell with a

circled value (δps, cIq “ s or δpδps, cIq, cIq “ δps, cIq). The

number k of the iteration during which the couple pss, cIq
was added to RSICpkq is at the top-left corner of each cell.

For example, the couple associated to the cell ps3, c ¨ o ¨ r ¨ vq
is obtained at iteration 0 (initialization), because s3 is reach-

able from sInit pδpsInit, c ¨ o ¨ r ¨ vq “ s3q, and this couple

corresponds to a self-loop on s3 pδps3, c ¨ o ¨ r ¨ vq “ s3q. The

couple ps3, c ¨ o ¨ r ¨ vq is obtained in the first iteration, as

c¨o¨r ¨v RGray c¨o¨r ¨v, and so on. The fixed-point calculation

stops at the third iteration, excluding the initialization. The

final set contains only 40 couples; the couples that do not

belong to this set are represented by colored cells. Hence, the

Mealy machine of Fig. 2 is not fully SIC-testable. Its SIC-

testable part RMaxi
SIC is represented by the cells that are not

colored. Its SIC coverage rate is equal to 5/6.
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TABLE II
ILLUSTRATION OF THE FIXED POINT CALCULATION. IN THIS TABLE, THE OUTPUT COMBINATIONS ARE OMITTED FOR CLARITY REASONS.
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D. Symbolic computation of the SIC-testable part

As already mentioned, the tabular representation of a Mealy

machine is appropriate to explain the principle of computations

on small-sized models but is not suitable to perform these

computations on non-trivial models. This explains why a

symbolic representation of a set of input combinations has

been introduced to avoid explicit enumeration of this set during

the fixed point calculation.

A set C of combinations c can be represented by a Boolean

expression ExppCq defined as the disjunction of the minterms

contained in C:

ExppCq “
ă

cPC

mintermpcq (16)

During the fixed-point calculation, a set of input combi-

nations C can be extended by adding all input combinations

c1
I satisfying a SIC relation with at least one of the input

combinations cI in C. The extended set C 1 is defined as

follows:

C 1 “ C Y tc1
I | DcI P C : c1

I RGray cIu, (17)

Using symbolic notation, the Boolean expression of the

extended set C 1 is defined as follows:

ExppC 1q “
ă

iPI

`

ExppCq|iÐfalse ` ExppCq|iÐtrue

˘

(18)

The example below illustrates this operation.

C “ tc ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ vu
ExppCq “ c ¨ o ¨ r ` c ¨ o ¨ v
ExppC 1q “ po ¨ r ` o ¨ vq ` pc ¨ r ` c ¨ vq ` pc ¨ oq

`pc ¨ oq
“ c ¨ o ` c ¨ r ` c ¨ v ` o ¨ r ` o ¨ v

C 1 “ tc ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,

c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,

c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v , c ¨ o ¨ r ¨ v ,

c ¨ o ¨ r ¨ vu

(19)

This symbolic representation of a set of input combinations

speeds up the computation defined in the equation (14).

IV. SIC TEST SEQUENCE GENERATION

Once RMaxi
SIC determined, a SIC test sequence can be con-

structed by using a graphical representation of this set in the

form of a graph where:

‚ each node represents a couple ps, cIq that is included in

RMaxi
SIC ;

‚ n arcs start from a node that corresponds to a couple

ps, cIq such that δps, cIq “ s. The target nodes of these

arcs represent the couples ps, c1
Iq such that c1

I satisfies

c1
I RGray cI . These arcs correspond to input changes

between two test steps; the cost associated to these arcs

is then equal to 1;

‚ only one arc starts from a node that corresponds to a cou-

ple ps, cIq such that δps, cIq ‰ s. The target node of this

arc is the node that represents the couple pδps, cIq, cIq.

This arc corresponds to the expected evolution from a

source state to a target state during the execution of one

test step; the cost associated to this arc is then equal to

0.

Fig. 4 represents a part of this graph. Each node corresponds

to a couple pss, cIq where ss corresponds to its line and cI
corresponds to its row. Since the couples ps3, c ¨ o ¨ r ¨ vq and

ps3, c ¨o ¨r ¨vq are not in RMaxi
SIC there is no node associated to

these couples. In this figure, only the arcs related to the couple

ps3, c¨o¨r¨vq are represented. Since this couple can be tested in

the same experimental test step than psInit, c ¨o ¨r ¨vq, there is

one arc from psInit, c ¨o ¨r ¨vq leading to ps3, c ¨o ¨r ¨vq. From

this couple, there are four outgoing arcs leading to couples

ps3, c ¨o ¨r ¨vq, ps3, c ¨o ¨r ¨vq, ps3, c ¨o ¨r ¨vq and ps3, c ¨o ¨r ¨vq.

Then, since the couple δps3, c ¨ o ¨ r ¨ vq “ s2, there is one

outgoing arc from δps3, c ¨ o ¨ r ¨ vq to δps2, c ¨ o ¨ r ¨ vq. On the

opposite, since δps3, c ¨ o ¨ r ¨ vq “ s3, there are four outgoing

arcs from ps3, c ¨ o ¨ r ¨ vq.

A SIC test sequence can be then constructed by looking for

a path that traverses at least once each node of this graph.

To reduce the duration of test execution, a minimum-length

SIC test sequence can be searched; the optimization problem

to solve in this case is a particular solution of a well-known

problem in graph theory: the Travelling Salesman Problem

[42] – or pre-Hamiltonian path –. The general formulation of

this problem is the following: Find a minimum-length closed

path that traverses at least once each node of the graph. By
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Notations:

couple ps, cIq P RMaxi
SIC such that δps, cIq “ s couple ps, cIq P RMaxi

SIC such that δps, cIq ‰ s
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. . .

. . .

. . .1
1

1

1

0 0

0

1

1
1

1

0 0 0

Fig. 4. Part of the graph used to generate a SIC test sequence

TABLE III
SIC TEST SEQUENCE FOR THE SIC-TESTABLE PART OF THE EXAMPLE

ss: s1 s1 s3 s2 s2 s3 s3 s2 s1 s1 s2 s1 s1 s2 s2 s1 s1 s2 s1 s2 s2 s1 s2 s2 s1 s3 s1 s3 s1 s2 s1 s3 s1 s3 s3
c: 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1
o: 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0
r: 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0
v: 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
st: s1 s3 s2 s2 s3 s3 s2 s1 s1 s2 s1 s1 s2 s2 s1 s1 s2 s1 s2 s2 s1 s2 s2 s1 s3 s1 s3 s1 s2 s1 s3 s1 s3 s3 s1

definition, the length between two nodes is equal to the sum

of the costs associated to the collection of arcs that define the

shortest path between these two nodes.

However, possible to construct a single SIC test sequence

that traverses each node at least once and starts from the initial

state with any input combination if and only if the graph

that represents RMaxi
SIC is strongly connected5. Then, a strategy

to construct SIC test sequences whatever the connectivity

of the graph has been set up (see Fig. 5). If the graph is

only connected (and not strongly connected), a single SIC

test sequence can be constructed but this sequence must start

by an elementary test step that contains a particular input

combination. When the graph is not connected, several SIC test

sequences shall be constructed; during test execution, the PLC

shall be initialized between two of these sequences because

each of them starts from the initial state by definition (relation

(8)).

For the example presented in Fig. 2 it is possible to generate

a single SIC-test sequence that covers its SIC-testable part.

This sequence is given in Table III where the top and bottom

lines have been added to relate this sequence to Fig. 2 and

5A graph is strongly connected if and only if it contains a path from ni to
nj and a path from nj to ni for every pair of nodes ni, nj

Table II. This test sequence contains 35 test steps and permits

to test the 40 couples ps, cIq of the SIC-testable part of the

specification since some test steps permit to test both couples

ps, cIq and pδps, cIq, cIq, as already mentioned; for example,

test step 2 permits to test both ps1, c¨o¨r ¨vq and ps2, c¨o¨r ¨vq,

and so on for all test steps whose source and target states are

different. The test sequence given in Table III is obtained in

approximately 4 seconds; this computation lasts longer than

that of a minimum-length sequence because the problem to

solve is harder.

V. CONCLUSION

Even if numerous theoretical results on conformance test of

Mealy machines have been published, application to confor-

mance test of PLCs is not completely straightforward because

the technological features of these industrial components are

not taken into account in the theoretical studies, as pinpointed

in [32], [33].

A promising solution to tackle out biased or non-valid test

results due to asynchronism between input events that are

assumed to be synchronous is to construct a test sequence,

termed SIC test sequence, where no synchronous input events

are present by definition. This paper has presented how the part
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Computation

of RMaxi
SIC

Computation of

the shortest paths

@ps, cIq
D preps, cIq

‰
psInit, cIq

?

RMaxi
SIC is strongly

connected

RMaxi
SIC is not

strongly connected

Generation of a single

SIC test sequence,

starting with any

input combination

D!ps, cIq |
preps, cIq

“
psInit, cIq

?

RMaxi
SIC is connected

Generation of a single

SIC test sequence,

starting with the unique

input combination

that satisfies the

previous relation

RMaxi
SIC is composed

of several

disjoints sets

Generation of several

SIC test sequences,

one for each connected

subset of RMaxi
SIC .

(The PLC needs to be

reinitialized between

two SIC test sequences.)

YES NO

YES NO

Notation: preps, cIq “ tpss, cIq P S Y sInit ˆ CI | δpss, cIq “ su

Fig. 5. Flowchart showing the different cases to consider when generating a SIC test sequence

of the Mealy machine that can be tested with such a sequence

can be determined and how to construct this sequence.

A coverage rate has been also defined. This rate is however

not always equal to 100%. If the objective of the conformance

test is to test every transition of the Mealy machine, it will

be necessary to use a non-SIC sequence for the transitions

which cannot be tested with the SIC sequence. The following

stategies shall be then considered:

‚ test execution for the configurations of the controller that

lessen the error rate (periodic I/O scanning and no inputs

distribution) as shown in [32], [33];

‚ multiple execution of the same test sequence and statis-

tical analyses of the results.

Further works are aiming at extending the scope of this

study by considering construction of test sequences for timed

systems – the formal model that will be used to build this

sequence will be a class of timed automata – and analysis

approaches based on discrete event systems theory that are

complementary to conformance test, like identification or

enforcement, to validate the behavior of a PLC.
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