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Abstract Hovering flies are able to stay still in place
when hovering above flowers and burst into movement
towards a new object of interest (a target). This suggests
that sensorimotor control loops implemented onboard
could be usefully mimicked for controlling Unmanned
Aerial Vehicles (UAVs). In this study, the fundamental
head-body movements occurring in free-flying insects
was simulated in a sighted twin-engine robot with a
mechanical decoupling inserted between its eye (or gaze)
and its body. The robot based on this gaze control system
achieved robust and accurate hovering performances,
without an accelerometer, over a ground target despite a
narrow eye field of view (£5°). The gaze stabilization
strategy validated under Processor-In-the-Loop (PIL) and
inspired by three biological Oculomotor Reflexes (ORs)
enables the aerial robot to lock its gaze onto a fixed target
regardless of its roll angle. In addition, the gaze control
mechanism allows the robot to perform short range target
to target navigation by triggering an automatic fast "target
jump" behaviour based on a saccadic eye movement.

Keywords Micro Aerial Vehicle, Automatic Navigation,
Gaze Control, Visual Control, Hover Flight, Eye
Movement, Oculomotor Control, Biorobotics

Acronyms
FOV: Field Of View.
rVOR: Rotational Vestibulo-Ocular Reflex.

tVOR:
VER: Visual Fixation Reflex.
ZSL: Zero-Setting System.
VEFL: Visual Feedback Loop.
D-EYE: Decoupled eye robot.

Translational Vestibulo-Ocular Reflex.

F-EYE: Fixed eye robot.
PIL: Processor-In-the-Loop.
MLD: Maximum Lateral Disturbance.

1. Introduction

Making Unmanned Aerial Vehicles (UAVs) autonomous
is likely to be a key research subject for the next 10
years. To achieve this autonomy, one of the most
crucial steps is stabilizing the attitude of aerial vehicles.
This objective has been classically achieved using an
Inertial Measurement Unit (IMU) composed of rate gyros,
accelerometers and magnetometers ([1-3]). But IMUs often
have to be combined with other sensors to estimate the
position of the UAV without drifts. A GPS has been used,
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for example, to remove the bias from the pose estimates
in outdoor applications ([4-6]). Many strategies involving
vision and IMU combined have been adopted for indoor
applications because they work efficiently in GPS-denied
environments. For example, [7] used an external trajectory
device yielding very fast dynamics, which was able to
accurately measure both the position and the attitude of a
robot equipped with markers. Likewise, [8] used a simple
external CCD camera to measure the positions of two LED
markers onboard a quadrotor. Although external visual
sensing devices of this kind are quite accurate, their visual
computational resources often have to be provided by a
ground-based host computer. In other studies, the visual
sensor was implemented onboard a robot, which was
stabilized using two elliptic markers (one placed under
the robot and the other in front of it) to determine its
attitude and position ([9]). Five markers with a specific
geometry were used by [10] to estimate the robot’s yaw
and position, while an IMU gave the robot’s attitude and
angular velocities. Another particularly cheap solution
([11]) comprised using a Wii remote sensor (Nintendo) to
control a hovering vehicle, while the pitch and roll were
measured by an IMU. Another solution ([12]) consisted of
merging a five DOF estimation provided by a monocular
camera with a gravity vector estimation provided by
an IMU to achieve take-off, hovering and landing of a
quadrotor. Successful control of a hovering quadrotor
was achieved by cancelling the linear velocity based on
optic flow measurements ([13], [14]). Optic flow was also
used to estimate the altitude and the forward speed of an
airborne vehicle ([15]). The robot’s attitude has usually
been determined in these studies by means of an IMU
combined with accelerometers compensating for the drift.
However, the authors of several studies have used small
or panoramic cameras to determine the robot’s attitude
([7]). Visual servoing was recently applied to stabilize a
hovering quadrotor equipped with a fixed camera facing
a ground-coloured target ([16]). When this approach was
tested under natural outdoor conditions, its vision-based
hovering accuracy was found to range between -2m and
2m. In [17], a monocular camera and computer vision
with high delays was used to avoid drift obtained with a
simple IMU pose estimation. A camera is also used in [18]
as a dual-sensor to achieve a drift-free hover and perform
obstacles avoidance on a quadrotor.

In our bio-inspired minimalistic framework, a new control

strategy was developed, which consists of using only three

Sensors:

¢ an optical angular position sensing device with a small
Field-Of-View (FOV) of only a few degrees, which is
able to locate the angular position of a ground target
with great accuracy ([19], [20])

* alow-cost rate gyro

* asimple proprioceptive sensor used to measure the eye
orientation in the robot’s frame.

Using a decoupled eye onboard an UAV greatly reduces
the computational complexity because a narrower FOV
could be used, meaning fewer pixels were needed. In a
previous robotic study ([21]), a decoupled eye is classically
used as an observation device to track a target and
compensate for the UAV displacements around this target.
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The latter was successfully tracked by an autonomous
helicopter, the position and attitude of which were
determined using a combination of GPS and IMU. In the
present study, it was proposed to use the robot’s own gaze
(i.e., the orientation of the eye in the inertial frame) as
a reference value in order to determine its rotations and
positions.

An eye with a restricted FOV of only a few degrees (like
a kind of fovea') was adopted here for the following main

reasons:
¢ a small FOV means that very few pixels have to be

processed because a small FOV can be obtained by
selecting a small Region Of Interest (ROI)

a small ROI means a high frame rate

a foven makes it possible to greatly reduce the
computational complexity of the visual processing
algorithms, as described in [22]. Therefore that tiny,
low-cost, low consumption microcontroller can be
implemented onboard the robot.

The robot’s eye was taken to be a visual Position-Sensing
Device (PSD), which is able to locate an edge (or a bar)
accurately thanks to its small FOV (here, FOV = £5°,
in opposition to a classical FOV of £25°). This visual
sensor was endowed with hyperacuity ([23]), ie., the
ability to locate a contrasting target with a much better
resolution than that dictated by the pixel pitch. The
implementation of this kind of hyperacute sensor visual
sensor was described by previous authors ([19, 20, 24-26]).

The simulated robot and its decoupled eye are described
in section 2 along with the nonlinear dynamic model. The
Processor-In-the-Loop (PIL) system used to perform the
simulations was also described in this section. The original
nonlinear observer presented in section 3 estimates the
linear speed, the position, the attitude (on the roll axis only
in this paper), and the rate gyro’s bias. Then the gaze
controller as well as the whole robot controller based on
these estimations is described in detail. In section 4, a new
navigation strategy for aerial robots in terms of automatic
target to target navigation based on a saccadic flight is
outlined. Lastly, the advantages of using a decoupled
eye with a gaze control strategy are discussed before the
conclusion.

2. System overview

In this part, we will describe first the PIL system and
the custom toolchain we developed to perform the robot’s
simulation. Then we will present how the biology has
inspired our approach and finally we will present the
twin-engine robot’s model.

2.1 Processor-In-the-Loop (PIL) simulation

All the simulations presented in this study were
performed using an Processor-In-the-Loop (PIL) system.
Figure 1 shows the environment and the links existing
between the host computer and the embedded processor
board. The host computer simulates the robot’s dynamics
in real time and monitors the computations performed by
the embedded autopilot board which controls the robot.

! The fovea is a part of the eye which is responsible for sharp central vision,
useful where visual detail is of primary importance.
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Figure 1. Description of the PIL structure. The robot and the ground station are connected by two links. A wireless link (wifi) monitors
the control board computations (the Gumstix VERDEX Pro XL6P), emits the Linux commands and the high-level set-points. A serial link
currently emulates the future connection between the high-level control board and the low-level control board of the robot.

2.1.1. The autopilot board : Gumstix Verdex Pro XL6P

In its future version, our robot, a quadrotor, will be
equipped with a Gumstix, which is a Linux-based
Computer-On-Module (COM). This processor board is
equipped with an XScale-PXA270 processor cadenced
at 600MHz with 128MB of DRAM and 32MB of Flash
memory. This powerful micro computer was chosen
to make our robot fully autonomous in terms of
computational resources. In addition, the Gumstix can
be easily managed via a wifi connection and a console
application (such as PuTTY) from the host computer.

2.1.2. Rapid prototyping tool: from Simulink to Gumstix

The novel fast prototyping tool we have developed can

be used to automatically and easily download a Simulink

model (containing the controllers and the observers in
our case) onto the autopilot board. This development
toolchain uses a user friendly interface, such as Matlab

Simulink, to execute in real-time digital controllers

designed in the Simulink environment. This novel

automatic code generation tool makes the implementation
of a digital control system considerably easier and faster
because:

e it generates and compiles a bug-free C code

e it gives block-level access to on-chip peripherals (wifi,
serial connections, etc.)

e it can be used to directly design systems using
floating-point system design, simulation and scaling
procedures thanks to the 32-bit FPU of the Gumstix (it
also handles all the fixed-point data).

2.2 Biology as a source for new robot’s abilities

As shown in figure 2, the robot consists of a twin-engine
aerial robot with two degrees of freedom. This robot was

considered to fly at a constant altitude H. It is therefore
able to rotate freely 6, around its roll axis, translate along
the horizontal axis X and a third degree of freedom enables
the eye to rotate with respect to the robot’s body (6.r)
thanks to a mechanical decoupling between the eye and
the body. The eye’s orientation is assumed to be finely
controlled by a very fast, accurate servomotor.

As discussed in [27] and [28], the design of our hovering
robot and its sensing abilities results from our bio-inspired
approach where biology is a source of new ideas for
implementing new mechanisms and control strategies. In
this sense, our sighted robot with its drifting rate gyro,
its proprioception and its visual sensor with a small FOV
accounts for key mechanisms observed in flying insects in
terms of sensing abilities (see [29]), gaze stabilization (see
[30-32]), flight behaviour ([33-36]) and target localization
([37]). The following main similarities between the robot
and the fly shown in figure 2 are listed below:

* Arate gyro: the fly has gyroscopic haltere organs under
its wings ([38—40]), which measure its body’s angular
speed around the three degrees of rotation (pitch, roll
and yaw). The robot is equipped with a classical MEMS
rate gyro, which measures its angular roll speed.

* An optical position sensing device: the fly’s eyes are
able to locate a contrasting target placed in a small
frontal part of its visual field ([33] and [41], [42]). The
robot’s eye, which is endowed with hyperacuity ([19]
and [20]), can locate a contrasting target within its small
FOV.

* A neck: neck movements are essential to the fly, which
has no less than 23 pairs of muscles controlling the
orientation of its head ([43]). The robot is assumed
to be provided with a simpler but nevertheless highly
efficient degree of freedom via a fast (60° within 70ms),
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Figure 2. Similarities between the hovering robot with a decoupled eye (a) and the fly (b). These two dynamic underactuated systems
are able to measure their body’s rotational speed (), by means of a rate gyro (in the case of the robot) and halteres (in that of the fly) and
to locate a contrasting target 6; placed in a small part of their FOV. The fly has no less than 23 pairs of neck muscles with which to stabilize
its gaze 0,, whereas the simulated robot controls the angular position of its eye 6, by means of a small actuator (e.g., a servomotor). In
this figure, the fly and the robot are hovering over a target placed on the ground.

accurate (0.1°) servomotor controlling the orientation of
its gaze.

® A proprioceptive sensor located in the neck: a
pair of prosternal organs consisting of a pair of
mechanosensitive hair fields provide the fly with
accurate information about its head orientation ([44]).
Along similar lines, the robot is able to measure the
orientation of the eye relative to its body by means of
a contactless position sensor.

In the first part of this study, the robot was assumed
to be hovering above a single stationary ground target.
As shown in figure 3 and 4, the robot’s roll (6,) is
controlled by applying a differential rotational speed to
the propellers. [15], [11] and [8] have established that the
altitude control can be completely decoupled from the roll
and lateral control in systems belonging to the class of
planar Vertical Taking Off and Landing (VTOL) aircraft. It
is therefore assumed here that the hovering altitude of the
robot is constant and equal to H. To control the position
of this underactuated robot, it is necessary to adjust the
attitude around the roll axis. The robot’s equilibrium
therefore corresponds to a null roll angle, 6, = 0°.

Figure 3 gives an overview of the robot’s control
architecture, which is based on an observer combined with
a state-feedback controller controlling the robot’s attitude
and position. Figure 3 presents the mechanical decoupling
between the eye and the robot by showing that the robot
and its eye receive separate reference input signals (T*, 0*
and 63,).

The following notations and angles will be used in what

follows:

* 0;: angular position of the target relative to the robot’s
position in the inertial reference frame.

* 0,: the robot’s roll angle.

® 0.: eye-in-robot angle, given the gaze direction in the
robot’s frame. This angle is mechanically constrained
to a maximum value: [0r| < 0, pmax-
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Figure 3. Simplified block diagram of the robot. Due to the
mechanical decoupling between the robot’s body and its eye, the
latter can be described as an independent system receiving its own
reference input signals 6},.

* 0,: gaze direction in the inertial frame 8¢ = ¢ + 0;.

® ¢, retinal error detected by the visual sensor, defined
by e, = 0 — 0.

* X: robot’s position along the horizontal axis in the
inertial frame.

e V,: robot’s speed along the horizontal axis in the
inertial frame.

® Y:robot’s hovering altitude in the inertial frame. Y was
taken to be constant (Y (t) = H Vt).

e (),: the robot’s rotational speed.

The estimated Value§ will be denoted from now on by an
additional hat (e.g., 0), reference values by a star (e.g., 0)
and measured values by a bar (e.g., 0).

2.3 Non-linear model of the hovering robot

The nonlinear dynamic model of the robot was developed
classically using rigid body equations, and simplified to
account for the simple case where the robot can perform
only roll rotations and horizontal translations:



Visual Sensor

Aerial Robot £, (Retinal error)
(orinei _ [RIODCUSISIN 8
Thrust) ! M'IE J T sin(8,)-K,Vx U“_‘ Vx E X Rate Ger (Body Angular
ot n SO s s _
(Differential Saturaion Q. Q, Gy Q, Speed)
Thrust) &* 1] 5 7] Qr| E o,
(Eye in robot [ Tme] 2 b 2 0,
"m O + 0, Hall Effect Sensor fon
T8 | ] ~
[Rate Limiter Saturation [: ) m 8., Robot)

Figure 4. Block diagram of the complete system. The robot is equipped with a rate gyro measuring the rotational speed around the roll
axis and a decoupled eye locked onto a distant target. The green variables are the control input signals, the blue ones are the physical
variables of interest, and the red ones correspond to the measurements.

— (A + ) sin(6r)

Vx I — Koy V
m
& 1)
o, - LB-h)
y=—=-7
I
ér = Qr

where L is the distance between the robot’s centre of mass
and the propellers, I, is the inertial momentum around the
roll axis, F; and F, are the thrust generated by propellers
1 and 2, respectively, and Ky, is the drag coefficient which
is assumed to be constant.

The eye’s dynamics are modelled as a first order transfer
function cascaded with a rate limiter corresponding
to the maximum rotational speed. The mechanical
constraints (the angular course) are modelled in terms of
the saturation (see the block named "Eye" in figure 4).

For greater clarity, the stabilization of the robot with its
decoupled eye was decomposed into two independent
problems. Stabilization of the robot’s attitude and position
are handled by a high-level controller (see subsection 3.5)
yielding a reference rotational speed (€)}), which is fed to
the low-level propeller speed controller. The latter consists
of an internal loop which aligns the robot’s rotational
speed ), faithfully with the reference speed ) (see
subsection 3.4).

The thrust generated by the two propellers is classically
composed of a nominal thrust T and a differential thrust
0. The nominal thrust (T*) counteracts the gravity and the
differential thrust (6*) generates the torque responsible for
roll rotation. The propellers were assumed to be controlled
by adjusting their thrust as follows:

Fii(s) = T"(s) = 0%(s) ©
F(s) = T"(s) + 6%(s)
The dynamics of the two propellers were modelled in the

form of a first order system with a time constant T, (see
table 2). The transfer function F; 5(s) is therefore given by

Fip(s) = o)

— 1+Tuas

3. Hovering by gazing

This study is part of a larger project in which robust,
accurate and fast hovering flight is achieved mainly on
the basis of a gaze control system. For example, [25]
developed a "steering by gazing" strategy to maintain the
gaze of a robot oriented toward a target. In many previous
studies ([45], [46]), the robot’s attitude was determined
using an Inertial Measurement Unit (IMU) including a rate
gyro, accelerometers and/or magnetometers, and a fixed
camera ([47-49]). In this paper, an alternative approach
is presented for answering the following question: how
can a hovering robot be accurately stabilized by means of
only a rate gyro and a visual sensor? Recent studies on
the hoverfly ([36]) have suggested that efficient solutions
to this problem do exist and that the gaze control system
is certainly one of them. As a result, the present robot’s
attitude and position, and the rate gyro’s bias, are now
determined on the sole basis of the robot’s measured
angular speed (), the angle of the robot’s gaze 0,
and the retinal error é. Thanks to the control strategy
we have implemented based on oculomotor reflexes
(see subsection 3.3), the robot hovers above a target by
minimizing the retinal error signal.

In this part, we propose explaining how the eye and
the hovering controller were designed, and how they
interact with each other.

3.1 The nonlinear observer

The nonlinear observer is the cornerstone of the present
hovering strategy, as shown in figure 5. By combining
the robot’s eye orientation (8,,) with the retinal error (&)
measurements, the robot’s position relative to the target
(04) can be calculated as follows in the robot’s frame:

gtr = ger + & (3)
As the robot’s rotational speed measurement ((),) is
known, a nonlinear observer can be implemented. This
observer is able to deliver at its output an estimation of the
linear speed V,, the position X, the roll angle éy and the
rate gyro’s bias Ag:
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The implementation of a nonlinear observer was based on
the strongly nonlinear equation giving the evolution of
the linear speed Vy (see equation (4)) and the nonlinear
output 8 (function of X and 6,). Nonlinearities in Vi give
better estimation during transient, and nonlinearities in Oy
give a nonsteady state error in position estimation, even
when the robot is not above the target. The observer gain
L= (L1 Ly L3 L4)T was tuned using the classical LQG
method and the system was linearized around the origin.

Remark 1: Assuming that the angular precision of the
sensor is about 0.1°, the robot is able to estimate its position
with a 0.5cm accuracy if it hovers at 2m above the target.
This precision is much greater than that of a classical GPS
device.

3.2 An unbiased rate gyro

Rate gyros always have a bias, resulting in a drift
in the attitude estimation if they are not filtered and
fitted. Classical methods ([3, 45, 46, 50, 51]) are based
on accelerometers to determine the gravity direction,
and/or magnetometers to perform magnetic field
measurements, and compensate for the rate gyro
bias. The original method presented here relies, as
occurs in insects, on vision and proprioceptive sensors
(specifying the eye’s orientation f,,) to unbias the rate
gyro. If the gaze stabilization system is locked onto
the target, the rate gyro’s bias will therefore depend
on the angular error ;. defined by equation (4). In
our case, the low-frequency inclination information,
classically provided by accelerometers, is given here by
the proprioceptive measurement 0.

The rate gyro’s bias can be defined as follows:

Qr:Qr‘f‘Ag-f—]xl ®)
Ag=0 (6)

Where (), is the actual rotational speed, A is the rate
gyro’s bias, and y is an unknown centred noise.

Remark 2: The value of §, in equation (4) is obtained from
equation (5). Q) — Ag is therefore simply the modelling
term accounting for the rate gyro’s bias and L3f, is the
innovative term. As mentioned above, the rate gyro’s bias
is determined on the sole basis of the target angle error

(Ag = Lyfiy).
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3.3 Eye controller

The eye’s controller keeps the gaze locked onto a target

placed on the ground. Since the field of view is very

small, the closed loop gaze system has to act very fast
and efficiently. The requisite efficiency is achieved using

a bio-inspired approach, involving a combination of three

complementary oculomotor reflexes:

* A rotational vestibulo-ocular reflex called the rVOR,
which has to counteract the effects of all the rotations
performed by the robot. This reflex yields the signal
07, g, which is simply the opposite of the roll angle 0.

¢ A translational vestibulo-ocular reflex called the tVOR
compensates for the effects of any robot’s translations
in the retina. The output signal 6}, 5, based on the

robot’s position X and its altitude H, contributes to
keeping the eye locked onto the target.

e A wvisual fixation reflex called the VFR, consists of a
visual feedback loop with which any retinal signal
errors €, are cancelled by controlling the eye’s
orientation 6, via the control input signals 67, ,r (see
figure 5).

The VER reflex plays a key role here. It is the main reflex
serving to track the target under all conditions. Thanks to
this reflex, the robot is able to:

¢ hover "robustly" above a target,

* reject any lateral disturbances resulting from gusts of
wind by quickly correcting the eye’s orientation, which
is not possible if the robot has no decoupling, because
of its relatively large inertia.

The VER controller consists of a simple proportional
integral controller, which keeps the retinal error close to 0°.
This controller yields a reference angle (6}, /pz) in order
to contribute to the eye’s orientation, see equation (7).
In short, this reflex is responsible for target tracking in
every situation, which is the first step towards hovering
robustly and accurately determining the robot’s attitude
and position.

The VOR is composed of a combination of two reflexes

keeping the target in the FOV even if the robot is moving.

VORs, which were directly inspired by the visual processes

occurring in insects, compensate for two kinds of robot

movements:

e roll: the rVOR uses the roll angle estimation 0,
provided by the nonlinear observer to compensate for
any body rotations (67, o, = —6,),

e lateral translation: the tVOR, which is based on the
estimation of the robot’s linear position, minimizes the
effects of any lateral displacements on the retinal error

€r, (0}, x = —arctan (%))

The reference angle 6, (see figure 5), which therefore
results from the joint contribution of three reflexes (rVOR,
tVOR and VFR), can be expressed as follows:

* __ ok * *
Ger - 937_6, + eeLX + eeLVFR (7)
N’ N’ | S
rVOR  tVOR VFR
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The VORs were used as feedforward control signals
cancelling the movements perceived by the robot (thanks
to the gyro and the eye-in-robot angle). Additionally, the
VER is used here as a feedback control signal cancelling
any undetected movements and the modelling errors
present in the feedforward terms. Simulation results and
discussions about the efficiency of theses reflexes could be
found in our previous works ([52] and [53]).

3.4 Rotational speed controller of the propellers

The rotational speed of the robot is used by the attitude
and position controller as an input control signal to
stabilize the robot and achieve the desired position
(figure 4). In this way, the rotational speed inner
loop makes the robot faithfully adopt the speed rotation
set-points (2}) imposed by the attitude-position controller
(see subsection 3.5). It was assumed here that the
propellers are driven directly by the thrust, which can be
deduced from the propeller’s rotational speed in line with
equation (8). The rotational speed is therefore controlled
by a simple differential thrust between the two propellers.

Fi = CT.(UiZ (8)

Where F; is the thrust generated by the propeller i, w; is
the rotational speed of the propeller i, and c7 is the thrust
coefficient, which can be identified using static thrust tests.

In order to account more satisfactorily for the rate gyro’s
dynamics, a classical LQG controller-observer structure
was chosen instead of a simple PID. The state space
representation for the rotational speed loop, including the
gyro dynamics, can therefore be written:

. —2L 2L
Qr _ L Tt 0 Qr + L Tinot 5* (9)
O, )\ L =1 Q 0
’ Teyr Tgyr !

Where (), is the actual roll rotational speed and Q), is the
rotational speed measured by the rate gyro.

The closed loop time response obtained for (), was
less than 20ms, and the differential control noise was less
than 2%.

3.5 Position and attitude controller

The position and attitude controller were implemented
using LOR methods and the estimated states (Vy, X and
0,) given by the nonlinear observer. When designing
this controller, it was assumed that the rotational speed
feedback loop described above (see subsection 3.4) is
much faster than the attitude-position loop.

The LQR state feedback was designed for the system (1)
linearized around the origin with the equilibrium control
input Oy = 0. To cancel the steady state error, an integral
term was added to the position error.

4. New outlooks provided by the hovering by gazing
control strategy

In previous studies carried out at our laboratory ([52]
and [53]), we demonstrated that a robot equipped with a
decoupled eye (denoted D-EYE) was able to reject lateral
and rotational disturbances better than the same robot
with a fixed eye (denoted F-EYE) even if the field of view
of the decoupled eye robot is smaller.

The implementation of a decoupled eye onboard an aerial

vehicle also opens up new perspectives:

e itenables a robot to finely control its horizontal position
with respect to the target without being given any
explicit information about it position by an external
camera, a motion capture system, or a GPS as occurs
in more classical systems,

e it enables a robot to perform shifted hovering with
respect to the target. This point has interesting
consequences regarding the robot’s disturbance
rejection ability. More generally, the robot is therefore
not constrained to stay in a small restricted area around
the target (see subsection 4.1),
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Figure 6. a) Ground resolution and Maximum Allowable
Disturbances (MLD). Thanks to the gaze orientation of the D-EYE
robot, the MLD increases with the absolute value of the position
(IX]). b) The Maximum Lateral Disturbance (MLD) on both sides
depends on the robot’s position. The grey background describes
all the positions which cannot be achieved by the F-EYE robot
without completely losing sight of the target. In the F-EYE robot,
any increase in the MLD on one side will inevitably result in a
corresponding decrease on the other side, whereas the MLD of the
D-EYE robot increases on both sides in proportion to the robot’s
distance from the target. This figure was plotted with a F-EYE
robot featuring a +:25-° FOV and a D-EYE robot featuring a £5-°
FOV and a maximum ocular angle £80-° (6er,, 4y )-

e itenables a robot to jump from one target to another by
simply triggering a saccade towards the new target (see
subsection 4.2). This provides to the robot the ability
to follow a specific trajectory based on various targets
forming a path.

4.1 Shift hovering

The following discussion demonstrates that the
decoupling allows for hovering not only above a
target but also near a target. Let us start by defining the
Maximum Lateral Disturbance (MLD):

Definition 1: The maximum lateral disturbance (denoted
MLD) corresponds to the maximum range of horizontal
displacement which can occur without losing sight of
the target (i.e., without the target ever leaving the FOV).
In other words, the MLD corresponds to the robot’s
maximum lateral displacement which can arise between
two consecutive updates of the visual control loop (i.e.,
during the sample time of the VFR). If a disturbance is
greater than the MLD, the visual feedback loop’s sampling
rate will be too slow to detect this movement and the robot
will not be able to reject this disturbance. The MLD is
expressed in metres, and MLDy and MLD; correspond to
the right and left MLD, respectively.

Figure 6 shows the ability of the F-EYE robot with an FOV
of £25° and that of the D-EYE robot with a 5-fold smaller
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FOV (£5°) to reject lateral disturbances. From this figure,
it is possible to determine the MLD corresponding to each
robot (F-EYE robot and D-EYE robot):

F-EYE system: the robot’s possible positions are restricted
to | X| < Htan(£9Y):

MLDg(X) = Htan (g) ~-X
FOV (10)
MLD; (X) = Htan (T) +X

D-EYE system: theoretically, the robot can adopt any
position on the X axis.

MLDg(X) = H tan (FOTV + arctan (§>) -X
FOV (an
MLDy (X) = X — Htan (— + arctan (—))
2 H
When hovering perpendicularly above the target, the
F-EYE robot benefits from its large FOV and can reject
a 93-centimetre MLD, whereas the F-EYE robot can cope
with an MLD of only 17.5 centimetres due to its smaller
FOV. However, by shifting the robot’s horizontal position
away from the target, it is possible to greatly increase
the D-EYE robot’s MLD rejection capacity, which becomes
larger than that of the F-EYE robot after simply making
a 2-m lateral shift. This simple strategy therefore makes it
possible to overcome the problem focusing on the trade-off
between the width of the FOV and the MLD. Even with
its 5-fold smaller FOV, the D-EYE robot can reject much
larger MLDs than the F-EYE robot. In addition, unlike
the F-EYE, the decoupled eye enables the D-EYE robot to
reject disturbances of practically the same amplitude on
both sides (right and left).

One of the main advantages of the novel strategy
consisting of shifting the robot laterally with respect to
the target focuses on the Maximum Lateral Disturbances
(MLD) that can be rejected. From figure 6, it can be
seen that the F-EYE robot with a +25-° FOV cannot even
achieve a 2-m shift without losing sight of the target.
Unlike the F-EYE robot, the D-EYE robot with a £5-° FOV
decoupled eye hovering at 2m and offset by 2m from the
target can reject both right and left lateral disturbances of
up to 38cm while keeping a positioning accuracy of more
than 1cm.

4.2 Saccadic flight behaviour

A last useful advantage of the decoupled eye is its ability
to make a change of target. For example, when the robot
hovers above a first target, a very quick eye rotation
(similar to a catch-up saccade) is generated to make the
robot’s eye "jump" to a second target, the position of which
is known. A catch-up saccade is one of the four types of
eye movement (saccadic, smooth pursuit, vestibulo-ocular
reflex and vergence) used to track a trajectory. Catch-up
saccades occur in humans when the smooth pursuit
system is not sufficiently fast to track a moving target

([54]).



In this study, this mechanism was used first to make the
robot shift from one target to another. Like the steering by
gazing strategy ([25]), the aerial robot will move toward
the target at which its gaze is looking.

4.2.1. Notations and implications:

Here we define some notations used to distinguish
between the variables used in the various reference frames:

gu describes the variable U from A (the object in terms of

which the vector is expressed) in the frame of reference B
(in which the measurements are made.)

For example, %X gives the actual position of the robot R in
the inertial frame 7 and §-X* denotes the reference position
of the robot R relative to the target frame 7.

Three frames of reference were therefore used in this
study:

- the Robot’s frame of reference, denoted R,

- the Inertial frame, denoted Z,

- the Target’s frame, denoted 7.

Remark 1: Note that in the previous part, the target frame
T was the same as the inertial frame Z because the two
origins were the same, i.e.,: %X = X7 and ;X =0.

The relation between the estimated robot’s position in the
inertial frame, the estimated robot’s position in the target’s
frame and the target’s position in the inertial frame can be
written:

Bx=R%x+1x (12)

Where TX is the position of the current target in the inertial
frame. The observer described by equation (4) therefore
becomes:

RY) . A - -
T'X - % Sln(%{’er) - KUXR YX + L1§*9tr

X Vet Lol

?ér ?Qr - %Agé“’ L3§9tr

R A

70 aTo (13)

R < R T
R =R -Tx

< RX R
§9H = — arctan g—H — 172—6%
T

where %{-étr = l;-étr - ?étr

4.2.2. "Target Jump” procedure:

To make the robot shift from one target to another, a simple
change of variable suffices. The previous value of the
target’s position is then replaced by the new one. The
coordinates of the new target just need to be updated as
follows:

TX(8) = 7%
IX(t+ 88 = T Xk

before jump.  (14)
after jump. (15)
Where At corresponds to the nonlinear observer’s

sampling time and IX; with the subscript k or k + 1
corresponds to the target’s identifier. %Xk and %Xkﬂ are

therefore the position of the target k before the "target
jump" and the position of target k + 1 after the "target
jump", respectively.

The eye’s "jump" (or saccade) is then expressed by
changing the value of the feedforward term 6. y, which

<
is written with the new notation: 0}, y = — arctan (%)
- T

When the operator wants to make the robot change
target, he/she just needs to send the robot the new target
coordinates, expressed in the inertial frame (%Xk).

Once the target’s new coordinates have been specified,
the robot immediately changes its eye orientation and
re-positions itself appropriately with respect to the
reference ?X*. A simulation of the robot’s target-jumping
behaviour is illustrated in the figures 7, 8 and 9.

Remark 2: These simulations were performed with the
Processor-In-the-Loop (PIL) environment described in the
section 2.1, with the set of parameters given in table 1.
The whole control strategy presented in section 3 was
developed under Matlab/Simulink and the computations
were performed at a frequency of 400Hz (except for the
VFR which was computed at only 40 Hz by considering
a realistic refresh rate of the visual sensor). This
computations corresponded to less than 20% of the whole
CPU load. All the calculations and control inputs were
monitored at the same frequency in real time via the wifi
connection before being plotted and compared with the
"real" values simulated on the host computer.

The following scenario was simulated in figures 7 and 9:

e step 1: the robot made a 1-m lateral shift with respect
to the target

e step 2: after 5s, the robot jumped to target 2 and the
previous lateral shift with respect to the target was
maintained (the figure 8 shows only the eye jump
occurring at t = 5.0s)

* step 3: after 5s, the robot jumped to target 3

We therefore have: %Xl = Om, %XZ = —1m and %X3 =
—2m.

In conclusion, thanks to the fast eye dynamics, the "eye
jump" is performed very quickly because the new target is
locked by the robot’s eye in less than 0.13s, as shown in
figure 8. Once this new target is locked, the robot’s body
automatically reaches the desired relative to target position
?X* in less than 1.5s, as shown in figures 7 and 9.

5. Advantages of the decoupled eye

Here we summarize the advantages of having a decoupled

eye with a small FOV:

® Less distortion: having a large FOV necessarily implies
to use a fish-eye lens and more pixels to keep a good
angular resolution. The fish-eye lens induces a lot of
distortions in the peripheral region of the image which
need to be compensated. Finally, the use of a large FOV
implies taking into account more pixels and cancelling
the lens distortions, which leads to more computations.
However, a decoupled eye with a small FOV allows for
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Figure 7. a) Estimation of the position and the corresponding
tracking expressed in the different frames of reference. b)
Evolution of the eye angle. The updating of the target position
described in equation (15) involves a jump in the feedforward
term 0, y (red curve), which triggers the change of target. c)
Retinal error during the target jumping phase. It takes only 0.13s
for the eye to lock the new target in its narrow field of view.
Therefore, the new target enters into the FOV 0.13s after the target
change was asked. Figure 8 shows more precisely the retinal error
signals during a target jumping.

FOV
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Figure 8. Evolution of retinal error during a target jumping.
The blue line describes the actual retinal error, and the red one
corresponds to the measured retinal error which includes the
sensor quantification, discretization, dyamics, internal delay and
the eye’s limited FOV (see table 2). Here, the new target is locked
in less than 0.13s and is kept locked into the FOV. In addition, the
retinal error is kept under 1.4° in less than 0.15s (|e;| < 1.4°) and
under 0.2° in less than 0.7s.

avoiding the lens distortions and reducing the number
of pixels by maintaining the target at the centre of the
FOV where the acuity is the best.

e Reduced computational complexity: as shown
in section 4.2.2 of [53], the D-EYE robot rejects
disturbances more efficiently with its two pixels than
does a F-EYE robot featuring a large FOV having 1000
pixels (a classical camera with 1000 pixels has the same
0.1°-angular resolution as the D-EYE sensor endowed
with hyperacuity). The small number of pixels of a
decoupled eye reduces drastically the computational
resources required to extract the angular position of
the target.

e Faster disturbance rejection: with the F-EYE robot
(equipped with a small FOV), a lateral disturbance
resulting from a wind gust cannot be quickly
counteracted. To compensate sharply for a lateral
disturbance, the robot has to take a stiff roll angle,
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Visualisation of the robot during "Target Jumping"
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Figure 9. The robot’s attitude during "target jumping". Plots of
the UAV’s position and attitude were sampled at 20Hz. For the
sake of clarity, the various sequences have been shifted vertically,
but the altitude H remained constant throughout all the jumping
sequences. At t = 0s, the robot shifted one metre to the right with
respect to the target 1. Att = 5s, the robot made a change of
reference target and moved to a point one metre to the right of the
target 2. Lastly, at t = 10s, the robot moved to a point one metre
to the right of the target 3, the new reference target.

which results in the loss of the target; whereas it is
possible with the D-EYE system to adopt a stiff attitude
without losing sight of the target (see section IV of [52]).

e Robustness with respect to lateral wind: in the same
way, the decoupled eye enables the robot to hover not
only above a target but next to a target. With this
simple method the ground area covered by the FOV
is extended, which increases the Maximum Lateral
Disturbance (MLD) which can be rejected. In addition,
the robot is able to hover relatively far from the target
without losing sight of this target (which is not possible
with a robot having a fixed eye, as shown figure 6).

® More than hovering: Lastly, the decoupled eye enables
the robot to change target and move above the next
target, as explained in subsection 4.2. This makes it
possible to impose a specific path of travel to the robot.

e GPS and gaze strategy: if a GPS signal is available,
it would be possible to communicate the absolute
position of a moving target. Our strategy could be
used efficiently to track a moving target (these results
are not presented in the paper but the D-EYE robot
might be able to track a 1.5-m.s~! moving target.) It
is then possible to communicate the absolute position
of the target as the sum of the robot’s GPS position
(low-pass filtered) and the relative to target robot’s
position estimated thanks to the gaze strategy:

T R T R R
IX = IXchs + RXWZE = IXchs - TXSaZC (16)

Where %X feps is the filtered GPS position and R%Xgaze is
the estimated position of the robot with respect to the
target.



Parameter Description Value Unit

H Altltu'de of the 20 m
hovering robot

I Half span of 015 m
robot
Mass of the

m robot 0.1 kg

L Inertial 20x1075 kg.m?
momentum
Drag 1

Kox coefficient 05 N.s.m

FOV Field of View +5 deg

d Visual sensor’s 10 ms
latency

Gos OPth sensor’s 1 )

P gain
- Angle sensor’s 1 s
hall time constant

Rate gyro’s

Tayr time constant 4.3 ms
Propeller’s

Tmot time constant 20 ms
Eye’s time

Teye constant 10 s

Table 1. Simulation’s parameters.

Sensors

Visual sensor|Angle sensor| Rate gyro
Transfer
function OPf(s):GGPfeids Ghall (5>: 1*'5!11:1115 GS.‘/’ (S): 1+'r;yrs
Resolutior] 0.1 [°] 0.1[°] 1[°s7 1]
Sample 40 [Hz] 1 [kHz] 1 [kHz]
frequency
Noise o o o —1
amplitude +0.1[°] +1[°] +5[°.s7]

Actuators

Propeller motor Eye motor
Transfer
funCtiOn G]/ngf(s>: 1+T37mt5 GCVB(S): 1+T1t’yes
Rate &
limiter - 1000 [°.s~1]

Table 2. Sensors’ and actuators’ characteristics.

6. Conclusion

In this paper, a simulated hovering aerial robot equipped
with a decoupled visual system and a bio-inspired strategy
of stabilization are presented. The control strategy
depends on oculomotor reflexes providing accurate gaze
stabilization, which greatly improves the robot’s ability
to reject large lateral and rotational disturbances. The
gyro’s data are unbiased using the orientation of the gaze
given by a proprioceptive sensor. This novel approach
was tested using a PIL development toolchain which
allows easy programming and execution in real-time using
the Simulink autopilot on the embedded Gumstix COM.
In addition, the saccadic eye movements enables the
robot to navigate along a travel path defined by several
successive targets. As a conclusion, the practical uses
of a decoupled eye go far beyond the stabilization of
a hovering robot: it opens up promising avenues for

controlling the 3-D position of a robot by anchoring its
gaze onto particular objects of interest. In a future study,
the method presented here will be implemented onboard
a small fully autonomous quadrotor with six degrees of
freedom.
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