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Analytical Calculation of Magnet Systems: Magnetic Field Created by
Charged Triangles and Polyhedra
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An analytical method for the calculation of the magnetostatic scalar potential and the magnetic field created by a polyhedron-shaped
permanent magnet is presented in this paper. The magnet is supposed to be uniformly magnetized. The magnetization is equivalent
to distributions of magnetic charges: it is the coulombian approach. The analytical calculation is made by a surface integration on all
the polygons that composes the polyhedron. For each polygonal surface, we have shown that it can be decomposed in a series of right
triangles. An analytical solution in the particular case of the right triangle has been developed. By this way, the magnetostatic potential
and the magnetic field of any polyhedral-shaped magnet can be analytically calculated.
The analytical results have been verified: the field calculation created by a prismatic magnet is developed.

Index Terms—Analytical calculation, magnetic charges, magnetic field, permanent magnet.

I. INTRODUCTION

T HERE are a lot of analytical models for the calculation of
field and strength of permanent magnets in the literature

for a wide variety of shaped magnets (parallelepipeds [1], [2];
cylinders [3], [4]; rings [5], [6]; and tiles [7], [8]). But some
magnets own a more complicated shape. An analytical method
for calculating the scalar potential and the magnetic field created
by a magnet of any polyhedral shape [see Fig. 1(A)] is presented
in this paper.
In 2010, J. L. G. Janssen has presented a method for the cal-

culation of the field of prismatic magnets [9]. The work is based
on a similar decomposition, but the field expressions are slightly
different because the origin has been taken in the middle of the
triangle hypotenuse, when the origin is at a triangle corner in
our work [10].

II. CALCULATION PRINCIPLE

The analytical calculation of the scalar potential and the mag-
netic field created by a permanent magnet is done by a coulom-
bian approach. It means that the magnetization in the volume of
the material is represented by a distribution of magnetic charges
on the surface of this volume (Fig. 1(B)).
The magnet is supposed to be perfect. It means that the

magnetization is constant and uniform, with a permeability
of .
The first step of the calculation is to reduce the polyhe-

dron into polygons. The magnetic charges are caused by the
discontinuity of the normal component of the magnetization
on the surface. Therefore it gives , where
is the magnetostatic surface charge density, is the magnet
polarization in Tesla, and is the normal vector to the surface
of the magnet.

Fig. 1. Example of polyhedron-shapedmagnet. (A) Constant and uniformmag-
netization, is the polarization in Tesla.. (B) Equivalent coulombian represen-
tation (surface distribution of magnetic charges).

The magnetic scalar potential is given by the following
integral [11]

(1)

The geometrical parameter is the distance between the con-
sidered point where the potential is calculated and the magnetic
charges.
The magnetic field is written by [11]

(2)

The analytical calculation of the magnetostatic scalar poten-
tial or the magnetic field created by a uniformly charged surface
of any polygonal shape is not trivial. Indeed, there is no generic
solution of the integral (1) and (2) on any polygons. However,
an analytical solution can be obtained in a particular case: a right
triangle. The configuration of the right triangle is presented in
Fig. 2. The integration point is located on a line crossing per-
pendicularly the triangle plane in one of the nonright-angled
vertices of the right triangle. From the solution for the right tri-
angle, the calculation method is based on the reduction of any
polygon in a series of triangles [12].



Fig. 2. Definition of the two types of right triangles: (A) right angle is located
on and (B) right angle is on .

In the paper, the analytical expressions of the potential and
magnetic field components on right triangles are given. Then
the decomposition of a polygonal charged surface in a series of
right triangle reductions is presented. The method is illustrated
on a simple prismatic magnet and the results are compared with
a numerical simulation by finite elements.

III. CALCULATION OF THE POTENTIAL AND THE MAGNETIC
FIELD CREATED BY A UNIFORMLY CHARGED RIGHT TRIANGLE

Let the right triangle shown in Fig. 2(A) be uniformly
charged. The magnetic potential and the field components are
given by

(3)

(4)

(5)

(6)

where .

A direct calculation of (3), (4), (5), and (6) gives the following
analytical expressions:

(7)

(8)

(9)

(10)

with , and
.

The expressions associated with the right triangle shown in
Fig. 2(B) are analogical to (7)–(10). They can be found in con-
sidering a set of rotations of the right triangle first around
axis then around axis.
Note: The normal component of the magnetic field is dis-

continuous in crossing the surface . It is reasonable to take
for [11]. It must also be pointed out that the field

components and are undefined for (the plane of
the polygon). The divergent terms cancel analytically when all
the right triangles of a polygon are combined together. It was an-
alytically verified on the case of the rectangle and numerically
for other polygonal shapes (the divergent terms are simply not
calculated).
It is now possible to calculate the magnetic scalar potential

and field created by a magnet of any polygonal section by re-
ducing it into a sum of right triangles of kind A and B.

IV. REDUCTION OF AN INTEGRAL ON A POLYGON INTO A SUM
OF INTEGRALS ON RIGHT TRIANGLES

Let be an n edge polygon, is the integration point and is
its orthogonal projection in the plane of the polygon. The trian-
gles associated with the edges of the polygon and point can
be generated to the maximum number of [13]. Indeed there
will be triangles if is located on an edge of the polygon
and if is located on a top. Each of these triangles is then
reduced into a maximum of two right triangles [14]. Therefore
the reduction of an side polygon generates a maximum of
right triangles.
The steps of the reduction are shown for the triangle

(Fig. 3(A), (B), (C), and (D)). The projection of on an edge
generates two right triangles. Each triangle wears a charge
density.
The integral on is the integral over added to

the integral over subtracted to the integral over
[see Fig. 3(D)]. For example the calculation of the integral over

[see Fig. 3(B)] needs the integral associated with the right



Fig. 3. Reduction of the integration of from the point to a sum of
integrals on right triangles.

Fig. 4. Steps of the calculation of the normal field above the barycentre of
an equilateral triangular base prismal magnet. (A) Equilateral triangular base
prismal magnet. (B) Equivalent Coulombian representation. (C) Reduction to
right triangles from the barycenter. (D) Sizes of the prism.

triangle that is counted positively and the one associ-
ated with that is counted negatively. We can deduce
a general rule: the solution of the integral associated with one
right triangle is counted positively if the right triangle covers
(or covers partially) the triangle . Otherwise it is counted
negatively. The sum of all the integrals associated with all right
triangles, taking into account the signs, is equivalent to the in-
tegral over the triangle .

V. APPLICATION 1: CALCULATION OF THE MAGNETIC FIELD
CREATED BY A PRISMATIC MAGNET

Above the center of an equilateral charged triangle, it is easy
to calculate the vertical component of the magnetic field.
Let us consider a prism magnet, magnetized in its thickness

direction. The prism section is an equilateral triangular based
prism shown in Fig. 4(A), let us calculate the normal field along
a path perpendicular to the prism and crossing its barycentre .
1) Calculation of Charge Densities on the Prism Faces: The

calculation of charge densities is immediate [see Fig. 4(B)],
we obtain (norm of vector ). The charge den-
sity is positive at the top and negative below

. The other sides do not wear any charge.
2) Reduction of Charged Faces Into Right Triangles: The

reduction into right triangles is trivial; in fact we get on each face

Fig. 5. Normal field of the prismatic magnet along a vertical line through
the barycentre.

six identical right triangles [see Fig. 4(C)]. In the particular case
of the calculation of the normal field, it is not even necessary
to conduct an analysis to determine of what kind are the right
triangles (Fig. 4, corner of or ), they are equivalent here.
For a prism of width and thickness [see Fig. 4(D)] the
parameters of the right triangles are

(11)

The parameter depends on the face (top or bottom) of the
prism that is considered.
3) Analytical Expression of the Normal Field: The normal

field is the sum of contributions from 12 charged right triangles
(6 for the top face and 6 more for the below one). In addition,
the right triangles of each face are identical. So according to (10)
we obtain (12)

(12)

4) Numerical Application and Validation: The sizes of the
prism are mm for the 3 edges of the equilateral triangle,
and mm for the thickness.
The magnet polarization is taken equal to 1 Tesla. Fig. 5

shows the normal field as a function of on the vertical line
through the barycentre. The obtained results are confronted to
a classical numerical simulation by finite elements. The two
curves perfectly match. The small defects observed in the nu-
merical calculation are due to the meshing. Note also that the
jump at the discontinuity of the field (crossing of the charged
surfaces) is A/m, which corresponds to the value of ;
it is a classical result.
5) Synthesis: We presented a simple example of field cal-

culation in details. We first calculated the charge distributions
on the faces of the prisms. Then we calculated the field
thanks to a reduction of the charged surfaces into right triangles.
The results are then compared to a finite elements modeling.
The analytical calculation is very fast and does not require a lot
of memory in comparison with a finite element modeling. The



(13)

Fig. 6. Reduction of one integral over a rectangle into a sum of integrals over
right triangles.

method can be applied on all magnet shapes that can be approx-
imated by a polyhedron.
The calculation of the tangential field ( and compo-

nents) is not presented here because it is a bit more compli-
cated; it requires the projection of each field component from
the right triangles coordinate system (Fig. 2) to the global coor-
dinate system. However a computer script that realizes the cal-
culation is easy to perform.

VI. APPLICATION 2: CALCULATION OF THE MAGNETOSTATIC
FIELD CREATED BY A RIGHT CUBOIDAL MAGNET

A right cuboid is a particular type of polyhedron, with only
rectangular faces and right angles. The analytical expressions
of the field created by a rectangular surface are a very classical
result [1]. The verification of the triangle method has been fully
performed on a rectangular surface: the analytical expressions
of the magnetic field component calculated by the right triangles
method are exactly the same than the analytical expressions ob-
tained by a direct integration.
The first step is the geometrical reduction of the rectangle in

right triangles in the plane of the rectangle (Fig. 6). Let be the
orthogonal projection of the integration point in the plane .
Each right triangle is labeled according to the parameters of the
triangles depending of the kind (corners on or ).
Only the vertical component is presented here, but the three

components can be easily calculated. The field component
is given by (13), shown at the top of the page.

VII. CONCLUSION

An analytical calculation method of the scalar potential and
the magnetic field created by a polyhedron-shaped permanent
magnet has been presented. Thanks to a Coulombian represen-
tation of the magnet, the magnetization of the material is consid-

ered as a distribution of charges on each face of the polyhedron.
Then it is necessary to calculate the integrals of the potential
and magnetic field on each of its surfaces. This calculation is
not trivial. A geometrical method, consisting in the reduction
of the polygons into right triangles whose analytical solutions
of the integrals of the field and the potential can be calculated,
has been proposed. Therefore, it is now possible to calculate
analytically the scalar potential and all the components of the
magnetic field created by any polyhedron-shaped magnet. The
results are very useful for the calculation and design of magnetic
field sources, sensors and actuators.
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