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Nonlinear observer based on observable cascade form

Mariem Sahnoun and Hassan Hammouri

Abstract—In this paper, the error observer linearization  following form:
is extended to a class of observable cascade systems which

contains state affine systems up to output injection. Firstwe Z=AUWZ+ Y(u,y) fglcTR(Cif y)
give a theoretical result which states necessary and suffemit 2 o~ 2 - AT/ A
conditions. Next, we give an algorithm permitting to calcuhte Z=AU)z+{(u,2y) - S C'R(CZ-Y) )
a system of coordinates in which a nonlinear system takes the S=-6S— AT(u)S—SAu)+C'RC
desired cascade observable form. S— _6S_ '&T(u)é_ ﬁ(u) +6T§6
Index Terms— Nonlinear systems, output injection, nonlinear
observer.

where §(0), §(O),~R and R are symmetric positive definite

matrices,0 > 0, 6 > 0 are parameters. The proof of the
. INTRODUCTION convergence of this observer has been stated in [1].

This paper is organized as follows:

The implementation of linear or nonlinear observers inn section Il, the problem under consideration is formalize
control systems design, fault detection and other domairgd an existence theorem is stated. In section lIl, an al-
is well understood by now. gorithm permitting to calculate a system of coordinates in
To design an observer for nonlinear systems, many aprhich a nonlinear system takes the desired cascade form is
proaches have been developed. Among them, the geomefioposed.
approaches consist in characterizing nonlinear systerichwh
can be transformed by a change of coordinates to a specig| pre|MINARY RESULTS AND EXISTENCE THEOREM
class of systems for which a simple observer can be designed.
The observer error linearization problem consists of trang\. Preliminary results
form a nonlinear system into a linear one plus a nonlinear o )
term depending only on the known inputs and outputs. For FOT the sake of simplicity, we only conS|der_ the case where
such systems, a Luenberger observer can be designed. TH@ outputsy andy are scalars. The following classes of
problem has attracted a good deal of attention, since if@nlinear systems will be considered:
formulation by [9] (see for instance [2], [3], [10]-[13]. Wg = f(u,x)
immersion technics, an extension of this problem has been y= h(x)7 3)
stated in [8] in the single output case. In the same spirit T~
as for the error linearization problem, the authors in [#]—[ y=h(x)

characterized nonlinear systems which can be steered bX/vﬂerexe RM, the inputu(t) € R™ and the outputs/(t) and
change of coordinates to state affine systems up to out b are belong tcR. f, h andh are assumed to be of class
injection. For these systems, a Kalman-like observer can

designed. We adopt the following definition.
In this paper, we will characterize nonlinear systems which Definition 1: System (1) is said to becascade-

can b_e transformed by local coordinate systems into tk}f’oservable if system (1) together with its associated
following cascade form: reduced system ia are observable.

7= A(U)z+ P(u,y) The following geometric notions will be used in the sequel.
S X ’ In the system of coordinatésy, ..., x,), let X = ¥, aiaixj

5 AUZ
2= Aujz+ w(u’é’zy) (1) be a vector field and leto = S ;adx a one-differential
Y = < 3/7 > = ( Gz > form, then the following operations will be considered:

e Lie derivative action: Lx(w) = Y ailx(a)dx +

For these systems, an observer structure may take the Yinpaida;
e The duality product: w(X) =3, aia;
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Qaiiy Qki,

w(X) =

2 1<ip < <ie<n &g, ...ik)

Qi
X)) be al-tuple of 2
-

Qi

e Inner product: Let X = (X,...,
vector fields, withl < k. Thenix(w) is the (k—
differential form defined by:

ix(@) (Y1, Y1) = @(Xa,. ... %, Y1, Y ).
In particular, ifk =1, thenix(w) is a function
(a O—differential form).
Let fy be the vector field defined by (x) = f(u,x) and letxX
be a vector field oR". We define the family of real vector
space} of 2-differential forms as follows:
o QF =0 andQj = Spar{dLy,(h) Adh ueR™}. Notic-
ing that these two spaces do not dependXen
e for k> 1, we setQﬁﬂrl = SparLy,(ix(w)) Adh; ue
R™ we QX+ QF.
Now settingrm=d¢1 A... Addq, wheregy ares™ functions,
and letX = (Xl, Xq+1) be a(q+ 1)-tuple of vector fields.
As above, we define the vector spatﬁén of (q+ 2)-
differential forms as follows:
° Of,=0 andg?l( — Spar{dLy,(h) AdhA T ue R™Y,
o for k> 1, QF ;= SparLy,(ig(®)) AdhAT, ue
R™ @€ Qfén} + Qfén.

1)

B. Existence theorem 2)
In the single output case (see [4], [6]), ( [5] for the the
multi-output case) the authors gave necessary and sufficien
conditions under which nonlinear systems can be trans-
formed in a state affine system up to output injection.

The following theorem states an existence theorem which
extends those stated in [4], [5]:

Theorem 1:

Observable system (3) can be transformed by a local
change of coordinates around sonfec R" to a cascade-
observable system (1) in whighandC are of rank 1, if and
only if, the following conditions hold on some neighborhoo

of x0:

1) It exists a vector fiel&X satisfying the following con-
ditions:

1-i) Lx(h)=1.
1-ii) The algebraic sun@* = Z Qf is a real vector space

k>1 L4

of dimensionq— 1.

1-iii) For everyw € QX, d(ix(w)) = 0.

1-iv) The dimension of[ A% (ix(QX)) Adh|lo is equal ~ ®
to 1, where[\%1(ix (Q*)) Adh|0 = {ix(w) A... A
ix(ay-1) Adh(X®); @ e QX 1<i<q-1}.

2) Consider the following functiongs,..., ¢q+1 defined

by:

¢pr=h
¢gra=nh
(do,...,

(4)
d¢q) forms a basis ofx (Q*) +Rdh

) Ly (¢)) =
2-ii) The algebraic sur’rQ% =

Settingmr=d¢1A... Adgq, then there exists e+ 1)-
tuple of vector fieldsX = (Xg,.. Xq+1) satisfying the

following conditions on some neighborhoodx?t
gj, wheregj =1 if i = j and O otherwise.

i ! Zkle)k(,n is a real vector
space of dimension—q— 1.

2-iii) For every® € QF, d(iz(w)) =0.
2-iv) The dimension of [A™% (i (QX)) A dgy A ...

A
d¢g+1]|y0 is equal to 1.

The proof of theorem 1 can be obtained by following the
same approach as the one proposed in the works [4], [5].
The outline of the proof is summarized as follows:

Sufficient condition ix (Q*) and i;(Q%) are vector
spaces of dimensiog—1 andn—q— 1 respectively,
and (ix(w),...,ix(wy-1)), (ig(@n),...,ig(Gh—q-1))
are their respective bases. Settidgs = dh, dz =
ix(qu), dz = dh anddz =iz (@.1). It can be shown

that Ly, (z ZQa” )zj +i(u,z1) and Ly, (Z)

Zza” )Zj + i (u,z,Z,). Consequently, in théz, 7) sys-

tem of coordinates system (3) takes the cascade form
(1).

Necessary conditiorsince conditions 1), 2) of theorem

1 are intrinsic (they do not depend on the system of
coordinates), it suffices to show them for the cascade
observable system (1). After a simple linear change of
coordinates, we can assume tlyat Cz=2z andy=

Cz=7 7, and it can be shown that = — and X =

o7
(X1, Xge1) = (5, 4 9 9 —) satisfy conditions

’dzq 07
1) and 2) of theorem 1.

In the following, we focus on the development of an
algorithm permitting to calculate vector fiel®s Xy, ...
c}Nhich meet conditions )land 2 of theorem 1.

5>A<]+l

PROCEDURE OF CALCULATION OF VECTOR FIELDS
Xaxla"'aqurl

A. Preliminary results

The following notations will be used in the sequel:

LetV be a vector space, aMl a subspace o¥, then
for £,&’ €V, the notationé = &’ modulo (W) means
that & = &’ +w, for somew € W.

Setting . (resp. ¥) to be a set of one-differential
form (resp. of vector fields)D = Spar{.%) (resp.A =
Spar{?)) will denote the co-distribution (resp. the
distribution) spanned by (resp. by?).

The orthogonal of a co-distributidD is the distribution
A =Ker(D) =Span{X; w(X)=0, Ywe #}), where
w(X) is the duality product between one-form and
vector fields. In particular, i is spanned by a family
of one-exact form{d¢; ¢ € } then A = Ker(D)



is the distribution spanned by the set of vector fields Claim 2:

{X; Lx(¢)=0, V¢ € F}.

e The flags of co-distributiondg C ... C Dy C .. ;

e LetD, D' be two co-distributions, witld’ C D, then the  B,/D, < ... ¢ Dy/D; C ... are of constant dimensions and
quotientD/D’ will denote the set of equivalent class ofdefined as follows:

differential forms(w] = w+D' ={w+«'; «' €D},
wherew € D. Similarly, if A C A’ are two distributions,
elements of the quotiedY /A will be denoted by{X] =
X+ A whereX € A,

If [w] € D/D’ and x € D such that{w] = [x], then we
setw = x modulo O).

Finally, if X, Z are two vector fields|X,Z] will denote
the Lie bracket of these vector fields.

The following flag of co-distributions and distributionslwi
be considered:

DoC...cDkC...
DNopD...DND...
DoC...CDxC... ®)
DNopD...DND...

Where,

e Do =0 the null co-distributionP; = Spar{{dh}), by
inductionDy, 1 = Dy + Span{{deuk ... qul(h); us,...,
uc € R™}), andD; = y -1 Dx.

e Do = D;, Dy = Do + Spar{{dh}), for k> 1, Dy 1 =
D + Spar({deuk...qul(ﬁ); Ug,...,Uux € R™), and
Du = 2k21 Dy.

e A= Ker(Dy), andA; = Ker(Dy).

o Ay =Ker(Dy), andA; = Ker(Dy).

e The quotient co-distributio®y/Dy_; (resp.Dy/Dk_1)
is the dual of the quotient distributiofy, 1 /Ax (resp.
Av_1/Dy). The duality producte]([X]) = w(X) is well
defined.

d 0
> (AWZH ) 7+

In the two following claims,f, =

n—q - .
Z(A;(u)?Jr @i(u,Z,V))diz, and the output$, h are respec-

1=
tively y=Cz=27,y= CNZ‘Z’:;Z;.
Considering the rings#;, 2 such that:

o = C"{n} (resp.% =¢"{z,...,2q,21}) is the
ring of ¢~-functions¢(z,) (resp.¢(z,...,2q,21)).

o ¢*{z} (resp. ¥*{zZ}) denotes the ring of&™-
functions¢ (zy, ..., 7) (resp.¢Lzl,...,zq,Zl,...,‘z’n,q)).
Then fork > 1, s (resp. #) is the smallest sub-
ring of €*{z} (resp. of ¥*{z2}) containing./%_1U
{CA(W)...A(w)z u,...,u € R™} (resp. %1 U
{CA(u1)...A(W)Z ug,...,ux € RM}).

Then we have:

Claim 1:

) Lty - L, (C2) = CA(u1)... A(u)z modulo (H_1).
i) Ly, . Ly, (C2) =CA(uy)... A(u)Z modulo (H4_1).

The following claim can be deduced from the above one.

a) D, = Spar{dC2, and fork > 2, Dy is spanned by the
set of one-formg{dCzZ U {dCA(u1)...A(u)z 1<I <
k—1, uj e RM}.

b) Similarly, D1/D; can be identified with the co-
distributionSpar{dC2), and fork > 2, Dy /D is isomor-
phic to the co-distribution spanned by the set of one-
forms {dCZ} U{dCA(u1)... A(u)z1 <1 <k-1, uj €
R™M}.

e System (1) is cascade observable iff: ddn=q (q is the
dimension of thez-space), and dirfﬁn/Dﬁ =n—-q(n—qis
the dimension of-space).

In the sequel, we set (respv) to be the smallest integer
such thatD, = D; (resp.Dy;/D; = Dy/Dy):

QOC---CDviDv+1 _ (6)
DO/Dt c...C Dg/Du = Dﬁ+l/Dﬁ
This subsection will be ended by the two following
technical results:
Lemma 1:
_If d¢ € Dy_1 (resp.d¢ < Dy_1) andX € A1 (resp.X €
D-1), then dg([fu, X]) = —d(Lt,(¢))(X) = —Lx(L1,(9))
(resp.d¢ ([ fu, X]) = —d(L¢,(#))(X) = —Lg(L1,(9))).
Proof of lemma 1
Let d¢ € D1 and X € A¢_1, the equalityd¢ ([fy,X]) =
—d(Lt,(¢))(X) follows from the following facts:

o do([fu,X]) =Ls,(Lx(9)) — Lx(Ls,(9))

=d(Lx(¢))(fu) —d(L,(¢))(X),
e X e C A 1=Ker(Dg 1),

o Lx(¢)=d¢(X)=0
Similar argument can be used to prowi ([fu,X]) =
—d(L+,(6))(X).

Claim 3:

Let Z = (Z4,...,Z) be ak-tuple of vector fields, let
0, ¢1,...,9¢ be €-functions such thatdg; A... Adgy is
nowhere vanish and thay, (¢i) = §j, then:

k

iz(dgAndgan... Ad¢y) =dg— Lz (g)de;.
=1
More precisely, we have:
k
iz(dgAd@1 A ... AdP) = (—1)9(dg— Z Lz;(9)d¢;j).
=1

B. Algorithm

In this subsection, we will give an algorithm permitting
to calculate the vector fieldX,Xy,...,Xq1, which meet
conditions of theorem 1. This algorithm will be obtained
in three steps:

1) The first step consists to calculateusing only f (u,x)
andh(x).



2) The knowledge off(u,x), h, h(x) and X allows to
calculateXg 1.

3) Finally,Xy,... Xq can be computed based on the knowl- (‘hl “k

edge off(u,x), h, h(x), X anquH

Assuming that the flags of co-distributions:

0:[~)oc...cDV:~Dv+l N )
0=Dg/Dy C ... C Dy/Dy =Dy,1/Dy

are of constant dimensions and thatim(D,) = q,
dim(Dy/Dy) =n—aq.
Fork> 1, we define the base® and By of Dk/Dk_1 and
Dy/Dy_1 as follows:

By = {[dh]}, By = {[dh]}

fork>2:

Bk = {[d(quki1 ... qul (h))], (Ul, e kal) S ?{kfl}
Be={[d(Lt Ly, ()] (T, T 1) € %1}

8
for some subset%4_, and 02?[,1 of (Rm)"*l ©
The symbol[(.)] stands for the equivalent class ©f.

Now, letB;, B;, be the respective dual basesyf andB;
(By, By are bases o\, _31/A, and4;_,/4Ay), the following
vector fields will be required in theorem 2 below :

e The vector field§Zy,. v, ,], [Zg,. ., ,]:

Let (ug,...,Uy—1), gesp.(ﬁl,...,ﬁg,l)) be fixed eler~nents
of %1 (resp. of%;_1), then[Y] = [Zy, .y, ,] (resp.[Y] =
(Zg,..w, ,]) is the element oBj, (resp. ofB) defined by:

for (vi,...,w-1) € %1, d(Ly,,_,..-Lg, (N)(Y)=1,
if (ug,...,uy—1)=(va,...,vy_1), and O otherwise
for (Va,...,Vy_4) € %_4, d(Lf%1 ... Lfvl(h))(Y) =1,
if (Ug,...,05_1) = (Va,...,V;_4), and O otherwise

B €)
e The vector fieldgYs--1], [YU-Up1):
Setting[Y] = [Zu,..u, 4] and[Y] = [Zg,_g, ], then:
Yur-t-1 = [fy [ [fugs YT
?Ul...ljgfl — [fﬁﬁ—l’ o [fUJ_?Y] (10)

properties hold:

= deuk...qul(ﬁ)Aﬁ
~ o~ 11
+Z Z o a0dLy, Ly WA D
- q ~
i (@4;..g) = dLy - L, (W= 5 Ly Lg, (h)d¢; + O
=1
q k-1 : _
O =0— z z z g5, (X)L)~<J_LfUI ..Lfal(h)dqu
U= @ o)eu
=y Y 5.a00dly .. Le (M) +0(X)ddq:a
=Y, 0)e%
(12)

with the property thatgy, g (.), 9k(.) are ¢*-functions
which do not depend ofXy, ..., Xg).
Proof of lemma 2

e Fork=1:
Let uy € %4, by definition ay, = dLg, (h) AT, and

from claim 3, we know thatl g(oy,) = de~( ) —

g+1
ZL wa d¢J—de ZL Lf d¢1+91,
here®@; = quLfUl( )d¢q41. Hence (11), (12) are true
for k=1.

e Assuming that (11), (12) hold for£ 1 <k—1, and let
us show them fok. Using the definition oty g and
applying (12) fork— 1, we get:

... = Ly Ly, (AT
a

Ly, [ZLXJ_ Lty oLty (NG AT+ Le, (O 1) ATE
£

o q k-2
Ok-1=0k1— ) Z Z Qu1 o (g Lag -
==L,
Li,, (R)dg;
@k 1= Z Z gul UI( )deUI ...LfUl (ﬁ)
(Ul ..... [7/

+Ok-1(X)ddgy1
N N (13)
anddg, . g, Ok-1 do not depend oriXy,. .., Xq).

In order to state lemma 2 below, the following notations ~ Using the fact thad¢; € Dy, for 1<i <g, and that

will be required:

Let (d@1,...,d¢q) be a basis oD, andd@q 1= dh.
Setting 1= d¢l/\ AN dggi1.
LetX = (Xq,.. )(q+]_) be a(g+ 1)-tuple of vector fields
satlsfylngL~ (¢j) =
Foru; € 02/1, we setwﬁ1 = de~ ( JATL
For k > 2 and (0y,...,0k) € %k, we set . g =
Lr, (i (@5 ) A TE
Thus we have:

Lemma 2:

For 1<k<v-1;forevery(ly,...,U) € ?A/[the following

Lt,(Dy) C Dy, then the following equality holds for
every smooth functionay(x),...,aq(X):

q
qu(Zaj (x)d@j) ATT=0 (14)
=
Combining (14) with expressions @y 1, O_1, we
get:
N k2
Wy, ..o = deDk ...qul(h)/\T[Jr Z Z Lt
o Hlamen
(G (9dLg, - Lig (M) +G-a(X Jddqea] A TE
(15)

Uk



By construction Ly, G, g (X)dLe - L, (h)] and 1) The vectorX = (—1)"~1y'8-4-1 satisfies condition
Lt,, (Gk-1(x)dégs1) A 7T do not depend ortXs, ..., Xq) 1) of the~orem 1. ~
and{dgy, ... dg,1} U{dLy, ... Le, (A); (Op.....0) € 2) Setting Xg1 = (~1)" %G1 and considering
U, 1< <k-— 1} forms a basis oDy, hence the ¢”-functionsgy. ..., g1 such thaﬂ’l__h ¢q+1x_
last term of the right hand expression (15) takes the and that(dgy,...,d¢q) forms a basis oix(Q”) +

-1 N Rdh. Let X,..., Xy be vector fields satisfying
form Z Z gul gl deN ) .Lfﬁl(h)/\ 71, where Lij(qbi) =§j,1<j<q,1<i<qg+1, and such that
(@, o)< ag,...,G Ve, L<Kk<V— :
the gy, g (X)’s are ¢-functions which do not depend for every Q... Uk) € % 1<k<v—1, we have
2 L ) . . q -
Egd(xl,...,xq). Consequently, expression (11) is satis- Zd('-ij'-fak---Lfal(h))/\d¢1 —doy,_ 5 (18)

In order to end the proof of lemma 2, it remains only
to check (12).
Applying claim 3 to expression (11), we get:

where ©g, g is the one-differential form stated in
(12). ThenXq, ..., Xq1 satisfy condition 2) of theo-

rem 1.
o Remark 1:According to expression (12) of lemma 2,
ig (@) =dble - L +|Zl z 0. (X)  expression (18) is then equivalentdis (a;, g, )) = 0.
il (U, 0y ) €% Some comments on the procedure of calculation of
dLy, ”'wa ZL Lty Ly, ( (n)dg; vector fields X, Xi,...,Xq, Xqs1:
+lk L 1) The calculation of thel vector field requires only the
Z Z gu1 4 (9Ly Lf Le (ﬁ)dqu knowledge of expressions df, andh.
S5, 5 U1 2) Xq+1 can be directly computed from the knowledge of
(16 X, fu, handh.
Finally, expression (12) follows from (16) in which we 3) For 1<i < g+ 1, the functionsp; can be deduced from
introduce: X, fy andh andh.
4) Finally, we end these comments by giving the algorithm
Ok = Z Z . & (dLy, 4~4Lfﬁ1(ﬁ)+gk(x)d¢q+l of computation of(Xl, - ,Xq):
Ya..a)eu 1 Computation of (Xi,...,Xq): -
wheregy(x) = _|_>~(q Li, L, (h)— Z Z Based on the construction oB¢ and the functions
* =(w,..0)e% B ¢1,...,¢q+1, the set{¢1,...,¢q+1}U{Lka ...qul(h); 1<
9a,..a (X)L qu'-fﬁl oL, (N k<V-1 (0,...,0) € %) forms a local system of
Oc— 0Oy i‘l‘zi Z 0,0 0Ly Ly L, (F)dé; coordinates, which we denote i§§,¢&), and where
! (T = 17) B ¢ —~(¢1, . :7¢q+1)~— (El: . -7Eq+~1)
Moreover, by constructiorgy, g (x) and g« do not &= (&1,...,& 1), Ek:(gkl""’fk,(ﬂ()

depend on(X,...,Xq). This ends the proof of lemma ~ - _
2. where {déx, .. dEkd } = {de~ Lf~ (h); (Ug,...,0) €

Now we can state the algorithm which allows to calculat(,?/k']‘} afnd{ dL“ d Lfﬁh(h)]]‘; "(ul’ Ue) € 02/"} Bicr1.
vector fieldsX, Xi,...,Xq, Xq+1 satisfying conditions 1) and erefore, we & opt the following notations:

2) of theorem 1. @y, = O = dfki
Theorem 2:(Algorithm) ~
System (3) can be steered by a local change of coordinates X (fm) Lg Lf~ . 0 ( ) = Xk.

around some® to a cascade-observable system (1), if, angJSIng the fact thatl (¢j) — Ly (&) = &, we obtain

only if, the following conditions hold: N
V 1 ag

a) The flag of co-distribution®g C ... C Dy = Dy, )~(j 3% Zxk, . Thus, the expression (12) can be
Do/Dy C ... C Dy/Dy = v+1/DV are of constant di- EJ K=1i
mensjon on some neighborhooddf and din{D, ) =q, q
di D:) = . = Si
'm(Bs/By) = i (@) = 08— Y Xh0& + Oy (19)
b) Let By and B~ be any fixed bases db,/D,_ 1 and =
Dy/Dy 1 (see the construction (8)). Let and Y be where the®y's are one-differential forms depending at most
any fixed vector fields of the forfY] = [Z W10 ]eB* on X1] 1<l<k—-1,1<j<q+1.
and[Y] = [Zu*i,_,ag ] € By, then the following propertles The calculation ofX);'s follows from the following recursive
hold: procedure:

rewritten:



e We start by computing,, 1< j<gq, 1<i<dy: $qi1 = Z1. Let (Xg,...,Xq) be a sequence of vector

For k=1, expression (19) becomes: fields such thaLXj (pi)=3q;forl<j<qg 1<i<qg+1
i () = dgl _ %X d&j + Oy, where Oy is a and satisfying condition (18) of theorem 2, then:
X - ! i i i
n—q
known one- d|fferent|al form which does not depend on Xgi1= i + ;ai (24)
Xq Now condition (18) of theorem 2 yields to: 0z 0%

. where theg’s are constants and fgr=1,...,q,
Z XLy AdE =dey, for1<i<d

0
Xj 9z: + gﬁlj Zja~ (25)
Hence theXli’s follows from the simple PDE system: ]
for1<jl<gq 1<i<dy, Moreover, ifT=dz A...Adz, X = ——, for1<j <q,
3 ! I 0z
Xy 9%y — el - 0 - - _
0§ o0& 4% N X1 = 55 andX0=(XP,........Xg,,), then,
for1<j<g, 1<i<d;, 1<t<v-1 1<s<d, N o
Xy, gl i (QF) = izo(Q) ) modulqd.ery+Rdz;)  (26)
—= — Yisi
0éts where o/q = ¢€*{z,...,2q} stands for the ring o™-

(20)
WhereeljlI and 911; are known functions depending only
on the known vector f|eld(q+l

functions of (z,..., 7).
Proof of proposition 1.

o Assuming that for K j < g, 1<1 <k-1,1<i ng, _SettingAj(u), Zq(u) to be the respgctiv'ﬂh rows of A(u),
the functionsX! are calculated, and let us compugg, A(U), and gi(u,y), §i(u,zy) are theith components ofy
1<i<d. and{J. In the (z, 2)-system of coordinatef, takes the form:
As for the first step, using expressions (18), (19) it q 9 na_ 9
follows that: fu= Z w)z-+ gi(u, 21))(92| + IZ‘(Ai( )Z+ i (u,z Zl))a~

~d 27)
d(X)) A dE = doy _
jZ\ (Xkl) EJ . Let Bk+1 = {[d(quk oo qul (Zl))]; (Ul,/.\./. s Uk) S OZ/k}, Bk+1 =
which implies: {[d(Lfﬁk...Lfﬁl(il))]; (Ua,...,Uk) € %} be the respective

bases oDy 1/Dy and Dy 1/D.

for1<j,l<gq, 1<i<dy From claim 1, we know that :

akaji a>~(t|<i il
a_a - d—fj =6 [d(Lf“k ...qul (z1))] = [dCAuy) ... A(u)Z (28)
for1<j<gq 1<i<d, 1<t<v-1,1<s<d _ U
o j=g 1=<i<d, 1<t<v-1 1<s<d, ALy, ... L, ()] = [0CA@) ... A@)Z  (29)
i eJt
(9Ets ksi and from claim 2, the flags of co-distributiori¥ = 0 C
; ] (21) . C Dy =Dy41; 0=Do/Dy C ... C Dy/D, = Dy 1/Dv
where lel and GKJSI are known functions depending onare of constant dimensions. Now settimg= dim(Dy), Nk =
the computed functlonx| 1<I<k-1. dim(Dy/Dy), then we havay =0<m =1<...<n, =g
The proof of theorem 2 is based on the following proponO =0<m=1<... <M =n-gq. Moreover, after az2)-
sition. linear change of coordmates it can be assumed that:
Proposition 1: Bk = ([dzi4ny 4],- -, [dZ,])
. : (30)
Assuming that system (1) is cascade-observable, then the B = ([dZ1:n_,),- . [0Z))

following properties hold: ~
g prop and that in this new system of coordinat@i), A(u) take

1) Let [Y] = [Zy..u, 5] € B} and X = (=1)V"HYU-%-1, 0 following triangular structure:

then
fori<k<v-1 fornc_1+1<i<ng
) ) 31
ot %""* + Zb' ﬂm (22) { A(U)Z= 8 (W7 + 8(U)Z+ o+ By (Wm0
where theaj’s are constants. Moreover, we have: { for 1<k<¥—1, for fi 1 +1<i<F -
ix(QX) = 'aL(Q"Zl) moduldRdz) (23) AUzZ=a1(za+a(uz+...+&5,,(UZ,,

_ _ ~ ~ e Proof of property 1) of proposition 1:
2) Let[Y] = [Zy, .5, ,] be an element 0B and Xg.1 = Proof of expression (22)
(—1)V-yU-%-1 and settingp; = z, for 1<i < qand LetY =2, .y, , be a fixed element oB}, (the dual




basis ofB,), thus after reorderinB,, it can be assumed know that:
that[dLy, ,...Lf, (z1)] =dz, and hence: 9 9 9
X = oz + Ziqzzaid_zi + Z?:fbi(z,i)a—z

2 (38)
(Q72) modulqRdz)

dzn, 4+i(Y) =Ly(zn, 44i) =&, 1<i<ny—ny_
(33) ix(Q%) =i

Recalling thatB;, is a basis ofA,_31/A, and thatd, C
Ay_1 C ..., and thaty, = Ker(Dy). Combining this last

fact with (33), it follows that:

0
22}

Combining (38) with the fact thati satisfies con-

z
dition 1) of theorem 1 , it can be eésily checked that
o "9 . 0 X meets conditions 1-i) to 1)-iv) of theorem 1. Hence
oz T L PE 05 (4 condition b)-1) of theorem 2 is satisfied.
3) Condition b)-2)of theorem 2:
Let Xgqi1 = +¥%-% 1 and considering linear functions
¢1,...,¢q+1 satisfying¢r =h=2, ¢q.1=h=7 and

Y =

Now settingX = (—1)V~tyU-t-1 and recalling that
Y1 =T1f, L[ fug, Y]] then (27), (31), (34))

give rise to: such that(d¢y,...,d¢q) forms a basis ofix(Q*) +

a 5 ng 9 Rdz. Up to a linear change of coordinates, it can be

Yul...u\,,l — L b — 35 :

i;a 3z + i; (zfz}da (35) assumed that
where thea’s are constants. (d91,...,d¢q) = (d2, ., dZ) (39)
Finally, from lemma 1, it follows that Now considering vector fieldsX,...,Xq such that
dz(Yh-v-1) = —dLg,  (z)(Y"-2) = ... = L)?j(¢i) =§j, 1<j<qg 1<i<qg+1, and satisfy-
(=D)VHd(Ly,, oLy, (2))(Y) = (1) dz(Y) = ing condition (18) of theorem 2. Namely, for every
(=1)V~1, hence: (Ug,...,0k) € %, L<k<V-—-1,
X = (_1)V*1YU1...U\/71 — i + q i +n7qb. (Z 2’)1 %d(L~ Lf Lf (E)) /\d¢ =dOy -~ (40)

= = oz i;aq 97 i; i(Z, o7 2 % g o Loy i Uy...0g
36

Proof of expression (23) (30) whereQy, g, is the one-differential form stated in (12).

In order to check condition b)-2) of theorem 2, we will
show that(Xy,...,Xq+1) meet condition 2) of theorem
1.

From 2) of proposition 1, we know that:

Recalling thaQ* is the real vector space spanned by the
2-differential formscwy,. .y, = Lka(ix(cq,l,_,ukfl)) ANdz,
wherew, = dL¢,(z1) Adz = d(CA(U))zAdz.

Using the expression oX given in (36) and the fact

thatix(d¢ Adz) =d¢ — Lx(¢)dz (see claim 3), then B g "4 4
a simple algebraic computation yields to: Xqr1= o i;aa—z (41)
Iu)l( (eQI;f)“;_—IE[(@Z SpardCAw)...CAU)zZ k=1 where thed’s are constants and fgr=1,...,q,
(37) - a n—q bl
In particular, expression (37) holds fr= 0121 hence Xj = 9z + iZzBij (Z,AZ)(?—Z (42)

a
ix(QX) =i, (Q%) modulqRdz). -
x(27) aizl( ) dRd2) - Moreover, if we setT=dz A...Adz, XJ-°: i for
e The proof of property 2) of proposition 1 can be 0z;

obtained by following the same procedure as for the <j<aq ggﬂ _ % and X° — (y(% 0 ),
1

roperty 1). ot
property 1) then:

Proof of theorem 2. % %0

The sufficient condition is stated in theorem 1. ig(Qn) =igo(Qn ) modulddey+Rdz)  (43)
Necessary condition: where oy = €°{z1,...,2q}.

Since conditions a) and b) of theorem 2 are intrinsic (they  Thys, we have:
do not depend on the system of coordinates), it suffices to

By construction Ly (¢j) = &, hence condition 2-i
check them for the cascade-observable system (1). * =y X (9)) =0 )

of theorem 1 is satisfied.

1) Condition a)of theorem 2 is a straightforward conse- e From the check of the proof of the necessary con-
guence of claim 2. dition of theorem 1 given in the subsection II-

2) Condition b)-1)of theorem 2: B, we know that the(q+ 1)-tuple of vector fields
Let X — (71)v71Yu2...u871 be the vector field stated in (xf,...,...,xgtl) meet conditions 2-ii) of theorem 1,

b)-1) of theorem 2, from (22)-(23) of proposition 1, we namely,dim(Qi‘ro) =n—q— 1. Consequently, to show



that ()N(li. .. ,)?qul) meet condition 2-ii) of theorem 1 [7]
(dim(Q}) = n—qg— 1), it suffices to show that:
< < 8
Q¥ =X (aa)
By definition, QX = 3 ,cpmLy,(ig(Q%) Adz... A
q

dzy 2, where fu = 3 (AZ+UWY) 5 +
nd 3 [11]

(Ai(U)Z+ Jli(u,z,y))diz. Moreover, it is easy to

[20]

see thatLy,(de) Adz... Adz AdZ = 0, thus [12]
L, (deq+Rdz) Adz... AdzgAdZzy CRACAWZA g
dz...AdzAdZ C Q>,<T°. Combining this last fact
with (43), we deduce (44).

e Condition 2-iii) of theorem 1 consists to verify that
dw =0, for every @ € ig(Q}). This property fol-
lows from the facts thati(igo(QX")) = 0, d(d.g+
Rdz)) =0 and (43).

e Condition 2-iv) of theorem 1:
It consists to show that the real vector space
AV (i (QF)) Addr A ... Addg1 is of dimension
1.
According to (39) and (43), we have:

A" Hig(QR) A dor A .o A dg =
A" igo(QX)) A dz A ... A dzg A dZi. From
the check of the proof of the necessary condition
of theorem 1 given in the subsection II-B, we
know thatX® meets condition 2-iv) of theorem 1.
Hence A" 9 (igo(QX")) Adz A... Adzg A dZ is of
dimension 1. This ends the proof of theorem 2.

[V. CONCLUSION

Motivated by the existence of an observer design for
a class of observable cascade systems. In this paper, we
have characterized the class of nonlinear systems which
can be transformed by a local change of coordinates to a
cascade form. First, we have stated necessary and sufficient
conditions. Next, we have derived an algorithm permitting t
transform a nonlinear system into such cascade observable
form. Its extension to general multi-output case is a difficu
task and requires solving complex PDE.
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