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Abstract— Fuel cells are electrochemical energy converters 

which allow transformation of the chemical energy of a fuel to 

electricity through oxido-reduction reaction. The voltage of an 
elementary cell is usually near 1 V in open circuit and around 0.6 

V in nominal conditions of power generation. Fuel cells are then 

by essence low voltage sources , so that for most practical 

applications, power management is carried out by electronic 

converters, allowing in particular to rise the voltage to usual 

application levels. 

In this paper, we propose to take advantage of this low voltage 

for a specific application such as superconducting coils power 

supply. The solution proposed here for the generation of the 

perfectly direct current relies upon a fuel cell fed by hydrogen 
from cylinders, for which safety cautions have to be taken, but 

operation of superconducting coils, which have to be cooled with 

liquid nitrogen or helium or by specific cooling gases represents 
by itself a really safety-demanding process, which could easily 

accommodate the presence of a PEM fuel cell. The main 

advantages to be taken from fuel cells operated at very low 

voltages are autonomy – no supply connected on the grid, 
ensured continuous operation, together with the electrical quality 

of the current generated, i.e. free. 

 
Index Terms—Current control, Power supply, Proton 

exchange membrane Fuel cell, Superconducting coil. 

 

I. INTRODUCTION 

he first demonstration of fuel cell (FC) was conducted by 
Sir William Grove in 1839 [1]. The research on fuel cell 

was very active in 1960 where fuel cells were developed for 
the NASA’s space program. Technology at that time let the 
Alkaline Fuel Cell (AFC) be the best choice of electrical 
source on the space shuttle. The first Proton Exchange 
Membrane Fuel Cell (PEMFC) was developed during this 
program. The breakthrough of DuPont on Nafion® membrane 
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in late of 1960 made the PEMFC more suitable for real world 
application [2]. The researches on fuel cells have been 
increased rapidly since 1997 by the awareness of the energy 
and environmental problems. Various types of fuel cell are 
available, but PEMFC is seemed to be the most practical 
among the low temperature types. The applications of the 
PEMFC ranges from small portable devices to stationary 
power supplies for resident or industrial use [3, 4]. 

Fuel cells are then by essence low DC voltage sources, so 
that for most practical applications, power management is 
carried out by electronic converters, allowing in particular to 
rise the voltage to usual application levels. 
Besides fuel cells are generators of electric power little 
suitable to sudden variations of current, principally because of 
the fairly slow response of the gas flow rate controllers. This 
slow dynamics renders necessary to associate a buffer 
component e.g. batteries or supercapacitor, whose function is 
to supply the charge with energy for the transient periods. 
Additionally the buffer component can be used as a 
complementary source or to ensure partial energy recovery – 
fuel cells are usually no reversible energy converters.  
In this paper, we propose to do without these additionally 
devices by taking advantage of the natural low voltage of the 
fuel cell, without however the slow dynamics is a drawback.. 
Indeed, as we will see PEMFC’s characteristics might be of a 
great interest for electrical supply of superconducting coils.  

First of all, an introduction of PEMFC will be done as well 
as so called fuel cell system. Then, a potential application of 
fuel cell as controlled current source supply for 
superconducting coil will be highlighted. Finally, some 
prospects will be issued. 

II. INTRODUCING THE PROTON EXCHANGE MEMBRANE FUEL 

CELL 

What makes PEM fuel cell interesting among others is the 
use of hydrogen as fuel. Since, hydrogen is a gas that can be 
created from water by electrolysis process; there is no risk of 
shortage. The electrolysis process let water molecules adsorb 
energy from electricity and detach into hydrogen and oxygen 
gases. The PEMFC operating is based on the reverse process. 
As long as reactants are supplied to electrodes, the fuel cell 
feeds the load.  

A. Operating principle 

Membrane fuel cells consist of two electrode compartments 
separated by a polymer electrolyte membrane preventing from 
the transport of gas and electrons. The two electrodes are stuck 
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The reactant flow rate is set according to (7) 
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Where Ncell is the number of cells of the stack, Iref the 
demanded fuel cell current and �a, �c the anode and cathode 
stoichiometric coefficients respectively T0 = 273 K and 

P0 = 510013.1 ⋅  Pa. 
The fuel cell performance depends on several operating 

parameters such as fuel cell temperature, supply gas (or 
stoichiometric coefficients), relative humidity and operating 
pressure. 

Some experimental results presented in Fig. 4 to Fig. 6 
point out the influence of operating conditions on single fuel 
cell performances. 

C. Influence of operating conditions 

1) Influence of reactant flow rates 

The experiment was led on the single fuel cell fed by 
humidified air and dry hydrogen from cylinders. The fuel cell 
is cooled by water and its active area is 100 cm². 

As it can be seen in Fig. 4, the decrease of hydrogen flow 
rate does not make any difference on the voltage fuel cell. On 
the contrary, as air flow rate decreases, the fuel cell voltage 
decreases until air supply becomes insufficient (�c=1.1) for the 
demanded current which leads to a strong drop of the voltage ( 
Fig. 5).  

This phenomenon is called air starvation. Since the fuel cell 
is not overfed, air does not reach the entire active region and 
the reduction reaction does not occurs uniformly in the cell 
[5].  

 
Fig. 4. Single fuel cell polarization curves versus hydrogen 

flow rate. 
 
2) Humidification and Fuel cell temperature 

Among the losses, a significant portion comes from the 
membrane resistance. Its value depends on the water content 
of the membrane and the temperature. As it can be seen in Fig. 
6, the conductivity is improved as the membrane is well 
humidified (and heated) [6-11]. Since the membrane is 

humidified using the air supply. Air starvation leads also to the 
humidification decrease and thus to voltage drop. 

 
Fig. 5. Single fuel cell polarization curves versus air flow rate 
 

 
Fig. 6. Variation of membrane conductivity according to 

temperature and water content. 
 

III. FUEL CELL OPERATING AS A CONTROLLED CURRENT 

SOURCE 

A. Fuel cell current controlled by hydrogen flow rate 

In a previous paper [12], it has been highlighted the 
potential use of a single PEM fuel cell as a current source 
controlled by hydrogen flow rate ( aζ = 1) through Iref (7). In 

this case, the single fuel cell is short-circuited and runs in the 
operating conditions given in Table I. As the fuel cell voltage 
is near zero, the fuel cell operating point is located in the last 
part of the polarization curve that is to say diffusion limitation. 
Fig. 7 presents the time variation of hydrogen flow rate (Ch.3) 
and current and voltage fuel cell waveforms (ch1. and ch2. 
respectively). A setpoint step of the hydrogen flow rate from 
Iref = 20 A to Iref = 40 A leads to a fuel cell current step from 
20A to 40A. This new current setpoint is maintained since the 
hydrogen flow rate is regulated around Iref = 20 A. Then, the 
current decreases to 20 A by decreasing the reference current 
that is to say the hydrogen flow rate. As it can be seen, the 
transient response is quite slow; this is mainly due to hydrogen 
flow controller, its regulation has to be improved. However, in 
the case of superconducting applications, it is not detrimental.  
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IV. SUPPLY OF A SUPERCONDUC
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TABLE I 
FUEL CELL OPERATING CONDITIO

Symbol Quantity 

�a Anode stoichiometric coefficient (7) 
�c  Cathode stoichiometric coefficient (7) 
Iref Reference current (7) 
T Fuel cell temperature 

RHa Anode relative humidity 
RHc Cathode relative humidity 
Pa Anode pressure 
Pc Cathode pressure 
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Critical current of the coil 18 A @ 77 K 

 

      
Fig. 10. Sample of superconducting wire (BSCCO2212) and 

superconducting coil used in the experiment (on the right side) 

B. Experimental results  

Fig. 11 presents the comparison of the superconducting coil 
characterization as it is fed by a specific power supply for 
superconducting coil (American Magnetics [14]) or by the 
single PEM fuel cell, the same results are obtained. As 
expected the fuel cell operates as a current source. The fuel 
cell voltage does not exceed 0.1 V at 20 A (Fig. 12). A smaller 
value can be expected as normally the fuel cell runs as it is 
short circuited. It is due to the resistance of the wire, estimated 
at 4m�. Therefore, it underlines the importance of wires 
choice if using the fuel cell as a current source. 

 

 
Fig. 11. Superconducting coil characterization using single 

PEM fuel cell 
 

 
Fig. 12. Fuel cell voltage versus current during the 

superconducting coil supply. 

 
Fig. 13. Demonstration of the current controlled by hydrogen 
flow rate (Iref = 20-15-10-5A) (Ch. 2. Fuel cell current, Ch. 3. 

H2 flow rate, Ch. 4. Fuel cell voltage). 
 

Fig. 13 presents the current profile set through hydrogen 
flow rate by decreasing the reference current from 20 A to 5 A 
by step of 5A. A setpoint step of the hydrogen flow rate from 
Iref = 15 A to Iref = 20 A leads to a fuel cell current step from 
15 A to 20 A. This new current setpoint remains constant 
since the hydrogen flow rate is regulated around Iref = 20 A. 
Because of the time constant of the hydrogen flow controller, 
the transient response is quite slow, it regulation has still to be 
improved. 

V. CONCLUSION 

In this paper, a new supply for superconducting coil has 
been presented. Taking benefit of the natural low voltage of 
single fuel cell and of the possibility to control its current by 
means of the hydrogen flow rate, a superconducting coil has 
been characterized. Although the fuel cell system transient 
response is quite slow, it is suitable to superconducting coil. 

This particular application of PEM fuel cell requires to 
operate well below the threshold voltage close to short-circuit, 
thus a study on the alteration of the fuel cell lifetime must be 
carried out. Examination of the current density distribution 
appears necessary to assess the feasibility of the technique. 
Additional experiment has also to be done by supplying a 
more inductive superconducting coil at higher current and fuel 
cell current ripple has to be estimated.  
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