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ABSTRACT

Spatial variations in temperature may be ascribed to many variables. Among these, variables pertaining to topography
are prominent. Thus various topographic variables were calculated from 50 m-resolution digital terrain models (DTMs)
for three study areas in France and for Slovenia. The “classic” geomatic variables (altitude, aspect, gradient, etc.) are
supplemented by the description of landforms (amplitude of humps and hollows). Special care is taken in managing
collinearity among variables and building windows with different dimensions. Statistical processing involves linear
regressions of daily temperatures taken as the response variables and six topographic variables (explanatory variables).
Altitude accounts significantly for the spatial variation in temperatures in 90% of cases, except in the Gironde, a low-
lying area (50%). The scale of landforms also appears to be highly correlated to the measured temperature. Variations in
the frequency with which topographic descriptors account for temperatures are examined from several standpoints. Al-
titude is less frequently taken as an explanatory variable for spatial variation of temperatures in winter (75%) than in
spring (80%) and late summer (85%). Minimum temperatures are influenced on average much more by the amplitude of
humps and hollows (56%) than maximum temperatures (38%) are. The frequency with which these two landforms ac-

count for the spatial variation of temperature is reversed between the minima and maxima.
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1. Introduction

Knowledge on spatial distribution of air temperature
measured at two metres height above ground is important
in many applications. For example, temperature extremes
during the growing season often result in reduced crop
yields. High temperatures are responsible for higher
cooling loads in summer and reduce electricity yields of
photovoltaic power plants. Low temperatures in combi-
nation with high humidity can cause fog resulting in
problems for traffic. The monitoring of such extremes
requires measurements at high temporal and also at high
spatial resolutions, as local area influences can be large
in the case of e.g. strong winds or rough topography.
Such data are often lacking because the low density of
the meteorological network and the installation of addi-
tional meteorological stations is usually too expensive.
Temperature monitoring is possible by parameterization
of various variables, such as land surface temperature
and normalized difference vegetation index observed by
satellites [1-5]. The other possibility, if enough measured
temperatures are available, is interpolation [6-11].

Copyright © 2012 SciRes.

In both cases it is necessary to understand the link
between temperature and the possible explanatory vari-
ables. The quality of the temperature estimation depends
in particular on the spatial information fed into the
models resulting from the analyses. It is pie-in-the-sky to
hope to get good results from an analysis if it is not
known which variables best explain the variation in the
data to be interpolated. Let us illustrate this problem with
an example. Minimum winter temperatures depend on
many variables, including altitude, distance from the sea or
ocean (occurrences of freezing temperature increase with
distance from the coastline), urbanization (it is slightly
warmer in city centres than on their outskirts), or topo-
graphic position (cold air settles in valleys where the
temperature is often lower than on the surrounding hill-
tops). Large estimation errors may arise if any of these
variables are omitted from the temperature models be-
cause a non-negligible proportion of variance would be
unaccounted for. Conversely, some variables which a
priori might seem suitable for describing the spatial va-
riation of the phenomenon to be interpolated may only
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rarely be explanatory. It is therefore a waste of time
processing such variables.

The aim of this paper is to explain the temperature re-
lation to terrain variables. In doing this we rely on data
collected from France (three regions: Franche-Comté,
Provence-Alpes-Cote d’Azur, and the department of the
Gironde) and Slovenia. In the following we present how
to construct a set of six topographic variables (altitude,
gradient, roughness, theoretical global radiation, ampli-
tude of humps and hollows) from the four 50-m resolu-
tion digital terrain models (Section 2). The frequency
with which each of the six topographic variables is sig-
nificantly correlated with daily temperatures provides an
indication of its suitability to be an explanatory variable.
We end by discussing the effect analysis window size,
residuals collinearity and solar radiation (Section 3).

2. Data and Method

Our case study involves four areas with very different
geographical characters and for which we have the two
sets of data needed for establishing the linear regressions
on which our method of analysis will be based: the re-
sponse variables (measured temperature) and the ex-
planatory variables (topography variables).

2.1. Study Areas

Franche-Comté (Figure 1(A)) covers some 16,000 km?
and is an administrative region in eastern France. It is
squeezed between two upland areas: the Jura (rising to
1750 m at its highest point) to the south and east and the
Vosges (1247 m) to the north. Between these two ranges
lie plateaux (500 - 600 m) incised by valleys which barely

exceed 200 m in altitude to the west. The semi-con-
tinental influences are marked: in the lowlands the
summers are hot and stormy while the winters alternate
between freezing spells and milder phases. Provence-
Alpes-Cote d’Azur (PACA) covers 31,400 km® and lies
in south-eastern France (Figure 1(B)). It encompasses
the Alps and the southern alpine foreland (Préalpes du
Sud) and is bounded to the west by the Rhone Valley and
to the south by the Mediterranean. The contrasts in relief
are stark, with deep valleys separating blocks whose
altitudes, invariably more than 2000 m, may sometimes
exceed 4000 m (Barre des Ecrins). The climate is plainly
Mediterranean, even if altitude attenuates the summer
heat and means heavy snowfall in winter. The Gironde is
an administrative department of south-western France
(Figure 1(C)). The rivers Garonne and Dordogne flow
between its low rolling hills. Barely 5% of the department
stands above 100 m in altitude. It is bounded to the north
by the estuary of the Gironde and to the west by the
Atlantic Ocean. It has a mild oceanic climate. Slovenia is
a central European country (Figure 1(D)) lying between
Austria, Italy, Croatia and Hungary. It has a narrow
outlet to the Adriatic Sea in the west. In the east it
spreads into Pannonian plain. The Alps cover a good part
of the north-west of the country where altitudes attain
2864 m. The centre and east of the country is made up of
lowlands and low plateaux. The climate is Mediterranean
in the west and continental in the east.

2.2. Temperature

Temperatures are taken as the response variable. We ana-
lysed minimum and maximum daily temperatures (in
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Figure 1. Study areas location with geographical coordinates; A = Franche-Comté, B=PACA, C = Gironde, D = Slovenia.
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France) or temperatures recorded at set times (7 am, 2 pm
in Slovenia). The data relate to variable numbers of days
depending on the areas in question. For Franche-Comté
(FC-2006) and PACA daily maxima and minima for the
year 2006 are available (Table 1). In Franche-Comté
(FC-cold), we have 99 minima for spells of extreme cold
(average of the region’s 74 weather stations less than
—10°C) between 1990 and 2007. For Gironde, three years
(2003-2005) of records (maxima and minima) are avail-
able. For Slovenian temperature measurements at 7 am
(close to the daily minimum) and 2 pm (close to the daily
maximum) are available for year 2006.

2.3. Topographic Variables

The topographic variables shall be introduced into the

regressions as explanatory variables of temperature. They

are all taken from a single data source: the 50-m resolution

DTM for each of the four study areas. Two types of to-

pographic variable are built: “classic variables” and va-

riables related to landforms.

By “classic” variables, we mean that set of topographic
variables that is generally used in most GIS software
packages. There are four such variables:

o Altitude [alt] corresponds to the value of pixels read on
the DTM. Altitude is not windowed because earlier
works have shown that its values vary little from one
window to another: altitude is a “non-scalar” [12].

o Slope [slope], and the next four variables are calcu-
lated for the eight windows. Slope is the value of in-
clination from the horizontal (0°), of the plane of re-
gression obtained from the first-degree polynomial
applied to altitudes in each window. Values range in
theory from 0 to 90; however, slopes of more than 50°
are extremely rare.

o Roughness [rough] indicates the unevenness of the
relief (it may be zero on a flat or on a perfectly straight
incline). It is given by the standard deviation of alti-
tudes relative to the plane of regression.

o Theoretical global radiation [rglob] is calculated for
the equinox, as the midday position, between the sol-
stices. It allows for the gradient and aspect of the hill-
slopes as well as the azimuth and the direction of the
Sun. It is calculated hourly and then the 24 values are

Table 1. Number of weather stations and type of tempera-
ture data for the four study areas.

Nbr Stations  t min t max 7h 14h

FC-2006 80 1 year 1 year
FC-cold 74 99 days

PACA (2006) 103 1 year 1 year
Gironde (2003-2005) 68 36 months 36 months

Slovenia (2006) 20 1 year 1 year

Copyright © 2012 SciRes.

summed to give the daily value. The effect of cast
shading is limited to 2 km.

It has been suggested that landforms play an essential
part in the spatial structuring of temperature [13,14]. At
the end of the night and especially in winter, cold air tends
to slide downslope and accumulate in the valley bottoms
(catabatic wind) while the hilltops and upper slopes ex-
perience milder temperatures. Conversely, in the middle
of the day especially if it is warm, warm air is further
heated by contact with the ground and tends to rise along
hillslopes exposed to the sun (anabatic wind). These th-
ermal effects (slope breezes) influence the temperature
well beyond the hillslopes where they are generated. Al-
lowance for such effects has guided the construction of the
two topographic variables related to landform: the am-
plitude of humps [hmp] and of hollows [hllw].

Hump amplitude and hollow amplitude are meant to
evaluate the height or depth of a positive or a negative
relief relative to a topographic reference point. To calcu-
late these two variables, we proceed in three stages:

o By locating ridgelines and thalwegs and identified in a
similar way to with the Peuker-Douglas [15] algorithm.
These two linear forms (Figure 2) describe the to-
pographic structure of each study area at different
scales.

« By constructing two fictitious topographic surfaces:
the “ceiling” passes through all the ridgelines to en-
compass all of the emerging relief, while the “floor”
joins up all the thalwegs (Figure 3). Between the two

window 5x5 [ :

window 11x1 l|

PR

window 21x21] ,

~~—> river line

~~—C ridgeline
flat-bottomed valley rounded hillcrest
~ N

Figure 2. Landforms extracted from a DTM for four dif-
ferent windows (from 5 x 5 pixels to 51 x 51 pixels).
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surfaces, the distance varies locally with the altitudinal
position of the ridgelines relative to the thalwegs. In
Figure 3(a), the relief is depicted at high resolution.
The main two emergent reliefs are covered by a num-
ber of micro-reliefs that give rise to the same number
of micro-ridgelines and thalwegs. The ceiling and
floor hug the general profile of the topography. The
volume enclosed by the two surfaces is small. In Fig-
ure 3(b) the relief is shown at lower resolution and so
all traces of micro-relief have disappeared, leaving
only the major relief. Only the most prominent ridge-
lines and thalwegs are detected. They are few in num-
ber and depict surfaces with a long radius of action,
often separated by great distances.

o By calculating the amplitude of forms for any pixel p
in the study area. The ridgeline amplitude is obtained
by the difference between the altitude of the floor ver-
tically below pixel p and the altitude of pixel p read on
the DTM. The depth of the hollows is obtained simply
from the difference between the altitude of the ceiling
vertically above pixel p and the altitude of pixel p read
on the DTM.

Topographic variables are usually estimated from a sin-
gle DTM pixel or from its nearest four neighbour pixels.
The other possibility is to consider larger vicinity through
windows of different sizes. Eight concentric circular win-
dows of increasing diameter are calculated for the “classic
variables”: 150 m (3 x 3 pixels), 250 m (5 x 5), 550 m (11
x 11), 1050 m (21 x 21), 1750 m (35 x 35),2500 m (51 x
51), 3750 m (75 x 75) and 5050 m (101 x 101). For tech-
nical reasons, the window 3 x 3 is not available for the
variables related to landforms (hmp and hllw). This ap-
proach allows us to approximate the spatial variation of
temperature on different scales, from the smallest (win-
dows 1 or 2 describing the finest topographic variations)
to the broadest (windows 7 or 8, which allows for the
coarsest tendencies only).

2.4. Method

The Bravais-Pearson correlation coefficients are calcu-
lated for the 4481 series of temperature readings (response
variables) and the 39 topographic variables (1 + 8 x 3 + 2

—— DTM surface
———- ceiling
- floor

. —

< ---» humps amplitude
(b) —— hollowsamplitude ~

Figure 3. Variation of the ceiling and floor on two different
scales.
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x 7) created in the data base (explanatory variables). The
correlation coefficients are subjected to Student’s ¢ tests
(at risk @ = 5%) to identify which topographic variables
significantly accounted for the spatial variability of tem-
perature. The hierarchy of variables is then established on
the basis of the frequency with which they are signifi-
cantly correlated with temperatures.

The results might be skewed by any collinear variables
[16]. If two variables have a high common variance, it is
likely they will be correlated in the same proportions with
the various temperature series. Imagine that steep slopes
are all at high altitudes and gentle slopes in the lower lying
parts of a given area. In this event, slope and altitude co-
vary to a large extent. If altitude, which is known to in-
fluence the spatial variation of temperatures, is frequently
correlated with temperature, then the same will be true for
slope. Now, if slope influences temperature less than
altitude does, the high frequency of slopes as an ex-
planatory variable would be largely due to the collinearity
of this variable with altitude. Collinear variables must
therefore be reduced to have the clearest possible vision of
the variables that best account for the spatial variation of
temperatures. There are many sources of collinearity. The
example just given (collinearity between altitude and
slope) is one. Another source is windowing which induces
strong spatial autocorrelation (Table 2). It is inevitable
that the values computed for adjacent windows are close
since the overlap between windows is high; window 2 (5
x 5 pixels) has 36% of pixels in common with window 1
(3 x 3). However, this collinearity diminishes with in-
creasing difference in window size.

The threshold beyond which the effects induced by
collinearity may be detrimental is difficult to determine
[17]. Schroeder et al. [18] assert that there are no statis-
tical tests for determining whether or not multi-collin-
earity. The occurrence of collinearity is evaluated here by
the correlation coefficient, which is more intuitive than
the “condition index” normally used [19]. In this study,
we set it at 0.4 (16% of common variance between pairs of
collinear variables).

The main pairings with comparatively high collinearity
are a) roughness and slope (r = 0.73), and b) roughness
and hump amplitude (0.54) (Table 3). Collinearity is

Table 2. Matrix of correlations among the eight windows of
the “slope” variable: with PACA as an example.

w5 wll w21 w51 w101
w3 0.97 0.85 0.71 0.56 0.46
w5 0.91 0.75 0.58 0.51
wll 0.90 0.70 0.60
w21 0.80 0.62
w51 0.84
ACS
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extremely difficult to handle all around since all of the

variables entail some degree of collinearity with the others.

After the residuals from these two regressions have re-
placed the initial values, collinearity in our case study is
close to zero (Table 4).

As a result of this processing, most of the other vari-
ables are orthogonal or close to it. The collinearity be-
tween hump amplitude and roughness has been corrected
in part by the “de-correlation” of roughness by altitude:
this means that the common variance between these two
variables is due in part to the collinearity linking both of
them to altitude. The same is true for the collinearity that
linked slope to altitude. Let us notice that as to avoid
collinearity because of windowing, only the window with
the highest r value is selected.

3. Results

Altitude is the variable that significantly explains the
spatial variation of temperatures in the greatest number of
cases (80%) (Table 5). Statistics clearly show the physical
model relating temperature and pressure. Hump amplitude
(49%) and hollow amplitude (46%) follow: landforms are
involved in nearly half the instances in the spatial varia-
tion of temperatures. Behind them lag global radiation

Table 3. Matrix of correlations among the six explanatory
variables; with PACA as an example.

rough slope rglob hmp hllw

alt 0.41 0.44 0.11 0.21 0.33
rough 0.73 0.29 0.54 -0.04

slope 0.43 0.39 0.01

rglob -0.08 0.08

hmp -0.31

Table 4. Matrix of correlations among the six explanatory
variables after de-correlation; with PACA as an example.

rough slope rglob hmp hllw

alt 0 0.23 0.11 0.21 0.33
rough 0 0.26 0.25 0.30

slope 0.32 0.19 0.05

rglob -0.08 0.08

hmp -0.31

Table 5. Frequency (%) with which the six variables sig-
nificantly account for the minima and maxima.

(23%) and roughness (18%). Slope is the variable selected
least often (10%).

3.1. Variation by Minima and Maxima

The physical processes as highlighted by statistics govern
the spatial variation of minima and maxima in very dif-
ferent ways. The largest deviation is for the depth of hol-
lows, which significantly accounts for 65% of the minima
and just 27% of the maxima (Table 5). The build-up of
cold air in topographic depressions is very marked at the
end of the night whereas in the course of the day mecha-
nisms (especially radiation) kick-in to limit its influence.
Another important difference between minima and maxi-
ma statistics can be observed in the case of global radia-
tion which explains the maxima twice as often as the
minima. The other variables (altitude, hump amplitude,
roughness and slope) influence the spatial structure of
minima and maxima with similar frequencies.

3.2. Variation by Study Area

In Table 6, excess frequencies compared to the average
[see Table 5] appear in smaller font and deficit frequen-
cies are in bold print. Temperature variations in PACA, a
region of high mountains, depend above all on altitude
(significant in 93% of cases) and landforms. Franche-
Comté fits in with this pattern for the days of extreme cold
(FC-cold), where the influence of landforms is even more
decisive. Conversely, the spatial structure of temperatures
for 2006 (FC-2006) stands apart, except for altitudes,
which remain a powerful explanatory variable.

In Slovenia, a mountainous country, altitude while
predominant, is more discreet as a variable than in PACA
and Franche-Comté. However, the influence of landforms
is significant, especially hump amplitude. The role of
global radiation in Slovenia is notable, as in Franche-
Comté. The Gironde, a low-lying area, stands apart. Al-
titude, as expected, is only significant one day in two
whereas the influence of the amplitude of hollows (58%)
and the influence of slopes is high.

3.3. Seasonal Variation

Seasonal variations occur in the frequency with which

Table 6. Frequency (%) with which the six variables sig-
nificantly account for the minima in the different study
areas (red print = excess compared to the average; blue print
= deficit compared to the average).

alt rough slope rglob hmp hllw

PACA 93 16 7 16 66 58

alt rough slope rglob hmp  hllw FC-2006 94 3 11 33 38 30

minima 79 17 10 14 49 65 FC-cold 90 10 7 29 88 69

maxima 81 19 10 32 49 27 Slovenia 82 34 1 32 65 35

average 80 18 10 23 49 46 Gironde 49 19 19 12 25 58
Copyright © 2012 SciRes. ACS
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some topographic variables significantly explain the spa-

tial variations of temperature. We have chosen to present

the four variables that most clearly oppose summer to
winter.

o Altitude (Figure 4) is less frequently taken as an ex-
planatory variable for spatial variation of minimum
and maximum temperatures in winter (74% - 75%) than
in spring (78% - 80%) and late summer (85% - 86%).
This suggests that in winter heat inversions counter the
adiabatic decline in temperature.

o Global radiation (Figure 5) accounts for the spatial
variation of maximum temperatures (32%) twice as
much as for minimum temperatures (14%). For maxi-
ma, its influence rises steadily from January (23%) to
June (45%). Then it diminishes until October, from
when onwards it levels off at 26%. This variation is
consistent with the energy received at the ground sur-
face, which is greater in the afternoons (maxima) than
in the mornings (minima). This hypothesis will be
discussed later in Section 3.3.

o Landforms influence the spatial variation of minima
above all in summertime. Minimum temperatures are
influenced on average much more by the amplitude of
humps and hollows (56%) than maximum tempera-
tures (38%) are. The frequency with which these two
landforms account for the spatial variation of tem-
perature is reversed between the minima and maxima
(Figures 6 and 7).

4. Discussion

The results just described should be nuanced by several

o ESyAN

82 -
80 ey
78 N\

% 76

AN
g —

72

Janv. Febr. March April May June July Augu. Sept. Octo. Nove. Dece.
maximum e minimum

Figure 4. Annual variation of altitude as an explanatory va-
riable for temperature (four study areas).
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Figure 5. Annual variation of the global radiation as an ex-
planatory variable for temperatures (four study areas).
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remarks about windowing, collinearity and the influence
of solar radiation on the spatial variation of temperatures.

4.1. Windowing

The windowing system allows to approximate the in-
fluence on temperatures of the scales of the topographic
variables involved. In some cases, all of the windows
significantly explain the variation in temperature. In
curve A of Figure 8, the maximum coefficient is in the
21 x 21 window, indicating that it is hollows of a kilo-
metre or so in size that explain most of the spatial
variation of minima. In other cases, only one or a few
windows exceed the selected level of significance (B).
Often none of the windows exceed the threshold (C). But
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amplitude of: —— hollows e humps minima

Figure 6. Annual variation in the amplitude of humps and
hollows as explanatory variables for minimum temperatures
(four study areas).
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Figure 7. Annual variation in the amplitude of humps and
hollows as explanatory variables for maximum tempera-
tures (four study areas).
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regardless of however many windows may have a signi-
ficant coefficient, the principle of counting occurrences
does not allow for double or multiple counting since only
the window with the highest r-value is selected. Exami-
nation of the windows that are most frequently significant
makes it possible to specify which topographic scales are
most likely to influence the spatial variation of tempera-
tures. The highest correlation coefficient is obtained by
global radiation for the four broadest windows (35 x 35
to 101 x 101) for both minimum (Table 7) and maximum
(Table 8) temperatures. It seems that hillslopes have to
be extensive if global radiation is to significantly in-
fluence temperatures. The heat generated at the ground
surface constitutes a micro-airmass large enough to affect
the layer of air in the first few metres above the ground
only if the receiving hillslope is at least 1750 m in extent.
Similar conclusions on the expansion of vegetation cover
[12] and extend of slopes [9] had already been made. A
similar model affects roughness for maximum tempera-
tures, although no process can be suggested to account
for it. With maximum temperatures (Table 8), the ampli-
tude of humps and hollows is most marked in the six
broadest windows (from 11 x 11 to 101 x 101). In this
case, the only forms that are most rarely selected as
explanatory variables for the spatial wvariation in
temperatures are the forms of small extent (less than 250
m). The reverse occurs with the amplitude of hollows for
minimum temperatures (Table 7). The most effective
cold traps do not seem to be the largest ones.

4.2. Residual Collinearity

One way of measuring the bias introduced by collinearity
is to compare the results obtained before and after “de-

Table 7. Frequency (%) with which the windows two-by-two
exhibit significant correlation coefficients; minimum tem-
peratures.

rough slope rglob hmp hllw
Win 1 +2 25 51 5 18 43
Win 3 +4 13 18 8 35 33
Win5+6 22 25 16 24 20
Win 7 + 8 40 5 70 23 4

Table 8. Frequency (%) with which the windows two-by-two
exhibit significant correlation coefficients; maximum tem-
peratures.

rough slope rglob hmp hllw
Win1+2 10 11 4 9 5
Win 3 +4 5 16 3 29 39
Win5+6 31 70 29 24 20
Win 7 + 8 54 2 63 38 21

Copyright © 2012 SciRes.

correlation”. Roughness, which displays 16% of common
variance with altitude, shall serve as an example. The
frequency with which altitude and roughness significantly
explain the spatial variation in temperatures is 80% and
43% respectively. After “de-correlation”, roughness ex-
plains just 18% of cases (Table 5). The high frequency
of “untransformed” roughness as a variable accounting
for the spatial variation of temperature is therefore due to
its collinearity with altitude; when the collinearity is neu-
tralized, the frequency with which it explains tempera-
tures strongly declines.

4.3. Variation of Global Radiation

Radiation explains significantly more often the tempe-
rature variation in summer (than in winter) and the maxi-
mum temperatures variation (than the minimum one)
(Figure 5). These facts have been explained by the varia-
tion in energy received at the ground surface. This inter-
pretation could be contradicted by the observation that
radiative differences between north and south facing hill-
slopes vary much more in winter than in summer: Hufty
[20] reports that this difference between two 45 hill-
slopes exposed one to the north and the other to the south
is of 16 MJ/m?/day in winter as against just 6 MJ/m*/day
in summer at Carpentras (southern France). It is true that
large differences in radiation depending on location is a
condition that promotes large temperature differences
and therefore a high correlation between these two vari-
ables. However, the relation between them is not straight-
forward and is sometimes difficult to bring out. Accord-
ingly, what is shown in Figure 5 could rather be ex-
plained as the response from environments that tend to
heat up more with high radiative energy. So the fre-
quency of global radiation as an explanatory variable of
the spatial variation of temperature is higher with maxi-
mum temperatures and during summer. Global radiation
rarely explains the spatial variation of minimum tem-
peratures that ordinarily occur before the sun reaches the
station. One should also consider that the theoritical
global radiation is a variable that reflects indirectly the
terrain aspects, i.e. South and North exposed slopes.
Therefore, this variable could be selected as variable ex-
plaining the spatial variation of temperature because of
temperature differences due to wind effects (shelter/ex-
posure of north and south exposed slopes) depending on
the synoptic and the local circulation patterns.

5. Conclusions

Our analysis provides answers to the rank-ordering of
variables accounting for the spatial variation of tempera-
tures. First altitude is almost always a significant variable.
The only case that does not fit into this model is as
expected Gironde because of its moderate topography.
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The frequency with which altitude is selected is higher
when the study area is more mountainous. The amplitude
of humps and hollows describes the structure of the
topography. We felt their importance and the results we
obtained have not disappointed us. It has been shown in
many instances that the influence of these landforms on
the temperature spatial distribution is often decisive.
Their influence is exerted mostly on minimum tempera-
tures, a situation that is strongly influenced by the size of
hollows. These two variables are effective above all in
PACA and in Franche-Comté during cold spells. As alti-
tude, their introduction in interpolation process is often
decisive. Works in progress not yet published show that
the estimation errors of temperature and precipitation
amount are reduced when they are introduced as explana-
tory variables. These results more than justify the effort
we made to create these variables describing the land-
forms. Last point, it seems that thalwegs associated with
the smallest windows are more explanatory than the
thalwegs associated with the broadest windows. It is true
that large but shallow valleys may accumulate less cold
air that deep but narrow valleys. Also, our future work
will focus on calculating the volume of air included in
the hollow forms and test if this hypothesis is true or not.

We have voluntarily limited the number of explanatory
variables derived from the DTM to six. This has focused
attention on a small number of topographic variables
accounting for temperature. However, other variables
could have been introduced into the analyses, such as the
north-south (cosine) and east-west (sine) components of
hillslope aspect, distance to the nearest ridgeline, dis-
tance to the nearest thalwegs. Statistics show that these
additional variables sometimes play a part in the spatial
distribution of temperatures. But often it is not easy to
derive any physical interpretation from them [9]. Their
inclusion in this study would have clouded the results in
many instances, although they can be usefully included
in interpolation models where the aim is to exploit the
maximum number of significant variables.
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