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Abstract—This paper studies the two-user interference channel
with unilateral source cooperation, which consists of two source-
destination pairs that share the same channel and where one
full-duplex source can overhear the other source through a
noisy in-band link. Novel outer bounds of the type 2R1 + R2

and R1 + 2R2 are developed for the class of injective semi-
deterministic channels with independent noises at the different
source-destination pairs. The bounds are then specialized to the
Gaussian noise case. Interesting insights are provided about
when these types of bounds are active, or in other words,
when unilateral cooperation is too weak and leaves some system
resources underutilized.

I. INTRODUCTION

A major limitation of current wireless networks is inter-

ference. In today’s systems, interference is either avoided or

treated as noise. Interference avoidance is accomplished by

splitting the available time / frequency / space / code resources

among the users in such a way that their transmissions are

“orthogonalized”. In practice, perfect user orthogonalization is

not possible leading to a residual interference, usually treated

as noise. This approach may severely limit the system capacity.

Cooperation among wireless nodes has emerged as a poten-

tial technique to enhance performance. Cooperation leverages

the broadcast nature of the wireless medium, i.e., the same

transmission can be heard by multiple nodes, thus opening up

the possibility that nodes help one another by relaying their

message to their intended destination.

Motivated by the potential impact of cooperation in future

wireless networks, this paper studies a system consisting of

two source-destination pairs that share the same channel. One

source, Tx2, overhears the other, Tx1, through a noisy in-

band link. Therefore, Tx2, which is here assumed to operate

in full-duplex, besides communicating with Rx2, may also

allocate some of its resources to boost the rate of Tx1. This

channel model is referred to as the interference channel with

unilateral source cooperation. This system would model a

scenario where, for example, a base station can overhear

another base station and consequently help serving this other

base station’s associated mobile users.

A. Related Work

Lately, cooperation has received significant attention as

summarized in what follows.

The Interference Channel (IC) with unilateral source coop-

eration is a special case of the IC with generalized feedback,

or bilateral source cooperation. For this network, several outer

bounds on the capacity have been derived [1], [2]. A number

of schemes have been developed as well. For example, [3]

proposed a strategy that exploits rate splitting, superposi-

tion coding, partial-decode-and-forward relaying, and Gelfand-

Pinsker binning. This scheme, specialized to the Gaussian

noise channel, turned out to match the sum-rate outer bounds

of [2], [1] to within 19 bits with equally strong cooperation

links and with arbitrary direct and interfering links [1] and

to within 4 bits in the ‘strong cooperation regime’ with

symmetric direct links and symmetric interfering links [4].

The IC with unilateral source cooperation was studied in

[5], where it was assumed that, at any given time instant, the

cooperating source has an a-priori access to L ≥ 0 future

channel outputs. For the case L = 0 studied in this paper, [5]

derived potentially tighter outer bounds than those in [1], [2]

specialized to unilateral source cooperation. However, these

bounds involve several auxiliary random variables and it is

not clear how to evaluate them for the Gaussian noise channel.

The authors of [5] also proposed an achievable scheme, whose

rate region, as pointed out in [5, Rem. 2, point 6], is no

smaller than that in [3, Sec. V] specialized to unilateral source

cooperation. However, in [5], no performance guarantees in

terms of constant gap were given. In [6], the capacity of the IC

with unilateral source cooperation was characterized to within

2 bits (per user) for a set of channel parameters that, roughly

speaking, excludes the case of weak interference at both

receivers. In [6], it was pointed out that in weak interference,

outer bounds of the type 2R1 + R2 and R1 + 2R2 might

be necessary to (approximately) characterize the capacity.

The derivation of such upper bounds is, to the best of our

knowledge, not even available for the general memoryless non-

cooperative IC. For the non-cooperative IC, such bounds were

derived in [7] for the Injective Semi-Deterministic IC (ISD-

IC) and showed to be achievable to within a constant gap by

the Han-Kobayashi’s scheme. In [1], the model of [7] was

extended so as to include bilateral source cooperation and a

new sum-rate outer bound was derived. Here we specialize the

ISD model of [1] to unilateral source cooperation and derive

bounds on 2R1 +R2 and R1 + 2R2.

The ISD-IC with source cooperation includes classical feed-

back as a special case. [8] determined the capacity to within 2

bits of the IC where each source has perfect output feedback

from the intended destination; it showed that 2R1 + R2 and



R1+2R2-type of bounds are not needed because output feed-

back eliminates “resource holes”, or system underutilization

due to distributed processing captured by the 2R1 + R2 and

R1 + 2R2 bounds. In [9], the authors studied the symmetric

Gaussian IC with all possible output feedback configurations.

They showed that the bounds developed in [8] suffice for

constant gap characterization except in the case of ‘single

direct feedback link / model (1000)’. [9, Theorem IV.1]

proposed a novel outer bound on 2R1 + R2 for the ISD-IC,

to capture the fact that the second source does not receive

feedback. [10] characterized the capacity of the ‘symmetric

linear deterministic IC with degraded output feedback’ by

developing bounds on 2R1 + R2 and R1 + 2R2, whose

extension to the Gaussian noise case was left open. In this

work we extend the results of [10] and [9] to all ISD-ICs

with unilateral source cooperation for which the noises at the

different source-destination pairs are independent.

B. Contributions and paper organization

The rest of the paper is organized as follows. Section II

describes the channel model and summarizes known outer

bounds. Section III presents the derivation of novel outer

bounds for the ISD-IC with unilateral source cooperation.

Section IV specializes the new bounds to the Gaussian noise

channel and, by using the generalized Degrees-of-Freedom

(gDoF) metric, sheds light on when unilateral cooperation

enables sufficient coordination among the sources such that

the new bounds on 2R1 +R2 and R1 + 2R2 are not active.

II. SYSTEM MODEL AND KNOWN OUTER BOUNDS

A general memoryless IC with unilateral generalized feed-

back, or source cooperation, consists of two input alpha-

bets (X1,X2), three output alphabets (YF2,Y1,Y2) and a

memoryless transition probability PYF2,Y1,Y2|X1,X2
. Each Txu,

u ∈ [1 : 2], has a message Wu ∈ [1 : 2NRu ] for Rxu, where

N is the codeword length and Ru is the transmission rate for

user u in bits per channel use. The messages are independent

and uniformly distributed on their respective domains. At

time i ∈ [1 : N ], Tx1 encodes the message W1 into

X1i(W1) and Tx2 maps its message W2 and its past channel

observations into X2i(W2, Y
i−1
F2

). At time N , Rx1 estimates

its intended message W1 based on all its channel observations

as Ŵ1(Y1
N ), and similarly Rx2 outputs Ŵ2(Y2

N ). A rate

pair (R1, R2) is said to be ǫ-achievable if there exists a

sequence of codes indexed by the block length N such that

maxu∈[1:2] P[Ŵu 6= Wu] ≤ ǫ for some ǫ ∈ [0, 1]. The capacity

is the largest non-negative rate region that is ǫ-achievable for

any ǫ > 0.

The ISD model, introduced in [7] for the IC without

cooperation, assumes that the input X1, resp. X2, before

reaching the destinations, is first passed through a memoryless

channel to obtain T1, resp. T2. The channel outputs are then

given by Y1 = f1 (X1, T2) and Y2 = f2 (X2, T1) where fu,

u ∈ [1 : 2], is a deterministic function which is invertible

given Xu, or in other words, T1, resp. T2, is a deterministic

function of (Y2, X2), resp. (Y1, X1).

In the case of unilateral source cooperation, the generalized

feedback signal at Tx2 satisfies YF2 = f3 (X2, Yf), for some

deterministic function f3 that is invertible given X2 and where

Yf is obtained by passing X1 through a noisy channel [1].

In the literature, several outer bounds are known for the

IC with bilateral source cooperation [1], [2], which are here

specialized to the case of unilateral cooperation. In particular,

for an input distribution PX1,X2
, we have:

Case A) For a general memoryless IC with unilateral source

cooperation, the cut-set upper bound [11] gives

R1 ≤ I (X1;Y1, YF2|X2) , (1a)

R1 ≤ I (X1, X2;Y1) , (1b)

R2 ≤ I (X2;Y2|X1) , (1c)

and from [2] we have

R1 +R2 ≤ I (X1;Y1, YF2|Y2, X2) + I (X1, X2;Y2) , (1d)

R1 +R2 ≤ I (X2;Y2|Y1, X1) + I (X1, X2;Y1) . (1e)

In (1a)-(1e), YF2 always appears conditioned on X2; for the

ISD channel this implies that YF2 can be replaced with Yf .

Case B) For a memoryless ISD-IC with unilateral

source cooperation that satisfies PYF2,Y1,Y2|X1,X2
=

PY1|X1,X2
PYF2,Y2|X1,X2

, i.e., the noises seen by the different

source-destination pairs are independent, we have

R1 +R2 ≤ H (Y1|T1, Yf)−H (Y1|T1, Yf , X1, X2)

+H (Y2|T2, Yf)−H (Y2|T2, Yf , X1, X2)

+ I (Yf ;X1, X2|T2). (1f)

The bound in (1f) was originally derived in [1] for the Gaus-

sian and the linear deterministic channels by assuming that all

noises are independent, which implies I (Yf ;X1, X2|T2) ≤
I (Yf ;X1). A straightforward generalization shows that the

steps in [1] are valid even when PYF2,Y2|X1,X2
is not a product

distribution. The key step of the proof consists in showing that,

for the assumed noise structure, the following Markov chains

hold for all i ∈ [1 : N ]:

(W1, T1
i−1, X1

i)− (T2
i−1, Yf

i−1)− (T2i), (1g)

(W2, T2
i−1, X2

i)− (T1
i−1, Yf

i−1)− (T1i, Yf i). (1h)

The proof of these two Markov chains is not difficult and left

out for sake of space.

Case C) For a memoryless ISD-IC with output feedback

YF2 = Y2 and with independent noises PY1,Y2|X1,X2
=

PY1|X1,X2
PY2|X1,X2

, from [9, model (1000)] we have

R1 + 2R2 ≤ H (Y2)−H (Y2|X1, X2)

+H (Y2|Y1, X1)−H (Y2|Y1, X1, X2)

+H (Y1|T1)−H (Y1|T1, X1, X2) . (1i)

To the best of our knowledge, (1i) is the only upper bound

of the type R1+2R2 which is available in the literature, but it

is only valid for output feedback. Our goal in the next section

is to derive bounds of the type of (1i) for the class of ISD-ICs

with unilateral source cooperation with independent noises at

the different source-destination pairs.



PYF2,Y1,Y2,Yf ,T1,T2|X1,X2
(yf , y1, y2, a, b, c|x1, x2)

=PYf ,T1|X1
(a, b|x1)PT2|X2

(c|x2)δ
(
y1 − f1(x1, c)

)
δ
(
y2 − f2(x2, b)

)
δ
(
yf − f3(x2, a)

)
(2)

III. NOVEL OUTER BOUNDS

In this section we derive two novel outer bounds on the

capacity region of the ISD-IC with unilateral source coopera-

tion with independent noises at the different source-destination

pairs. Our main result is as follows:

Theorem 1. For an ISD-IC with unilateral source cooperation

satisfying (2), at the top of the page, for some memoryless

transition probabilities PYf ,T1|X1
, PT2|X2

and for some injec-

tive functions f1, f2, f3 as discussed in Section II, the capacity

region is outer bounded by

2R1 +R2 ≤ H (Y1)−H (Y1|X1, X2)

+H (Y1|T1, Yf , X2)−H (Y1|T1, Yf , X1, X2)

+H (Y2|T2, Yf)−H (Y2|T2, Yf , X1, X2)

+ I (Yf ;X1, X2|T2) , (3)

R1 + 2R2 ≤ H (Y2)−H (Y2|X1, X2)

+H (Y2|T2, Yf , X1)−H (Y2|T2, Yf , X1, X2)

+H (Y1, Yf |T1)−H (Y1, Yf |X1, X2, T1) , (4)

for some input distribution PX1,X2
.

Proof: By Fano’s inequality and by giving side informa-

tion similarly to [1], we have

N(2R1 +R2 − 3ǫN )

≤ 2I
(
W1;Y1

N
)
+ I

(
W2;Y2

N
)

≤ I
(
W1;Y1

N
)
+ I

(
W1;Y1

N , T1
N , Yf

N |W2

)

+ I
(
W2;Y2

N , T2
N , Yf

N
)

= H
(
Y1

N
)
−H

(
Y1

N , T1
N , Yf

N |W1,W2

)

+H
(
Y1

N , T1
N , Yf

N |W2

)
−H

(
Y2

N , T2
N , Yf

N |W2

)

+H
(
Y2

N , T2
N , Yf

N
)
−H

(
Y1

N |W1

)
.

We now analyze and bound each pair of terms. First pair:

H
(
Y1

N
)
−H

(
Y1

N , T1
N , Yf

N |W1,W2

)

≤
∑

i∈[1:N ]

H (Y1i)−H (Y1i, T1i, Yf i|X1i, X2i)

by using: the chain rule for the entropy, the definition of the

encoding functions (for the ISD-IC with unilateral source co-

operation the encoding function X2i(W2, Y
i−1
F2

) is equivalent

to X2i(W2, Yf
i−1)), the fact that conditioning reduces entropy,

the ISD property of the channel, and the fact that the channel

is memoryless. Second pair:

H
(
Y1

N , T1
N , Yf

N |W2

)
−H

(
Y2

N , T2
N , Yf

N |W2

)

=
∑

i∈[1:N ]

H
(
Y1i, T1i, Yf i|Y1

i−1, T1
i−1, Yf

i−1,W2, X2
i
)

−
∑

i∈[1:N ]

H
(
Y2i, T2i, Yf i|Y2

i−1, T2
i−1, Yf

i−1,W2, X2
i
)

=
∑

i∈[1:N ]

H
(
Y1i, T1i, Yf i|Y1

i−1, T1
i−1, Yf

i−1,W2, X2
i
)

−
∑

i∈[1:N ]

H
(
T1i, T2i, Yf i|T1

i−1, T2
i−1, Yf

i−1,W2, X2
i
)

(a)

≤
∑

i∈[1:N ]

H
(
T1i, Yf i|T1

i−1, Yf
i−1,W2, X2

i
)

−
∑

i∈[1:N ]

H
(
T1i, Yf i|T1

i−1, T2
i−1, Yf

i−1,W2, X2
i
)

+
∑

i∈[1:N ]

H (Y1i|T1i, Yf i, X2i)

−
∑

i∈[1:N ]

H
(
T2i|T1

i, T2
i−1, Yf

i,W2, X2
i, X1

i
)

where we used: the chain rule for the entropy, the definition

of the encoding functions, the ISD property of the channel,

the fact that conditioning reduces entropy, the memoryless

property of the channel, and the fact that Y2 is a deterministic

function of (X2, T1), which is invertible given X2; so finally,

by using the Markov chain in (1h) the first two terms in the

inequality in (a) cancel and we obtain

H
(
Y1

N , T1
N , Yf

N |W2

)
−H

(
Y2

N , T2
N , Yf

N |W2

)

≤
∑

i∈[1:N ]

H (Y1i|T1i, Yf i, X2i)−H (Y1i|T1i, Yf i, X2i, X1i) .

Third pair: since

H
(
Y1

N |W1

)
=

∑

i∈[1:N ]

H
(
Y1i|Y1

i−1,W1, X1
i
)

=
∑

i∈[1:N ]

H
(
T2i|T2

i−1,W1, X1
i
)

≥
∑

i∈[1:N ]

H
(
T2i|T2

i−1,W1, X1
i, Yf

i−1
)

=
∑

i∈[1:N ]

H
(
T2i|T2

i−1, Yf
i−1

)
−I

(
T2i;W1, X1

i|T2
i−1, Yf

i−1
)

︸ ︷︷ ︸
= 0 because of (1g)

by using: the chain rule for the entropy, the definition of

the encoding functions, the ISD property of the channel, the

fact that Y1 is a deterministic function of (X1, T2), which is

invertible given X1, and the fact that conditioning reduces

entropy. Therefore,

H
(
Y2

N , T2
N , Yf

N
)
−H

(
Y1

N |W1

)

≤
∑

i∈[1:N ]

H
(
T2i|Y2

i−1, T2
i−1, Yf

i−1
)
−H

(
T2i|T2

i−1, Yf
i−1

)

+
∑

i∈[1:N ]

H
(
Y2i, Yf i|Y2

i−1, T2
i, Yf

i−1
)

≤
∑

i∈[1:N ]

0 +H (Y2i, Yf i, |T2i) .
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Fig. 1: The Gaussian IC with unilateral source cooperation.

By combining everything together, by introducing the time

sharing random variable uniformly distributed over [1 : N ]
and independent of everything else, by dividing both sides by

N and taking the limit for N → ∞ we get the bound in (3).

We finally notice that by dropping the time sharing we do

not decrease the bound. By following similar steps as in the

derivation of (3) and by using the Markov chains in (1g) and

(1h), it is straightforward to derive the upper bound in (4).

IV. THE GAUSSIAN NOISE CHANNEL

In this section we specialize the outer bounds in (3) and (4)

to the practically relevant Gaussian noise channel.

A complex-valued single-antenna full-duplex Gaussian IC

with unilateral source cooperation, shown in Fig. 1, is an ISD

channel with input/output relationship

T1 :=
√
I1e

jθ1X1 + Z2, Z2 ∼ N (0, 1), (5a)

T2 :=
√
I2e

jθ2X2 + Z1, Z1 ∼ N (0, 1), (5b)

Y1 =
√

S1X1 + T2 : E
[
|X1|2

]
≤ 1, (5c)

Y2 = T1 +
√
S2X2 : E

[
|X2|2

]
≤ 1, (5d)

Yf = YF2 =
√
CX1 + Zf , Zf ∼ N (0, 1), (5e)

where YF2 = Yf since Tx2 can remove the contribution of

X2 from its received signal. The channel gains are constant;

some are real-valued and non-negative because a node can

compensate for the phase of one of its channel gains. The

noises are circularly symmetric Gaussian random variables

with, without loss of generality, zero mean and unit variance.

For the assumption under which we derived our outer bounds,

we must impose that the noise Z1 is independent of (Z2, Zf)
(while (Z2, Zf) can be arbitrarily correlated).

A. Upper bounds

The bounds in (1), (3) and (4) can be evaluated for the

Gaussian noise channel in (5). We define E [X1X2
∗] := ρ :

|ρ| ∈ [0, 1]. We also assume that all the noises are independent,

which represents a particular case for which our outer bounds

hold. By the ‘Gaussian maximizes entropy’ principle, jointly

Gaussian inputs exhaust the outer bounds in (1), (3) and (4).

Thus, we start by evaluating each mutual information term

in (1), (3) and (4) by using jointly Gaussian inputs. Then, we

further upper bound (maximize) each mutual information term

over the input correlation coefficient ρ : |ρ| ∈ [0, 1]. By doing

so we obtain: from the cut-set bounds in (1a)-(1c)

R1 ≤ log (1 + C+ S1) , (6a)

R1 ≤ log
(
1 + (

√
S1 +

√
I2)

2
)
, (6b)

R2 ≤ log (1 + S2) , (6c)

from the bounds in (1d)-(1e)

R1+R2 ≤ log

(
1+

S1+C

1+I1

)
+log

(
1+(

√
S2+

√
I1)

2
)
, (6d)

R1+R2 ≤ log

(
1+

S2

1+I2

)
+log

(
1+(

√
S1+

√
I2)

2
)
, (6e)

and from the bound in (1f)

R1 +R2 ≤ log

(
1 + I2 +

S1

I1 + C

)

+ log

(
1 + I1 +

S2

I2
+ C

(
1 +

S2

1 + I2

))
. (6f)

We now evaluate the new outer bounds in Theorem 1, again

assuming that the channel gains are larger than one, to get

2R1 +R2 ≤ log

(
1 +

(√
S1 +

√
I2

)2
)

+ log

(
1 +

S1

1 + I1 + C

)

+ log

(
1 + I1 +

S2

I2
+ C

(
1 +

S2

1 + I2

))
, (6g)

R1 + 2R2 ≤ log
(
1 + (

√
S2 +

√
I1)

2
)
+ log

(
1 +

S2

1 + I2

)

+ log

(
1 + I2 +

S1

I1 + C

)
+ log

(
1 +

C

1 + I1

)
. (6h)

As we shall see in the next section, the new bounds in (6g) and

(6h) are active when the system experiences weak interference

and ‘weak cooperation’.

B. Generalized degrees-of-freedom (gDoF) region

We now focus on the symmetric Gaussian IC with unilateral

source cooperation for sake of space. This channel is param-

eterized, for some S ≥ 1, α ≥ 0, β ≥ 0, as

S1 = S2 = S
1, I1 = I2 = I = S

α, C = S
β . (7)

In particular, we derive the gDoF region, which is an exact

capacity characterization in the high-SNR regime S ≫ 1. The

gDoF for the i-th user, i ∈ [1 : 2], is defined as

di := lim
S→+∞

Ri

log(1 + S)
. (8)

This analysis reveals the channel conditions under which the

novel outer bounds on 2R1 + R2 and R1 + 2R2 are active,

i.e., tighter than those on the single rate and on the sum-rate

available in the literature [11], [2] and [1].

In [6] we showed that, for the Gaussian symmetric IC with

unilateral source cooperation, the capacity can be achieved
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Fig. 2: Regimes where the bounds in (9e) and (9f) are active.

to within a constant gap in strong interference α ≥ 1, i.e.,

the interference links are stronger than the direct links, and

when α < 1 and β ≥ α + 1, i.e., the interference is weak

and the cooperation link is ‘sufficiently’ strong. This constant

gap result implies an exact gDoF region characterization for

this set of parameters (the work in [6] is not restricted to the

symmetric case). In these regimes, the capacity region of the

Gaussian IC with unilateral source cooperation does not have

bounds on 2R1 +R2 and R1 +2R2, similarly to the capacity

region of the classical IC [12]. In other words, in these regimes

the channel resources are fully utilized.

Here we focus on a sub-regime left open in [6], namely

α < 1 and β ≤ 1, i.e., when the direct links are stronger than

the interfering and cooperation links. By using the definition

in (8), from the upper bound region in (6), we obtain that

the gDoF region of the Gaussian IC with unilateral source

cooperation, when α < 1 and β ≤ 1, is upper bounded by

d1 ≤ 1, (9a)

d2 ≤ 1, (9b)

d1+d2 ≤ 2− α, (9c)

d1+d2 ≤ max {α, 1−max{α, β}}
+max {α, 1 + β − α} , (9d)

2d1+d2 ≤ 2−max {α, β}+max {α, 1−α+β} , (9e)

d1+2d2 ≤ 2−α+max {α, 1−max{α, β}}+[β−α]+. (9f)

From the gDoF region above interesting insights can be drawn

on when the outer bounds on 2d1+d2 and d1+2d2 are active.

From Fig. 2 we observe that both bounds are active whenever

α ≥ max
{

1
2 , β

}
, while in the other case only d1 + 2d2 is

active. Moreover, we notice that, in weak interference, i.e.,

α < 1, and with β ≤ [2α − 1]+, the gDoF region in (9)

is the same as that of the classical non-cooperative IC [12].

Moreover, for this set of parameters the outer bound region in

(6) is achievable to within a constant gap (the gap computation

is straightforward and not shown here for sake of space). For

the other parameter regimes, designing strategies that achieve

the outer bound in (6) to within a constant gap is an important

open problem, which is object of current investigation.

V. CONCLUSIONS

In this work we studied the two-user IC with unilateral

source cooperation where one source overhears the other

source through a noisy in-band link. Our major contribution

was to develop two novel outer bounds of the type 2R1 +R2

and R1 + 2R2 on the capacity of this system. These bounds

were first derived for the injective semi-deterministic channel

and then specialized to the Gaussian case. The symmetric,

i.e., equally strong interfering links and direct links, Gaussian

channel was investigated in the high SNR regime, in order to

highlight under which channel conditions unilateral coopera-

tion enables sufficient coordination among the sources such

that the new 2R1 +R2 and R1 + 2R2 bounds are not active.
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