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We study the spectral minimal k-partitions of the two-dimensional flat torus (R/Z)×(R/bZ) , with b a parameter in b ∈ (0, 1]. We give a heuristic argument to compute a transition value when k is odd. We support this conjecture by looking for candidates to be minimal partitions using an optimization algorithm adapted from [2]. Guided by these numerical results, we construct k-partitions that are tilings of the torus by hexagons. We compute their energy and thus obtain an upper bound of the minimal energy.

which we call the energy, is minimal. Here λ 1 (D i ) is the lowest eigenvalue of the Dirichlet Laplacian on D i . This problem was studied by Bernard Helffer, Thomas Hoffmann-Ostenhof, and Susanna Terracini in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], where existence and regularity were proved for a large class of domains. Similar optimization problems were studied in [START_REF] Bucur | Existence results for some optimal partition problems[END_REF] and [START_REF] Caffarelli | An optimal partition problem for eigenvalues[END_REF]. In the specific setting that we consider here, B. Helffer and T. Hoffmann-Ostenhof showed, in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF], that when b is small enough, a minimal k-partition is obtained by dividing the torus in k equal 'vertical' strips.

One of the motivations of this work is to get information on the minimal partitions when b increases. In particular, we are interested in the value of b for which the 'vertical' partition mentioned above is no longer minimal. We present some conjectures on these transition values, inspired by the methods in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF].

To check these conjectures, and to look for minimal partitions for larger b's (with b ∈ (0, 1]), we need a numerical method to search for minimal partitions. We have adapted the optimization algorithm used by Blaise Bourdin, Dorin Bucur and Édouard Oudet in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF]. Our numerical computations support the conjectures concerning the transition values, improve known upper bounds of the minimal energy, and produce some quite remarkable candidates to be minimal partitions.

Guided by the numerical results, we have constructed families of k-partitions, for k ∈ {3 , 4 , 5} . These partitions are tilings of the torus by isometric polygons (in general hexagons) that satisfy a geometrical constraint called the 'equal angle property'. For some values of b, we obtain in this way partitions that closely resemble the best candidates produced by the optimization algorithm. For other values of b, such a tiling does not seem to be optimal. In any case, however, the first eigenvalue of the Dirichlet Laplacian of the fundamental domain of the tiling gives an upper bound of the minimal energy, which often improves the previously known ones.

The paper is organized in the following way. In Section 2, we recall some relevant facts concerning minimal partitions, including the results of [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF] for flat tori. In section 3, we present a heuristic method, inspired by [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF], to compute the transition values. When b is equal to the conjectured transition value, we also present some candidates to be minimal partitions which are obtained from the nodal set of eigenfunctions of the Laplacian on a covering of the torus. In Section 4, we describe the numerical method that we have used. The numerical results are presented in Section 5. For a fixed k (k ∈ {3 , 4 , 5}), we compute candidates to be a minimal k-partition of T (1, b), for a discrete set of values of b in (0, 1] . These computations suggest the existence of hexagonal tilings of some tori. In Section 6, we compute the energy of these tilings (which will be constructed in Appendix A), and compare it to the formerly obtained bounds. This allows us to improve the bounds of the minimal energy deduced from the general theorems of Section 2. In some cases, we are even able to formulate a conjecture on the value of the minimal energy. We conclude with a summary of the results and some suggestions for future research.

I would like to thank my advisors, Virginie Bonnaillie-Noël and B. Helffer, for their guidance and their encouragements. I also thank V. Bonnaillie-Noël and É. Oudet for their help with the numerical methods.

Minimal partitions 2.1 Definitions

In the following, M is a compact two-dimensional Riemannian manifold without boundary. For any open set ω ⊂ M , the sequence (λ k (ω)) k≥1 denotes the eigenvalues of the Laplace-Beltrami operator on ω with Dirichlet boundary conditions. They are arranged in increasing order and counted with multiplicity. The following definitions and results are taken from [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. Compared with this reference, our statements are somewhat simplified due to the absence of a boundary. In the rest of the paper, we call the D i 's domains of the k-partition and denote by P k the set of all k-partitions for any given k. Furthermore, we simply use the term partition if we do not want to specify the number of domains.

Definition 2.2. For any integer

k ≥ 1 , we set L k (M ) = inf D∈P k Λ k (D) . A partition D ∈ P k such that Λ k (D) = L k (M ) is called a minimal k-partition.
The following existence result is proved in the paper [START_REF] Conti | On a class of optimal partition problems related to the Fučík spectrum and to the monotonicity formulae[END_REF].

Theorem 2.3. For any integer k ≥ 1 , there exists a minimal k-partition of M . This paper in fact prove a much stronger result, namely the existence of a regular minimal partition in the sense of Definition 2.5.

Its boundary is then defined as

N (D) = k i=1 ∂D i .
Definition 2.5. A partition D is called regular if it is strong and its boundary N (D) satisfies the following properties.

i. The set N (D) is locally a C 1,1 -= ∩ α<1 C 1,α curve, except in the neighborhood of a finite set {x i ; 1 ≤ i ≤ ℓ} . The elements of this set are called singular points.

ii. For each 1 ≤ i ≤ ℓ , there is an integer ν i ≥ 3 such that, in a neighborhood of x i , the set N (D) is the union of ν i half curves of class C 1,+ = ∪ α>0 C 1,α , which meet at x i .

iii. At each singular point, the half curves meet with equal angle.

The third property in Definition 2.5 is what we have called the 'equal angle property'. As proved in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], we have the following regularity result: Theorem 2.6. For any k ≥ 1 , minimal k-partitions are strong and regular (up to zero capacity sets).

We give additional definitions that help us to describe the topology of a partition. Definition 2.7. Let D = {D i ; 1 ≤ i ≤ k} be a strong partition. Two domains D i and D j are said to be neighbors if Int D i ∪ D j is connected. A strong partition is said to be bipartite if one can color its domains, using only two colors, in such a way that two neighbors have different colors.

The paper [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] shows that there exists a connection between the minimal partitions of M and the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on M . Since we will use this connection in the rest of this work, we recall some relevant definitions and results. With an eigenfunction u of the Laplace-Beltrami operator on M we associate the nodal set

N (u) = {x ∈ M ; u(x) = 0}
and we call nodal domains the connected components of M \ N (u). We denote by µ(u) the number of nodal domains and the nodal domains themselves by D i . The following result was proved by Courant (cf. [START_REF] Courant | Methods of Mathematical Physics[END_REF]).

Theorem 2.8.

If k ≥ 1 and u is an eigenfunction associated with λ k (M ), µ(u) ≤ k .

The set {D i ; 1 ≤ i ≤ µ(u)} is therefore a partition of M in the sense of Definition 2.1. According to classical results on the nodal set, it is a regular partition, that we will call the nodal partition associated with u. Following [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF], we introduce a new definition. Definition 2.9. Let k ≥ 1 . An eigenfunction u for the Laplace-Beltrami operator, associated with

λ k (M ), is said to be Courant-sharp if µ(u) = min{ℓ ; λ ℓ (M ) = λ k (M )} .
To give an upper-bound of L k (M ), one can use k-partitions obtained from eigenfunctions. To make this explicit, we introduce a new spectral element. Definition 2.10. For k ≥ 1 , we denote by L k (M ) the smallest eigenvalue of the Dirichlet Laplacian that has an eigenfunction with k nodal domains. If there is no such eigenvalue, we set L k (M ) = +∞ .

We can now state the results of [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF] that link minimal and nodal partitions.

Theorem 2.11. A minimal partition is nodal if, and only if, it is bipartite. Furthermore, for any integer k ≥ 1 ,

λ k (M ) ≤ L k (M ) ≤ L k (M ) , and, if L k (M ) = L k (M ) or λ k (M ) = L k (M ) , then λ k (M ) = L k (M ) = L k (M ) .
In this latter case, any minimal k-partition is nodal.

Let us point out a few consequences of Theorem 2.11. Remark 2.12. A nodal partition associated with a Courant-sharp eigenfunction is minimal. Minimal 2-partitions are the nodal partitions of eigenfunctions associated with λ 2 (M ) .

Results on tori

In order to apply Theorem 2.11 we need the eigenvalues of the torus, which we recall here for future reference. As we will see in Section 

λ m,n (a, b) = 4π 2 m 2 a 2 + n 2 b 2 ,
with m and n in N .

The following notation will also be useful. 

D i = i -1 k a, i k a × ]0, b[ , for i = 1, . . . , k .
We have 

Λ k (D k (a, b)) = k 2 π 2 a 2 .

Any

= 2ℓ . If b ≤ 1/ℓ , D k (1, b) is a minimal k-partition of T (1, b) . Furthermore, if b < 1/ℓ , D k (1, b) is, up to a translation, the only minimal k-partition of T (a, b) . Finally, if b > 1/ℓ , the partition D k (1, b) is not minimal. If k = 2ℓ and b = 1/ℓ , D k (1, b)
is not the only minimal partition of T (1, b) up to a translation, as we will see in Section 3.

The answer is less clear when k is odd. However, a more complicated analysis, performed by B. Helffer and T. Hoffmann-Ostenhof in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF], gives a range of values of b for which

D k (1, b) is minimal. Proposition 2.16. Let k > 1 be an odd integer. If b < 1/k , then D k (1, b) is a minimal k-partition of T (1, b) .
Let us conclude this section by a monotonicity result. 

A : T (1, b ′ ) → T (1, b) (x, y) → x, b b ′ y . It is easy to see that if ω is an open set in T (1, b ′ ) , A(ω) is an open set in T (1, b) and λ 1 (A(ω)) ≤ λ 1 (ω) . Indeed, let us consider a smooth function u supported in ω . Then v = u • A -1 is a smooth function supported in A(ω) , with T (1,b) |v| 2 dxdy = b b ′ T (1,b ′ ) |u| 2 dxdy and T (1,b) |∇v| 2 dxdy ≤ T (1,b) |∂ x v| 2 + b b ′ 2 |∂ y v| 2 dxdy = b b ′ T (1,b ′ ) |∇u| 2 dxdy .
By the variational definition of λ 1 (A(ω)) ,

T (1,b) |∇v| 2 dxdy T (1,b) |v| 2 dxdy ≥ λ 1 (A(ω)) .
From this we deduce

T (1,b ′ ) |∇u| 2 dxdy T (1,b ′ ) |u| 2 dxdy ≥ λ 1 (A(ω)) ,
and thus λ 1 (ω) ≥ λ 1 (A(ω)) .

As a consequence, a minimal partition of 

T (1, b ′ ) is transformed by A into a partition of T (1, b) whose energy is lower than L k (T (1, b ′ )). This implies L k (T (1, b)) ≤ L k (T (1, b ′ )) .
b k = sup{b > 0 ; D k (1, b) is a minimal k-partition of T (1, b)} . Proof. Let us write b k = sup{b > 0 ; D k (1, b) is a minimal k-partition of T (1, b)} . We obviously have b k ≤ b k . Let us now consider b > b k . There exists b ′ ∈ (0, b) such that D k (1, b ′ ) is not a minimal partition of T (1, b ′ ) . Then L k (T (1, b ′ )) < Λ k (D k (1, b ′ ))) = k 2 π 2 .
According to Proposition 2.17,

L k (T (1, b)) ≤ L k (T (1, b ′ )) and therefore L k (T (1, b)) < k 2 π 2 , which implies that D k (1, b) is not minimal. We have shown that b k ≤ b k .
Using Proposition 2.15 and Proposition 2.16, we obtain the following result.

Proposition 3.3. If k is even, b k = 2/k . If k is odd, b k ≥ 1/k .
We are interested in finding b k for k odd, and also in understanding the transition from D k (1, b) to another type of minimal partition when b becomes greater than b k .

Heuristic analysis for b 3

In this subsection, we present a conjecture on the value of b 3 , based on a heuristic analysis of the possible deformations of the partition D 3 (1, b) . It is inspired by the methods used in [START_REF] Helffer | Minimal partitions for anisotropic tori[END_REF].

By

definition of b 3 , D 3 (1, b) is a minimal 3-partition of T (1, b) for b < b 3 . The partition D 3 (1, b)
is not bipartite and therefore not nodal. Let us however consider the torus

T (2, b) = (R/2Z) × (R/bZ) .
There is a natural map Π : (x, y) → (x, y) from T We can define the partition Π -1 (D 3 (1, b)) as the set of all the connected components of Π -1 (D i ) for all i ∈ {1 , 2 , 3} . We say that we have lifted By antisymmetric, we mean that u(x + 1, y) = -u(x, y) . We assume that this is true even when b = b 3 , for any minimal 3-partition, that is to say we make the following conjecture. At this point, we make an additional hypothesis inspired by the paper [START_REF] Bonnaillie-Noël | Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions[END_REF], in which a similar study is performed on the rectangle. We assume that for b = b 3 , there exists a continuous family of minimal partitions of T (1, b 3 ) , of which D 3 (1, b 3 ) is a member. This allows the existence of a partition whose boundary contains singular points, which, for b greater than b 3 and close to b 3 , will give a minimal 3-partition of T (1, b) after a small deformation (we give more details on this point at the end of this subsection). We therefore make the following conjecture. We find that the smallest suitable b satisfies

D 3 (1, b) to Π -1 (D 3 (1, b)) . We have Π -1 (D 3 (1, b)) = D 6 (2,
λ 1,1 (2, b) = λ 3,0 (2, b) ,
that is to say

4π 2 1 4 + 1 b 2 = 9π 2 .
This leads us to conjecture that

b 3 = 1 √ 2 .
We can also make a guess on the shape of minimal 3-partitions on T (1, b) , with b = 1/ √ 2 + ε and 0 < ε ≪ 1 . Assuming some continuity of the shape of the minimal partitions with respect to b, we can conjecture a plausible mechanism, adapted from [START_REF] Bonnaillie-Noël | Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions[END_REF], for the transition from D 3 (1, b 3 ) to another type of partition. We start from a 3-partition of T (1, 1/ √ 2) whose boundary contains singular points. According to Conjecture 3.4, the boundary is the projection on T (1, 1/ √ 2) of the nodal set of an eigenfunction on T (2, 1/ √ 2). As a consequence, an even number of lines meet at each singular point. The image of this 3-partition of T (1, 1/ √ 2) by the mapping

(x, y) → x, 1/ √ 2 + ε 1/ √ 2 y is a 3-partition of T (1, 1/ √ 2 + ε)
. This latest partition cannot be minimal, since it does not satisfy the equal angle property. We conjecture that, by a small deformation of this partition, we obtain a minimal 3-partition of T (1, 1/ √ 2 + ε) . We also conjecture that this deformation splits a singular point where an even number of lines meet into two singular points where an odd number of lines meet (see Figure 7, to be compared with Figure 1, for numerical simulations with b close to 1/ √ 2).

Examples of 3-partitions

Assuming b 3 = 1/ √ 2 , we obtain L 3 (T (1, 1/ √ 2)) = 9π 2 .
In this subsection, we study families of 3partitions with energy 9π 2 , and look for those that have singular points in their boundary.

To obtain these partitions, let us consider the eigenspace of the Laplace-Beltrami operator on T (2, 1/ √ 2) associated with the eigenvalue 9π 2 . It has dimension 6, and is spanned by the eigenfunctions

(x, y) → cos (3πx) , (x, y) → sin (3πx) , (x, y) → cos (πx) cos 2 √ 2 πy , (x, y) → cos (πx) sin 2 √ 2 πy , (x, y) → sin (πx) cos 2 √ 2 πy , (x, y) → sin (πx) sin 2 √ 2 πy .
Due to this high multiplicity, there is a great variety of possible nodal partitions. Let us note that all the functions in the list above are antisymmetric. This implies that every eigenfunction associated with the eigenvalue 9π 2 is antisymmetric. As a consequence, if u is such an eigenfunction on T (2, 1/ √ 2) and has 6 nodal domains, the projection of its nodal partition by Π is a 3-partition of T (1, 1/ √ 2) that has the energy 9π 2 .

We will not give all the possible nodal 6-partitions of T (2, 1/ √ 2) , but Figure 1 presents an example with singular points which will be useful to interpret the results of our numerical simulations. 

Generalization

If we apply the heuristics of Subsection 3.2 to the determination of b k for any odd integer k ≥ 3 , the transition value b k should be the smallest b such that there exists an antisymmetric eigenfunction associated with λ k,0 (2, b) which is not a linear combination of the functions (x, y) → cos (kπx) and (x, y) → sin (kπx) . This leads us to the conclusion that b k should be solution of the equation (in b)

λ k,0 (2, b) = λ 1,1 (2, b) . Conjecture 3.6. For any odd integer k ≥ 3 , b k = 2 √ k 2 -1 .
This would be an improvement of Proposition 3.3.

In the case k = 5 , Conjecture 3.6 implies b 5 = 1/ √ 6 . As in Subsection 3.2, we try to build a nodal 10-partition of T (2, 1/ √ 6) , associated with the eigenvalue 25π 2 , that has singular points in its boundary. The projection on T (1, 1/ √ 6) of such a partition would give a good candidate for a minimal 5-partition of T (1, 1/ √ 6) that could be deformed into a minimal 5-partition of T (1, 1/ √ 6 + ε) , with 0 < ε ≪ 1 . An example of a nodal 10-partition of T (2, 2/ √ 6) with ten singular points is represented in Figure 2. Numerical simulations presented in Subsection 5.3 support the idea that its projection is minimal, and is a starting point to produce other minimal partitions by a small deformation (see Figure 13). 

Examples of minimal 4-partitions

According to Proposition 2.15, b 4 = 1/2 . Any nodal partition of T (1, 1/2) associated with the eigenvalue 16π 2 that has four nodal domains is therefore minimal. The eigenspace of the Laplace-Beltrami operator on T (1, 1/2) associated with the eigenvalue 16π 2 is spanned by the eigenfunctions (x, y) → cos (4πx) , (x, y) → sin (4πx) , (x, y) → cos (4πy) , (x, y) → sin (4πy) .

This allows us to compute a series of nodal sets, represented on Figure 3. It can be shown that, up to translations, there is only one nodal set, represented on Figure 3(c), that contains singular points. The associated nodal partition is a 4-partition, and is therefore minimal. We conjecture that this partition is a starting point for the apparition of non-nodal 4-partitions of

T (1, b) when b = 1/2 + ε , with 0 < ε ≪ 1 .
More precisely, we conjecture that each singular point of order four splits into two singular points of order three (see Figure 10 in Subsection 5.2 for numerical simulations).

4 Numerical method

Relaxed formulation

Our numerical investigations are based on the method introduced by B. Bourdin, D. Bucur, and É. Oudet in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF]. Let us start with relaxing the original minimization problem. In this subsection, we still denote by M a two-dimensional Riemannian manifold without boundary.

The first step of the relaxation consists in modifying the energy. We define a family of energies associated with a partition. In [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF], the authors study the minimization of the sum of the lowest eigenvalues, which is to say they look for L k,1 (M ) . We have modified their algorithm to look for L k,p (M ) for any 1 ≤ p < ∞ . To approach the minimal energy L k (M ) , corresponding to the case p = ∞ , we look for the minimal energy L k,p (M ) with 1 < p < ∞ large enough. This procedure is justified by the following result, proved in [START_REF] Helffer | Nodal domains and spectral minimal partitions[END_REF]. 

Definition 4.1. For any 1 ≤ p < ∞ and k ∈ N * , if D = {D i ; 1 ≤ i ≤ k} is a k-partition, we define Λ k,p (D) = 1 k k i=1 λ 1 (D i ) p
F k (M ) = F = (f 1 , . . . , f k ) ; f i : M → [0, 1] measurable, k i=1 f i (x) = 1 a.e. .
We associate with such a k-tuple an energy that is a relaxed version of Λ k,p . Definition 4.4. Let f : M → [0, 1] be a measurable function and ε a positive constant. The quantity λ 1 (f, ε) is defined as the first eigenvalue of the operator -∆ + ε -1 (1 -f ). To be more precise, λ 1 (f, ε) is defined, using a Rayleigh quotient, as

λ 1 (f, ε) = inf u∈H 1 0 (M )\{0} M (|∇u| 2 + 1 ε (1 -f )u 2 ) dxdy M |u| 2 dxdy .
Definition 4.5. Let F = (f 1 , . . . , f k ) be an admissible k-tuple, and let us choose p ≥ 1 and ε > 0 . We define the energy of F as

E k,p,ε (F) = 1 k k i=1 λ 1 (f i , ε) p 1 p . (4.1)
Definition 4.6. Let k ∈ N * , p ≥ 1 , and ε > 0 . We define the minimal energy as

E k,p,ε (M ) = inf F ∈F k (M ) E k,p,ε (F) . (4.2) 
The parameter ε can be seen as a penalization of the overlapping of the supports of the functions f i . This idea is supported by the following result, proved in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF] in the case p = 1 . Proposition 4.7. Let F = (f 1 , . . . , f k ) be a k-tuple that solves the optimization problem (4.2). Then, for all i ∈ {1 , . . . , k} , f i (x) = 0 or f i (x) = 1 for almost every x in M . This approach by penalization is justified in the case p = 1 by the following result, proved in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF].

Proposition 4.8. Let k ∈ N * . Then lim ε→0 E k,1,ε (M ) = L k,1 (M ) .
This suggests the following procedure for determining numerically a minimal k-partition (in the sense of Definition 2.1), for a given domain M and integer k. We choose some p ≫ 1 and 0 < ε ≪ 1 and compute an approximation of a minimal admissible k-tuple

F = (f 1 , . . . , f k )
for the optimization problem (4.2). We then consider the sets

D i = {x ∈ M ; f i (x) = 1}
as domains of an approximate minimal partition.

To make this procedure effective, we need to specify how to represent the functions f i numerically and how to construct the domains D i from this representation. This question is addressed in Subsections 4.2 and 4.3.

Discretization

To perform numerical optimization, we replace Problem (4.2) by a discrete version. We approximate the torus T (1, b) by a m × n grid of points in the rectangle [0, 1] × [0, b] (with a constant step in each direction). Let us note N = mn the total number of points. An admissible k-tuple of functions is represented, in this setting, by a N × k matrix Φ, whose columns φ 1 , . . . , φ k contain the values of the functions f 1 , . . . , f k at each point of the grid. For 1 ≤ i ≤ k and 1 ≤ I ≤ N , we will sometime denote the element [Φ] I,i by [φ i ] I if we want to focus on the vector φ i . We impose the following constraints on Φ:

• ∀1 ≤ i ≤ k , ∀1 ≤ I ≤ N , 0 ≤ [Φ] I,i ; • ∀1 ≤ I ≤ N , k i=1 [Φ] I,i = 1 .
Let us give a geometric formulation of these conditions. For k ≥ 1 , we define the simplex S k in R k by

S k =    (x 1 , . . . , x k ) ; 0 ≤ x i , k j=0 x i = 1    .
We can express the constraints as

([Φ] I,1 , . . . , [Φ] I,k ) ∈ S k for 1 ≤ I ≤ N .
Let us now define a discrete analogue of the energy (4.1) that we will try to minimize in this discretized problem. With each column φ ∈ {φ j ; 1 ≤ j ≤ k} , we associate λ1 (φ, ε) the lowest eigenvalue of the matrix

L(φ) = L + 1 ε (Id N -Diag(φ)) .
In this formula:

• φ is an N × 1 vector;

• L is the finite difference approximation of -∆ on the m×n grid with periodic boundary conditions;

• Id N is the N × N identity matrix;

• Diag(φ) is the N × N diagonal matrix such that for 1 ≤ I ≤ N , [Diag(φ)] I,I = φ I .

Finally, we replace the energy E(p, k, ε, F) by its discrete version:

Ẽ(p, k, ε, Φ) = 1 k k i=1 λ1 (φ i , ε) p 1 p . ( 4.3) 
We now want to minimize Ẽ(p, k, ε, Φ) with respect to the N k variables [Φ] i,I , under the constraint ([Φ] I,1 , . . . , [Φ] I,1 ) ∈ S k for 1 ≤ I ≤ N . As seen in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF], the derivatives of Ẽ(p, k, ε, Φ) with respect to [Φ] i,I can be expressed with the help of eigenvalues and eigenvectors of the matrices L(φ i ) . We can therefore compute those derivatives and apply a projected gradient algorithm to the problem.

To make the convergence easier, we adopt the multi-step procedure described in [START_REF] Bourdin | Optimal partitions for eigenvalues[END_REF], which seems empirically very effective1 . We begin with applying the projected gradient algorithm on a very small grid, starting from a randomly generated Φ . We do not use the orthogonal projection operator but the so-called simple projection operator S k , which is defined below. Definition 4.9. Let k ∈ N * . The simple projection operator on the simplex S k is defined by

[S k x] i = |x i | k j=1 |x j | , for each x ∈ R k and 1 ≤ i ≤ k .
Once this step has converged, we double the number of points of the grid in each direction and extend the optimal Φ to the new grid by linear interpolation. We reiterate the same procedure, using the interpolated Φ as a starting point. Once we have repeated this step a certain number of times, we perform one last iteration using the orthogonal projection operator.

In practice, coefficients in the final Φ are either 0 or 1. There is, as far as we know, no proof of this fact in this discrete version of the problem, but it is consistent with Proposition 4.7. Taking it for granted, Φ gives us a partition of the points of the grid into k subsets { Di ; 1 ≤ i ≤ k} of points. From these subsets, we construct, in Subsection 4.3, a k-partition {D i ; 1 ≤ i ≤ k} of T (1, b) and compute its energy.

Construction of a k-partition

The implementation of the iterative gradient algorithm gives us a discrete k-partition { Di ; 1 ≤ i ≤ k} and a numerical relaxed energy M (p, k, ε, Φ) (see (4.3)). To approximate L k,p (T (1, b)), we have two further steps to perform:

• construct a k-partition D = {D i ; 1 ≤ i ≤ k} of T (1, b) from { Di ; 1 ≤ i ≤ k};
• compute the associated energy Λ k,p (D).

Since we want to keep the same size of discretization and since the torus is represented with a m × n grid, we construct the domains D i of the new partition as the union of elementary cells, of the form

p -1 m , p m × q -1 n b , q n b , with 1 ≤ p ≤ m and 1 ≤ q ≤ n .
Then we compute numerically the first eigenvalue of the Dirichlet Laplacian on each domain D i by a finite difference method. We can then, for any 1 ≤ p ≤ ∞ , compute an approximation of the energy Λ k,p (D) without relaxation.

In the rest of this section, we use a convenient graphical representation of the data in the matrix Φ . Let us explain it on an example. We choose m = 7 , n = 6 (therefore N = 42) and k = 3 . A matrix Φ of the type produced by the optimization algorithm is represented in the following way: for 1 ≤ I ≤ N and 1 ≤ i ≤ k , if [φ i ] I = 1 , we label the point indexed by I by the integer i (see Figure 4(a)). 

3 1 1 1 3 3 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 3 3 1 1 1 3 3 3 3 1 1 1 3 3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
(a) Representation of a 7 × 6 matrix. We can imagine each point of the grid to be the center of a rectangular cell, which is of the form

3 3 1 1 1 3 3 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 3 3 1 1 1 3 35 3 3 1 1 1 3 3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (b) Dual mesh. 3 3 1 1 1 3 3 2 2 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 3 3 1 1 1 3 3 3 3 1 1 1 3 3 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (c) Associated partition.
p -1/2 m , p + 1/2 m × q -1/2 n b , q + 1/2 n b ,
with 0 ≤ p ≤ m -1 and 0 ≤ q ≤ n -1 . We obtain a new mesh (which is in some sense dual to the first one), represented on Figure 4 We can describe the boundary of this partition. It is a union of some edges of the cells. More precisely, an edge is in the boundary if, and only if, it separates two cells that belong to different domains. To construct the boundary, we consider each cell successively. One of its edges is added to the boundary if the cell on the other side is labeled by a different integer. Actually, since all the cells are considered in turn, it is enough to look at the right and upper edges (for instance) of each cell. Let us finally note that by translating the boundary by the vector

v = - 1 2m , - b 2n ,
we can use the points of the original grid to represent the boundary. In our example, the boundary is represented on Figure 5. To find an approximation of Λ k (D) we compute

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄
Λ k (D) = max 1≤i≤k λ 1 (D i ) ,
where λ 1 (D i ) is the first eigenvalue of the finite differences approximation of the Dirichlet Laplacian on D i .

Implementation of the method

Let us summarize the algorithm that we apply to find candidates to be minimal k-partitions. We fix J be the number of steps, ε > 0 , and p ≥ 1 .

Initialization:

• let m (1) , n (1) be two integers;

• let Φ (1) = (φ

(1) 1 , . . . , φ (1) 
k ) be a random matrix of size N (1) × k with N (1) = m (1) n (1) ; • construct a uniform grid on the torus T (1, b) with N (1) = m (1) × n (1) points;

• construct the matrices L (1) 

+ ε -1 Id N (1) -Diag(φ (1)
i ) , for i = 1, . . . , k ;

• apply the projected gradient algorithm, using the simple projection, with the initial data Φ (1) , to obtain a new matrix Φ (1) .

Induction For j = 2, . . . , J: 1) , n (j) = 2n (j-1) , N (j) = 4N (j-1) ;

• set m (j) = 2m (j-
• construct Φ (j) by interpolation of Φ (j-1) in the uniformly refined grid with N (j) points;

• construct the matrix

L (j) + ε -1 Id N (j) -Diag(φ (j)
i ) , for i = 1, . . . , k ; • apply the projected gradient algorithm, using the simple projection, with the initial data Φ (j) to obtain a new matrix Φ (j) .

Finalization:

• apply the projected gradient algorithm with orthogonal projection to Φ (J) ;

• construct a k-partition D by the method of Subsection 4.3;

• compute the energy Λk (D) .

To be complete, we must also specify which criterion is used to terminate the projected gradient algorithm at each step. For 1 ≤ j ≤ J , we denote by Φ (j,r) the matrix Φ , at the step j , after r iterations of the projected gradient algorithm. In this notation, the projected gradient algorithm stops when one of the two following conditions is satisfied:

• 1 kN I,i Φ (j,r+1) I,i -Φ (j,r) I,i
< δ , where δ is a fixed threshold;

• r ≥ R, where R is the maximal number of iterations, chosen beforehand.

We insist on the fact that this optimization algorithm is not necessarily successful. All the other parameters being equal, it could converges rapidly to a good candidate for some initial data, whereas for others it would terminate without reaching convergence. To overcome this problem, we have made several simulations, starting from different random initial data. We have also tested some particular initial data, for example the results of previous optimizations for different values of b . In any case, we have not accepted a result without precaution. We have checked whether the algorithm has converged, and have compared the energy of the resulting partition with the results of other runs for the same values of the parameters.

Numerical results

Let us now present the results obtained with the help of the above algorithm. We have used the following values for the parameters: p = 5, ε = 10 -4 , J = 5, n (1) = 16, m (1) = 16 .

Since J = 5 , we have refined four times the initial grid to obtain finally a 256 × 256 grid. We label the domains of the partition

D = {D i ; 1 ≤ i ≤ k} so that Λ k (D) = λ 1 (D 1 ) ≥ λ 1 (D 2 ) ≥ . . . ≥ λ 1 (D k ) .

3-partitions of the torus T (1, b)

We know from Proposition 3.3, that b 3 ≥ 1/3 . We have conjectured in Subsection 3.

2 that b 3 = 1/ √ 2 ≃ 0.707 . If this is true, D 3 (1, b) should be minimal for 1/3 < b < 1/ √ 2.
To test this, we have applied the algorithm for b ∈ {j/50, j = 17, . . . , 34}. As was expected, the lowest energy in these cases is obtained for partitions similar to the one on Figure 6. Figure 7 shows our best result for different values of b . When b is greater than 0.71 , the minimal partition seems to be a tiling of the torus by three isometric domains. These domains are roughly hexagonal, and close to the rectangles appearing in the partition of Figure 1. For brevity, we will say in the following that a partition with hexagonal domains is hexagonal. For b close to 1/ √ 2 , the final result of the optimization algorithm appears to be very sensitive to the initial data. As a consequence, the partitions of Figure 7 were not actually obtained by starting from random initial data. Rather, we ran the algorithm, starting from a random matrix, in the case b = 0.81 , where it produced an hexagonal partition similar to those of Figure 7. We then used as a starting point of the algorithm, for all the partitions of Figure 7, the matrix obtained after two steps in the case b = 0.81 . Of course, we compared our final results with those of other runs starting from random initial data, and found that they always had a lower energy.

For larger b's, up to b = 1 , the best candidates produced by the algorithm are still hexagonal partitions. Some of them are shown on Figure 8.

For each b, the energy of the best numerical candidate to be a minimal partition of T (1, b) is an upper bound for L 3 (T (1, b)) . This upper bound is plotted on Figure 9 as a function of b , and compared with 9π 2 = Λ 3 (D 3 (1, b)) . We obtain a significant improvement for large b . The third upper bound, represented by a solid line, will be discussed in Section 6. 

4-partitions of the torus T (1, b)

We know from Proposition 3.3 that b 4 = 1/2 . We are interested in the nature of minimal partitions for b close to b 4 . Figure 10 shows the best candidates obtained from the algorithm.

As in the case k = 3 , we note the apparition of hexagonal partitions, shown on Figures 10(d), 10(e), and 10(f). The hexagonal domains of the partition shown on Figure 10(d 

5-partitions of the torus T (1, b)

We have conjectured that b 5 = 1/ √ 6 ≃ 0.408 . Figure 13 presents the best candidates obtained numerically when b is close to this conjectured b 5 . They seem to support the conjecture. Furthermore, for b larger than 1/ √ 6 , minimal partitions seem to be hexagonal, with domains close to the rectangles appearing in the partition on Figure 2. The results of Section 4 suggest that, at least for some values of k and b, the domains of minimal kpartitions of T (1, b) are isometric polygons. In fact, except when k = 5 and b = 1, these polygons seem to be hexagons. On the other hand, according to Theorem 2.6, any minimal partition satisfies the equal angle property. This suggests the existence of partitions with a low energy, possibly minimal, that are tilings of the torus T (1, b) by k identical hexagons satisfying the equal angle property. Let us note that in this case, the equal angle property is satisfied if, and only if, the interior angle at each vertex of the hexagon is 2π/3 .

Finding these tilings is a purely geometrical problem. The task of enumerating, for given b and k, all admissible tilings seems quite complicated, and we have not been able to complete it. We can however construct families of tilings, depending on k and b , that seem close to the partitions produced by the algorithm. This is the object of Appendix A, where we prove in particular the following result. We have computed λ 1 (Hex k (b)) with high precision using the finite elements library MELINA (see [START_REF] Martin | Mélina, bibliothèque de calculs éléments finis[END_REF]). We have obtained in this way the upper bounds for 

The case b = 1

Let us consider this special case, in which the tiling domains can be described simply, and let us formulate the corresponding conjectures on L k (T (1, b)) for k ∈ {3 , 4 , 5}.

3-partition

In that case, the tiling domain Hex 3 (1) is an hexagon with two axes of symmetry, described on Figure 16, with H = Figure 17: A hexagonal tiling domain of T (1, 1), for k = 4 .

4-partition

In that case, the tiling domain Hex 4 (1) is also an hexagon with two axes of symmetry, described on Figure 17, with h =

1 4 √ 3 , L = 1 2 √
3 , and

H = 1 2 -1 4 √ 3 .
Conjecture 6.4. L 4 (T (1, 1)) = λ 4 (Hex 4 (1)) ≃ 74.9467 .

5-partition

We can construct a 5-partition of T (1, 1) by identical hexagons with interior angles 2π/3 . However, numerical computations show that we obtain a lower energy when we divide T (1, 1) into five identical squares, as represented on Figure 18. Let us for instance focus on the case k = 3, for b close to 1/ √ 2 . Figure 9 shows that there exists a

b * > 1/ √ 2 such that, for b ∈ [ 1 2 , b * ) , λ 1 (Hex 3 (b)) > 9π 2 . Therefore, for b ∈ [ 1 2 , b *
) , the tiling of T (1, b) by three hexagons with straight edges that we have constructed is not minimal. This is consistent with the idea that there is some continuity of the minimal partitions with respect to b , and with the conjecture that the projection on T (1, 1/ √ 2) of the nodal partition of T (2, 1/ √ 2) shown on Figure 1 is minimal. Indeed, if we try to deform this latest partition by splitting each singular point of order four into a pair of singular points of order three, while keeping each domain close the original rectangle, the resulting partition cannot satisfy the equal angle property if all the regular parts of the boundary remain straight lines. This suggests that the boundary of the partition should be curved in the neighborhood of the singular points in such a way that the we keep the equal angle property. This seems to be the case for the partitions represented on 

Conclusion

We have studied in this work the transition values b k defined in Subsection 3.1, when k is an odd integer.

We have presented a heuristic argument that leads to the conjecture

b k = 2 √ k 2 -1 .
Our numerical simulations support this conjecture when k = 3 and k = 5 .

We have also proposed a mechanism, inspired by [START_REF] Bonnaillie-Noël | Aharonov-Bohm Hamiltonians, isospectrality and minimal partitions[END_REF], that describes how a minimal 3-partition with singular points appears when b becomes larger than 1/ 

A Tilings of a family of tori by hexagons

The purpose of this appendix is to describe, for b ∈ (0, 1] , explicit examples of tilings of the torus T (1, b) by isometric hexagons that satisfy the equal angle property of Definition 2.5. We show that such tilings can be described by a 2 × 2 matrix with integer coefficients. We explain how to find conditions on b that allow the existence of a tiling described by a given matrix. We finally apply these results to k-partitions, with k ∈ {3 , 4 , 5}, in order to prove Proposition 2.5.

A.1 Tilings of the plane

To study tilings of the torus T (1, b) by hexagons, it will be useful to consider tilings of the plane. We recall that we consider T We will denote by (e 1 , e 2 ) the canonical basis of R 2 with e 1 = (1, 0) and e 2 = (0, 1) .

Let us consider a regular k-partition D = {D 1 , . . . , D k } of the torus T (1, b), such that all the D i 's are isometric to an hexagon that we denote by Hex. Let us note that, since D is strong, the area of Hex is b/k and, since D satisfies the equal angle property, all the interior angles of Hex are 2π/3 . Let us then consider, for any i ∈ {1 , . . . , k}, the open set Π -1 (D i ) . It has an infinite number of connected components, each one being isometric to Hex. The set of all the connected components of all the sets Π -1 (D i ), for i ∈ {1, . . . , k} , is a tiling of the plane R 2 by the hexagon Hex. This tiling is invariant under the translations associated with the vectors e 1 and be 2 .

We can see that, conversely, the image by Π of an tiling T of R 2 by an hexagon Hex is a regular k-partition of T (1, b) into domains isometric to Hex if T satisfies the following properties. i. T is invariant under the translations associated with the vectors e 1 and be 2 .

ii. The area of Hex is b k . iii. All the interior angles of Hex are 2π/3 .

We have therefore reformulated the original problem. We now look for the tilings of R 2 that satisfy properties i, ii, and iii, and, if possible, for an algorithm to construct those tilings.

A.2 Change of basis

Let T be an hexagonal tiling of R 2 , invariant under the translations associated with the vectors e 1 and be 2 , with a tiling domain Hex that satisfies properties ii and iii of Subsection A.1. We introduce the following definition, which will help us in our study.

Definition A.1. We say that a basis of R 2 is T -adapted if its vectors connect the center of a tiling domain to the centers of two neighboring domains, with these two neighboring domains having a common side (see Figure 20). Proof. Since T is invariant under the translations associated with the vectors e 1 and be 2 , there exist integers s 1,1 , s 2,1 , s 1,2 and s 2,2 such that e 1 = s 1,1 u 1 + s 2,1 u 2 ; be 2 = s 1,2 u 1 + s 2,2 u 2 .

We use the notation S = s 1,1 s 1,2 s 2,1 s 2,2 , u 1 = (u 1,1 , u 2,1 ) , u 2 = (u 1,2 , u 2,2 ) and

U = u 1,1 u 1,2 u 2,1 u 2,2 .
We One can give a geometrical interpretation of the coefficients in the matrix V in the following way. Let us go back to the torus T (1, b) . Let us assume that the matrix V = (v i,j ) has been obtained in the T -adapted basis (u 1 , u 2 ) (see Figure 20 for an example).

If we start from some hexagonal domain and translate it k times in the u 1 direction, it returns to its original position after turning v 1,1 times around the torus in the horizontal direction and v 2,1 times in the vertical direction. Similarly, if we translate the domain k times in the u 2 direction, it returns to its original position after turning v 1,2 times around the torus in the horizontal direction and v 2,2 times in the vertical direction.

We can therefore say that the matrix V describes how the hexagonal tiling T wraps around the torus T (1, b) .

Let us now choose some domain of the tiling T and denote by P 0 the vertex that connects the sides of this domain associated with u 1 and u 2 . Let us note P 1 = P 0 + u 1 and P 2 = P 0 + u 2 (see Figure 21). Since the basis (u 1 ,u 2 ) is T -adapted, both P 1 and P 2 are vertices of the tiling. Additionally, there is a vertex P of the tiling that is contained in the triangle P 1 P 2 P 3 and is connected to the points P 0 , P 1 , and P 2 . The segments P 0 P , P 1 P , and P 2 P thus meet at P with equal angles.

Conversely, let us consider (u 1 , u 2 ) a basis of R 2 such that there exists a 2 × 2 matrix V = (v i,j ) with integer coefficients that satisfies Let P 0 be some point in R 2 and let us note P 1 = P 0 + u 1 and P 2 = P 0 + u 2 . Let us now assume that there exists a point P in the triangle P 0 P 1 P 2 such that the segments P 0 P , P 1 P , and P 2 P meet at P with equal angles. After translating the three segments P 0 P , P 1 P , and P 2 P according to all the vectors in Zu 1 + Zu 2 , we obtain the boundary of a tiling T which satisfies the three properties stated in Subsection A.1. Furthermore, the basis (u 1 , u 2 ) is T -adapted.

A.3 Reconstruction of the tiling domain

Let us now recall, without proof, a very classical geometrical result (see for instance [START_REF] Coxeter | Introduction to Geometry[END_REF]).

Theorem A.3. Let A 1 , A 2 , and A 3 be three non-collinear points in R 2 (see Figure 22). One of the two following situations occurs.

1 Introduction

 1 This paper studies minimal partitions of the two-dimensional flat torusT (1, b) = (R/Z) × (R/bZ) , with b ∈ (0, 1]. To be more precise, for a given integer k, we look for k open, connected, and mutually disjoint subsets D 1 , . . . , D k of T (1, b) such that the quantity max 1≤i≤k λ 1 (D i ) ,

Definition 2 . 1 .

 21 For any integer k ≥ 1 , a k-partition is a finite set D = {D i ; 1 ≤ i ≤ k} whose k elements are open, connected, and mutually disjoint subsets of M . We define its energy by Λ k (D) = max 1≤i≤k λ 1 (D i ) .

  3, the torus T (2, b) plays a part in our study of T (1, b) . It will therefore be useful to have statements dealing with the more general torus T (a, b) = (R/aZ) × (R/bZ) , with 0 < b ≤ a . The Laplace-Beltrami operator on T (a, b) is of course unitarily equivalent to the Laplacian on the rectangle ]0, a[×]0, b[ with periodic boundary conditions. We will therefore often describe T (a, b) as the rectangle [0, a] × [0, b] with the opposite sides identified. The eigenvalues are then easy to compute using separation of variables and the periodic boundary condition. Proposition 2.13. The eigenvalues of T (a, b) are

Definition 2 .

 2 14. For 0 < b ≤ a and k ∈ N * , we denote by D k (a, b) the k-partition of T (a, b) with domains

  partition obtained from D k (a, b) by a translation has the same energy. Let us note that if k is even, D k (a, b) is the nodal partition associated with the eigenfunction (x, y) → cos kπ a x of the Laplace-Beltrami operator on T (a, b) . Let us now go back to the study of T (1, b) with b ∈ (0, 1] . We want to know for which values of b the partition D k (1, b) is minimal. We have to distinguish between an even and an odd k . If k is even, we can answer the question by applying Theorem 2.11. Proposition 2.15. Let k be an even integer, k

Proposition 2 .

 2 17. Let k ≥ 1 . The function b → L k (T (1, b)), defined on (0, 1] , is non-increasing. Proof. Let us pick b and b ′ in (0, 1] , with b ′ < b . We define a mapping A from T (1, b ′ ) to T (1, b) by

Definition 3 . 1 .

 31 Let k ≥ 1 . We define the transition value b k by b k = sup{b > 0 ; ∀b ′ ∈ (0, b) , D k (1, b ′ ) is a minimal k-partition of T (1, b ′ )} . Due to the monotonicity of b → L k (T (1, b)), we can give the following alternative definition of b k . Proposition 3.2. For k ≥ 1 ,

  (2, b) to T (1, b), where x = x mod 1 . Since every point of T (1, b) has two antecedents by Π , T (2, b) can be seen has a covering of T (1, b) with two sheets. If D i is a domain of D 3 (1, b) , the set Π -1 (D i ) has two connected components, which are open and connected subsets of T (2, b).

  b) , and D 6 (2, b) is a nodal partition of the torus T (2, b) , associated with the eigenvalue λ 3,0 (2, b) = 9π 3 . Let us also note that for 0 < b < b 3 , the nodal 6-partition D 6 (2, b) obtained by lifting the minimal partition D 3 (1, b) is associated with the antisymmetric eigenfunction u(x, y) = sin (3πx) .

Conjecture 3 . 4 .

 34 All minimal 3-partitions of T (1, b 3 ) can be lifted to nodal 6-partitions of T (2, b 3 ) associated with antisymmetric eigenfunctions.

Conjecture 3 . 5 .

 35 There exists a minimal 3-partition of T (1, b 3 ) that is not a translation of D 3 (1, b 3 ) . Let us assume that b = b 3 . If the eigenspace associated with the eigenvalue λ 3,0 (2, b 3 ) is spanned by the eigenfuctions (x, y) → cos (3πx) , (x, y) → sin (3πx) , the nodal partitions of any eigenfunction associated with λ 3,0 (2, b 3 ) is a translation of D 6 (2, b 3 ) . If Conjecture 3.4 is true, this implies that any minimal partition of T (1, b 3 ) is a translation of D 3 (1, b 3 ) , which contradict Conjecture 3.5. Therefore, if both conjectures are true, there exists (m, n) = (3, 0) such that λ m,n (2, b 3 ) = λ 3,0 (2, b 3 ) , and the eigenfunctions associated with λ m,n (2, b 3 ) are antisymmetric. This last condition simply means that m is odd. We finally conjecture that the transition from D 3 (1, b) to another type of partition occurs for the smallest b that satisfies the previous property.

Figure 1 :

 1 Figure 1: Nodal set of u(x, y) = cos(3πx) -cos(πx) cos(2 √ 2 πy) + sin(πx) sin(2 √ 2 πy) .

Figure 2 :

 2 Figure 2: Example of a nodal 10-partition of T (2, 1/ √ 6) (nodal set of u(x, y) = cos(5πx) + sin(πx) sin(2π √ 6y) -cos(πx) cos(2π √ 6y)).

  Nodal set of u(x, y) = sin (4πx) . (b) Nodal set of u(x, y) = 2 sin(4πx) + sin (4πy) .(c) Nodal set of u(x, y) = sin(4πx) + sin (4πy) . (d) Nodal set of u(x, y) = sin(4πx)+ 2 sin (4πy) . (e) Nodal set of u(x, y) = sin (4πy) .

Figure 3 :

 3 Figure 3: Examples of nodal partitions of T (1, 1/2).

Proposition 4 . 2 .

 42 Let k ∈ N * . The minimal energy L k,p (M ) is increasing with respect to p and lim p→+∞ L k,p (M ) = L k (M ) . The second step of the relaxation consists in replacing the optimal partition problem, concerning k-partitions of M , by a problem concerning k-tuples of functions. Definition 4.3. For k ∈ N * , the set of admissible k-tuples is given by

3

 3 

Figure 4 :

 4 Figure 4: Partition obtained from the matrix Φ.

  (b). The torus can, in our example, be divided into three domains D 1 , D 2 , D 3 : for each i ∈ {1 , 2 , 3} , the domain D i is the union of all the cells whose center is labeled by the integer i . The partition,D = {D 1 , D 2 , D 3 } ,is strong in the sense of Definition 2.1. It is represented on Figure 4(c).

Figure 5 :

 5 Figure 5: Boundary of the partition.

Figure 6 : 3 -

 63 Figure 6: 3-partition obtained with the algorithm, b = 0.64.

Figure 7 : 3 -

 73 Figure 7: 3-partitions for b ∈ {j/100 ; j = 70 , . . . , 75} .

  (a) b = 0.8 (b) b = 0.9 (c) b = 1

Figure 8 : 3 -Figure 9 :

 839 Figure 8: 3-partitions for b ∈ {0.8 , 0.9 , 1}.

  ) seem close to the square domains of the nodal 4-partition shown on Figure 3(b). This suggests that the partition of T (1, 1/2) into four squares, shown on Figure 3(b), is the starting point for the apparition of non-nodal 4-partitions of T (1, b) , when b becomes greater than 1/2 . For larger values of b , up to b = 1 , the minimal partitions are apparently still hexagonal. Figure 11 shows for instance the best candidate for a minimal 4-partition of T (1, 1) . Its energy gives us an upper bound for L 4 (T (1, b)) , represented on Figure 12 as a function of b .

Figure 10 : 4 -

 104 Figure 10: 4-partition for b ∈ {j/100 ; j = 48 , . . . , 52} .

Figure 11: 4 -Figure 12 :

 412 Figure 11: 4-Partition of T (1, 1).

9 Figure 13 : 5 -

 9135 Figure 13: 5-partitions for some values of b.

1 Figure 14 : 5 -

 1145 Figure 14: 5-partition for b ∈ {0.98 , 0.99 , 1} .

Figure 15 :

 15 Figure 15: Upper bounds of L 5 (T (1, b)) for b ∈ {j/100 ; j = 18 , . . . , 100} .

Proposition 6 . 1 .

 61 For k ∈ {3 , 4 , 5} , there exists b c k ∈ (0, 1) such that, for any b ∈ (b c k , 1], there exists a tiling of T (1, b) by k hexagons that satisfies the equal angle property. We denote by Hex k (b) the tiling domain.

  L k (T (1, b)) represented by solid lines on Figures 9, 12, and 15. For b ∈ (b c k , 1] and k ∈ {3 , 4 , 5}, we can therefore bound L k (T (1, b)) from above either by the energy of D k (1, b) or by the energy of our hexagonal tiling, as summarized in the following statement. Proposition 6.2. For k ∈ {3 , 4 , 5} and b ∈ (b c k , 1] , L k (T (1, b)) ≤ min k 2 π 2 , λ 1 (Hex k (b)) .

λ 3 (L

 3 Figure 16: A hexagonal tiling domain of T (1, 1), for k = 3 .

Conjecture 6. 5 .Figure 18

 518 Figure 18: A 5-partition of T (1, 1) .

Figure 7 .

 7 The same phenomenon occurs for 4-partitions of T (1, b) when b is close to 1/2 , as seen on Figures 12 and 10, and for 5-partitions of T (1, b) when b is close to 1/ √ 6 or 1 , as seen on Figures 15, 13, and 14.

√ 2 .

 2 For b = 1/ √ 2 , we have constructed examples of 3-partitions of T (1, b) with energy 9π 2 that are projections of nodal 6-partitions of T (2, b) . We have found partitions whose boundary contains singular points of order four, which can split into two singular points of order three when b increases. Our numerical simulations singled out a partition of T (1, b) into three rectangles, which seems, when b increases, to change into a 3-partition with six singular points and three isometric, hexagonal domains, with slightly curved sides. We have proposed similar deformation mechanisms when k = 4 and k = 5 . They also seem to be supported by our numerical simulations. For k ∈ {3 , 4 , 5} , we have improved the formerly known upper bounds of L k (T (1, b)) by constructing explicit examples of partitions: hexagonal tilings of T (1, b) (see Figures 9, 12, and 15 for numerical computations of the new upper bounds). However, these tilings do not seem to be minimal partitions when k = 3 and b is close to 1/ √ 2 , when k = 4 and b is close to 1/2 , nor when k = 5 and b is close to 1/ √ 6 or 1 . Generally speaking, it seems interesting to investigate further for which values of k and b such tilings are minimal partitions.

  (1, b) as the quotient T (1, b) = (R/Z) × (R/bZ) , with the natural projection map Π : R 2 → T (1, b) (x, y) → (x mod 1, y mod b) .

1 =k

 1 Let us now denote by (u 1 ,u 2 ) a T -adapted basis.Proposition A.2. There exists a 2 × 2 matrix V = (v i,j ) with integer coefficients such that u (be 2 ) , and det(V ) = ±k.

  and therefore det(U ) det(S) = b . But | det(U )| is the area of the tiling domain Hex (see Figure19). Therefore det(U ) = ±b/k and det(S) = ±k . SinceS -1 = 1 det(S) s 2,2 -s 1,2 -s 2,1 s 1,1 ,we obtain the desired result by setting V = kS -1 .

u 1 u 2 Figure 19 :

 219 Figure 19: Area of the tiling domain.

u 1 u 2 Figure 20 : 3 -

 2203 Figure 20: 3-partition of a torus with an adapted basis.

1 P 2 PFigure 21 :

 1221 Figure 21: Construction of the tiling domain.

k

  (be 2 ) , and det(V ) = ±k .

We thank Édouard Oudet for giving us detailed explanations on this point.

i. If all three angles α 1 , α 2 , and α 3 of the triangle A 1 A 2 A 3 are smaller than 2π 3 , there is a unique point F belonging to the interior of the triangle A 1 A 2 A 3 such that the segments A 1 F , A 2 F and A 3 F meet with equal angles at F . The point F is called the Fermat point of the triangle A 1 A 2 A 3 . It is the point of minimum for the function

3 for some i ∈ {1 , 2 , 3}, then there is no point in the interior of A 1 A 2 A 3 at which the segments from the vertices meet with equal angles. In that case, the function P → P A 1 + P A 2 + P A 3 reaches its minimum at A i .

Using the vocabulary of Theorem A.3, we can summarize the above discussion in the following statement.

Proposition A.4. Let V = (v i,j ) 1≤i,j≤2 be an invertible matrix with integer coefficients and let b ∈ (0

There exists a regular k-partition of T (1, b) by isometric hexagons for which (u 1 , u 2 ) is an adapted basis if, and only if, the triangle spanned by u 1 and u 2 has a Fermat point.

The following result gives an easy criterion for the existence of a Fermat point.

Proposition A.5. Let u 1 and u 2 be two non-zero vectors in R 2 . Let A 3 be a point in R 2 . We set

We use the notation p = u1•u2 u1 u2 and r = u1 u2 . The triangle A 1 A 2 A 3 has a Fermat point if, and only if,

Proof. We compute cos(α i ) for i ∈ {1 , 2 , 3}, as a function of p and r. Writing down the condition

we show that it is equivalent to (A.1).

A 1 

A.4 Algorithm

The results stated above give us an algorithm to build a tiling of the torus T (1, b) by k hexagons:

• choose a 2 × 2 matrix V with integer coefficients such that det(V ) = ±k ;

• check whether the triangle generated by the vectors u 1 and u 2 (defined from V as in Proposition A.4) has a Fermat point, using the conditions (A.1);

• if the triangle has a Fermat point, compute its coordinates;

• use the coordinates of the Fermat point to build the tiling domain.

Let us describe in more details how we perform the last two steps. Let us first recall a geometric construction of the Fermat point (see for instance [START_REF] Coxeter | Introduction to Geometry[END_REF]).

Theorem A.6. Let A 1 A 2 A 3 be a triangle in R 2 such that each of the angles α i , i ∈ {1 , 2 , 3}, is smaller than 2π 3 . Let us consider the three equilateral triangles lying outside of A 1 A 2 A 3 and having one side in common with it. For each of these triangles, let us consider the line passing through the outer vertex and the vertex of A 1 A 2 A 3 that does not belong to it (see Figure 23). The three lines meet at the Fermat point F .

Let us assume that we have performed the first two steps of the algorithm. We now have two vectors u 1 and u 2 such that the basis (u 1 , u 2 ) is adapted to some tiling T . We chose (arbitrarily) some point P 0 in R 2 . We can then build the points P 1 and P 2 of Figure 21. Using the construction of Theorem A.6, we can find the coordinates of the Fermat point P of the triangle P 0 P 1 P 2 . The vectors c 1 = P 0 P , c 2 = P P 2 , and c 3 = P 1 P then define three successive sides of the tiling domain, which is enough to construct the tiling domain itself.

A.5 Examples

We have shown that for any given b ∈ (0, 1] and k ∈ N * , finding all the tilings of T (1, b) by hexagons which are regular k-partitions is equivalent to finding all the matrices V with integer coefficients that satisfy the following properties. i. det(V ) = ±k .

ii. The vectors u 1 and u 2 , defined from V as in Proposition A.4, generate a triangle that has a Fermat point.

We have not been able to solve this general problem. We have nonetheless looked for examples of tilings with given matrices V , suggested by the numerical simulations. The following results can be proved using the criterion (A.1).

Proposition A.7. There exists a tiling of the torus T (1, b) with an associated matrix