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In this paper, we investigate the Möbius function µ S associated to a (locally finite) poset arising from a semigroup S of Z m . We introduce and develop a new approach to study µ S by using the Hilbert series of S. The latter enables us to provide formulas for µ S when S belongs to certain families of semigroups. Finally, a characterization for a locally finite poset to be isomorphic to a semigroup poset is given.

Introduction

The Möbius function is an important concept that was introduced by Gian-Carlo Rota more than 50 years ago in [START_REF] Rota | On the foundations of combinatorial theory I. Theory of Möbius functions[END_REF]. It is a generalization to (locally finite) posets of the classical Möbius arithmetic function on the integers (given by the Möbius function of the poset obtained from the positive integers partially ordered by divisibility). We refer the reader to [START_REF] Rota | On the foundations of combinatorial theory I. Theory of Möbius functions[END_REF] for a large number of its applications.

In this paper, we investigate the Möbius function associated to posets arising naturally from subsemigroups of Z m as follows. Let a 1 , . . . , a n be nonzero vectors in Z m and let S = a 1 , . . . , a n denote the semigroup generated by a 1 , . . . , a n , that is, S = a 1 , . . . , a n = {x 1 a 1 + • • • + x n a n | x 1 , . . . , x n ∈ N}.

We say that S is pointed if S ∩ (-S) = {0}, where -S := {-x | x ∈ S}. Whenever S is pointed, S induces on Z m a poset structure whose partial order S is defined by x S y if and only if y -x ∈ S for all x and y in Z m . This (locally finite) poset will be denoted by (Z m , S ). We denote by µ S the Möbius function associated to (Z m , S ). As far as we are aware, µ S has only been investigated when S is a numerical semigroup, i.e., when S ⊂ N and gcd{a 1 , . . . , a n } = 1. Moreover, the only known results concerning µ S are an old theorem due to Deddens [START_REF] Deddens | A combinatorial identity involving relatively prime integers[END_REF], which determines the value of µ S when S has exactly two generators, and a recent paper due to Chappelon and Ramírez Alfonsín [START_REF] Chappelon | On the Möbius function of the locally finite poset associated with a numerical semigroup[END_REF], where the authors investigate µ S when S = a, a + d, . . . , a + kd with a, k, d ∈ Z + . In both papers, the authors approach the problem by a thorough study of the intrinsic properties of each semigroup. Here, we introduce and develop a new and more general method to study µ S by means of the Hilbert series of the semigroup S. This enables us to provide formulas for µ S when S belongs to some families of semigroups. We also investigate when a locally finite poset is isomorphic to a semigroup poset.

This paper is organized as follows. In the next section, after reviewing some standard notions of the Möbius function, we then interpret them for semigroup posets. In Section 3, we present two general results (Theorems 3.1 and 3.3) giving a new and general approach to study µ S through the Hilbert series of the semigroup S. This enables us in Section 4 to provide formulas for µ S when S is a semigroup with a unique Betti element and when S = a 1 , a 2 , a 3 ⊂ N is a complete intersection numerical semigroup (generalizing results in [START_REF] Chappelon | On the Möbius function of the locally finite poset associated with a numerical semigroup[END_REF][START_REF] Deddens | A combinatorial identity involving relatively prime integers[END_REF]). Finally, in Section 5, we characterize those locally finite posets P that are isomorphic to the poset associated to a semigroup S. In this case µ P can be computed by means of µ S (this will be illustrated with the well-known classical Möbius arithmetic function). A poset is said to be locally finite if every interval has finite cardinality. We only consider locally finite posets in this paper. A chain of length l 0 between a and b is a subset of [a, b] P containing a and b, of cardinality l + 1 and totally ordered by < P , that is

{a 0 , a 1 , . . . , a l } ⊂ [a, b] P such that a = a 0 < P a 1 < P a 2 < P • • • < P a l-1 < P a l = b.
For any nonnegative integer l, we denote by c l (a, b) the number of distinct chains between a and b of length l. This number always exists because the poset P is assumed to be locally finite.

For instance, the number of chains c 2 [START_REF] Chappelon | On the Möbius function of the locally finite poset associated with a numerical semigroup[END_REF]12), where the poset is N partially ordered by divisibility, is equal to 2. Indeed, there are exactly 2 chains of length 2 between 2 and 12 in [START_REF] Chappelon | On the Möbius function of the locally finite poset associated with a numerical semigroup[END_REF]12] N = {2, 4, 6, 12}, which are {2, 4, 12} and {2, 6, 12}.

For any locally finite poset P, the Möbius function µ P is the integer-valued function on P × P defined by Here, posets associated to semigroups of Z m are considered. We begin by summarizing some generalities on semigroups that will be useful for the understanding of this work. Let S := a 1 , . . . , a n ⊂ Z m denote the subsemigroup of Z m generated by a 1 , . . . , a n ∈ Z m , i.e., S := a 1 , . . . ,

a n = {x 1 a 1 + • • • + x n a n | x 1 , . . . , x n ∈ N}.
The semigroup S induces the binary relation S on Z m given by

x S y ⇐⇒ y -x ∈ S.

It turns out that (Z m , S ) is a poset if and only if S is pointed. Indeed, S is antisymmetric if and only if S is pointed. Moreover, if S is pointed then the poset (Z m , S ) is locally finite.

Let µ S denote the Möbius function associated to (Z m , S ). It is easy to see that µ S can be considered as a univariate function of Z m . Indeed, for all x, y ∈ Z m and for all l 0, one can observe that c l (x, y) = c l (0, y -x). Thus, we obtain µ S (x, y) = µ S (0, y -x) for all x, y ∈ Z.

In the sequel of this paper, we shall only consider the reduced Möbius function µ S : Z m -→ Z defined by µ S (x) := µ S (0, x), for all x ∈ Z m .

Thus, the formula given by (2) may now be simplified when the locally finite poset is (Z m , S ). Finally, if x = 0, then we apply (2) and we obtain that

0 = b∈[0,x] Z m µ S (b) = b∈S x-b∈S µ S (b) = b∈S x-b∈S µ S (x -b) = b∈S µ S (x -b).
Proposition 2.1 will be very useful to obtain most of our results.

The Hilbert and Möbius series

In this section, we present two results (Theorem 3.1 and Theorem 3.3), both relating the Hilbert series of the semigroup S with the Möbius function of the poset (Z m , S ). Before proving these theorems, some basic notions on multivariate Hilbert series are quickly recalled. For a thorough study of multivariate Hilbert series, we refer the reader to [START_REF] Kreuzer | Computational Commutative Algebra[END_REF].

Let k be any field and let S = a 1 , . . . , a n be a subsemigroup of Z m . The semigroup S induces a grading on the ring of polynomials R :

= k[x 1 , . . . , x n ] by assigning deg S (x i ) := a i ∈ Z m , for all i ∈ {1, . . . , n}. Then, the S-degree of the monomial m := x α 1 1 • • • x αn n is deg S (m) := n i=1 α i a i ∈ Z m .
A polynomial is said to be S-homogeneous if all of its monomials have the same S-degree and an ideal is S-homogeneous if it is generated by Shomogeneous polynomials. For all b ∈ Z m , we denote by R b the k-vector space generated by all S-homogeneous polynomials of S-degree b.

Whenever S is pointed, the k-vector space R b has finite dimension, for all b ∈ Z m (see [START_REF] Kreuzer | Computational Commutative Algebra[END_REF]Proposition 4.1.19]). Let I ⊂ R be an S-homogeneous ideal. The multigraded Hilbert function of

M := R/I is HF M : Z m -→ N, defined by HF M (b) := dim k (R b ) -dim k (R b ∩ I), for all b ∈ Z m . For every b = (b 1 , . . . , b m ) ∈ Z m , we denote by t b the monomial t b 1 1 • • • t bm m in the Laurent polynomial ring Z[t 1 , . . . , t m , t -1 1 , . . . , t -1 m ]. The multivariate Hilbert series of M is the following formal power series in Z[[t 1 , . . . , t m , t -1 1 , . . . , t -1 m ]]: H M (t) := b∈Z m HF M (b) t b .
We denote by I S the toric ideal of S, i.e., the kernel of the homomorphism of k-algebras

ϕ : R -→ k[t 1 , . . . , t m , t -1 1 , . . . , t -1 m ] induced by ϕ(x i ) = t a i ,
for all i ∈ {1, . . . , n}. It is well known that I S is S-homogeneous (see [START_REF] Sturmfels | Gröbner Bases and Convex Polytopes[END_REF]Corollary 4.3]). Moreover, the multivariate Hilbert series of M = R/I S with respect to the grading induced by S is

(3) H M (t) = b∈S t b . Indeed, R b = {0} and HF M (b) = 0 whenever b / ∈ S. In addition, if b ∈ S, ϕ induces an isomorphism of k-vector spaces between R b /(R b ∩ I) and {α t b | α ∈ k}, for all b ∈ S. Hence, HF M (b) = 1 in this case.
From now on, the multivariate Hilbert series of R/I S is called the Hilbert series of S and is denoted by H S (t).

Theorem 3.1. Let S be a pointed semigroup and let c 1 , . . . , c k be nonzero vectors in Z m . If we set

(1 -t c 1 ) • • • (1 -t c k ) H S (t) = b∈Z m f b t b ∈ Z[[t 1 , . . . , t m , t -1 1 , . . . , t -1 m ]],
then, This completes the proof.

Notice that the formula (1

-t c 1 ) • • • (1 -t c k ) H S (t) = b∈Z m f b t b might
have an infinite number of terms. Nevertheless, for every x ∈ Z m , the formula b∈Z m f b µ S (x-b) = 0 only involves a finite number of nonzero summands, since S is pointed.

The following example illustrates how to apply Theorem 3.1 to compute µ S .

Example 3.2. Consider the semigroup S = 2, 3 ⊂ N. We observe that S = N \ {1}.

Hence,

H S (t) = 1 + b 2 t b ∈ Z[[t]] and t 2 H S (t) = t 2 + b 4 t b . It follows that (1 -t 2 ) H S (t) = 1 + t 3 .
Applying Theorem 3.1, we get that

µ S (x) + µ S (x -3) = 0,
for all x ∈ Z\{0, 2}. Furthermore, by direct computation, we have µ S (0) = 1, µ S (2) = -1 and µ S (x) = 0 for all x < 0. This leads to the formula

µ S (x) =    1 if
x 0 and x ≡ 0 or 5 (mod 6), -1 if x 0 and x ≡ 2 or 3 (mod 6), 0 otherwise.

From now on, we consider the Möbius series G S , i.e., the generating function of the Möbius function

G S (t) := b∈Z m µ S (b) t b ∈ Z[[t 1 , . . . , t m , t -1 1 , . . . , t -1 m ]].
Theorem 3.3. Let S be a pointed semigroup. Then,

H S (t) • G S (t) = 1.
Proof. From the definitions of H S (t) and G S (t), we obtain that

H S (t) • G S (t) = b∈S t b b∈Z m µ S (b)t b = b∈Z m c∈S µ S (b -c) t b .
The result follows by Proposition 2.1.

Theorem 3.3 states that, whenever we can explicitly compute the inverse of H S (t), we will be able to obtain µ S . We illustrate this idea in our next example. 

H N m (t) = b∈N m t b = 1 (1 -t 1 ) • • • (1 -t m )
.

Therefore, by Theorem 3.3, we obtain

G N m (t) = (1 -t 1 ) • • • (1 -t m ) = A⊂{1,...,m} (-1) |A| i∈A t i = A⊂{1,...,m} (-1) |A| t i∈A e i .
So we derive the following formula for µ N m :

µ N m (x) =    (-1) |A| if x = i∈A e i for some A ⊂ {1, . . . , m}, 0 otherwise. 
A pointed semigroup S = a 1 , . . . , a n is called a complete intersection semigroup if its corresponding toric ideal I S is a complete intersection ideal, i.e., if I S is generated by n-d S-homogeneous polynomials, where d is the dimension of the Q-vector space spanned by a 1 , . . . , a n . For characterizations of complete intersection toric ideals, we refer the reader to [START_REF] Fischer | Affine semigroup rings that are complete intersections[END_REF].

Let Proof. By [8, Page 341], we have that

m d B (b) t b = 1 (1 -t b 1 ) (1 -t b 2 ) • • • (1 -t b k ) .
H S (t) = (1 -t b 1 ) • • • (1 -t b n-d ) (1 -t a 1 ) • • • (1 -t an ) .
Thus, from Theorem 3.3, we obtain

G S (t) = 1 H S (t) = (1 -t a 1 ) • • • (1 -t an ) (1 -t b 1 ) • • • (1 -t b n-d ) =   A⊂{1,...,n} (-1) |A| t i∈A a i   b∈Z m d B (b) t b = b∈Z m A⊂{1,...,n} (-1) |A| d B (b) t b+ i∈A a i = b∈Z m A⊂{1,...,n} (-1) |A| d B b - i∈A a i t b .

Explicit formulas for the Möbius function

In this section, we exploit the results of the previous section to obtain explicit formulas for µ S when S is a semigroup with a unique Betti element (Theorem 4.1) and when S is a complete intersection numerical semigroup generated by three elements (Theorem 4.4).

The results included in this section are consequences of Corollary 3.5. However, they can also be obtained with a different proof by using Theorem 3.1.

4.1.

Semigroups with a unique Betti element. A semigroup S ⊂ N m is said to have a unique Betti element b ∈ N m if its corresponding toric ideal is generated by a set of S-homogeneous polynomials of common S-degree b. García-Sánchez, Ojeda and Rosales proved [6, Corollary 10] that these semigroups are always complete intersection. Theorem 4.1. Let S = a 1 , . . . , a n ⊂ N m be a semigroup with a unique Betti element b ∈ N m . If we denote by d the dimension of the Q-vector space generated by a 1 , . . . , a n , then we have

µ S (x) = t j=1 (-1) |A j | k A j + n -d -1 k A j ,
where {A 1 , . . . , A t } = A ⊂ {1, . . . , n} there exists

k A ∈ N such that x -i∈A a i = k A b .
Proof. By Corollary 3.5, for all x ∈ Z m , we have

µ S (x) = A⊂{1,...,m} (-1) |A| d B x - i∈A a i ,
where B is the (n -d)-tuple (b, . . . , b). The equality

d B (y) =        k + n -d -1 k if y = kb with k ∈ N, 0 otherwise,
for all y ∈ Z m , completes the proof.

When m = 1, i.e., when S = a 1 , . . . , a n ⊂ N, S is a numerical semigroup with a unique Betti element b ∈ N if and only if there exist pairwise relatively prime integers b 1 , . . . , b n 2 such that a i := j =i b j , for all i ∈ {1, . . . , n}, and b = n i=1 b i (see [START_REF] García-Sánchez | Affine semigroups having a unique Betti element[END_REF]). In this setting, Theorem 4.1 can be refined as follows.

Corollary 4.2. Let S = a 1 , . . . , a n ⊂ N be a numerical semigroup with a unique Betti element b ∈ N. Then,

µ S (x) =        (-1) |A| k + n -2 k if x = i∈A a i + kb for some A ⊂ {1, . . . , n}, k ∈ N, 0 otherwise.
Proof. Since d = 1, it is sufficient, by Theorem 4.1, to prove that, for every

A 1 , A 2 ⊂ {1, . . . , n}, if b divides i∈A 1 a i -i∈A 2 a i , then A 1 = A 2 . Let b 1 , . . . , b n 2 such that a i = j =i b j . By [6, Example 12] we have that I S = (f 2 , . . . , f n ), where f i := x b 1 1 -x b i i for all i ∈ {2, . . . , n}. Assume that there exist A 1 , A 2 ⊂ {1, . . . , n} such that A 1 = A 2 and
i∈A 1 a i -i∈A 2 a i = kb, for some k ∈ N. Thus, the binomial g := i∈A 1 x i -x b 1 k 1 i∈A 2 x i = 0 belongs to I S and it can be written as a combination of f 2 , . . . , f n . However, since x b j j does not divide i∈A 1 x i for all j ∈ {1, . . . , n}, we obtain a contradiction.

As a direct consequence of this result, we recover Dedden's result. 4.2. Three generated complete intersection numerical semigroups. We provide a semi-explicit formula for µ S , when S is a complete intersection numerical semigroup minimally generated by the set {a 1 , a 2 , a 3 }. When S = a 1 , a 2 , a 3 ⊂ N, Herzog proves in [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF] that S is a complete intersection if and only if gcd{a i , a j } a k ∈ a i , a j with {i, j, k} = {1, 2, 3}. Suppose that da 1 ∈ a 2 , a 3 , where d := gcd{a 2 , a 3 }.

For every x ∈ Z, there exists a unique α(x) ∈ {0, . . . , d -1} such that α(x)a 1 ≡ x (mod d). It is easy to check that, for every x, y ∈ Z,

(4) α(x -y) =    α(x) -α(y) if α(x) α(y), d + α(x) -α(y) otherwise.
Theorem 4.4. Let S = a 1 , a 2 , a 3 be a numerical semigroup such that da 1 ∈ a 2 , a 3 , where d := gcd{a 2 , a 3 }. For all x ∈ Z, we have that µ S (x) = 0, if α(x) 2, and

µ S (x) = (-1) α (d B (x ′ ) -d B (x ′ -a 2 ) -d B (x ′ -a 3 ) + d B (x ′ -a 2 -a 3 ))
otherwise, where x ′ := x -α(x)a 1 and B := (da 1 , a 2 a 3 /d).

Proof. Suppose that da 1 = γ 2 a 2 + γ 3 a 3 with γ 2 , γ 3 ∈ N. Then, by [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF]Theorem 3.10], it follows that

I S = x d 1 -x γ 2 2 x γ 3 3 , x a 3 /d 2 -x a 2 /d 3 .
So, I S is generated by two S-homogeneous polynomials of S-degrees da 1 and a 2 a 3 /d. Hence, from Corollary 3.5, we have

(5) µ S (x) = d B (x) -d B (x -a 1 ) -d B (x -a 2 ) -d B (x -a 3 ) + d B (x -(a 1 + a 2 ))+ +d B (x -(a 1 + a 3 )) + d B (x -(a 2 + a 3 )) -d B (x -(a 1 + a 2 + a 3 )),
for all integers x, where B := (da 1 , a 2 a 3 /d). Since α(da 1 ) = α(a 2 a 3 /d) = 0. It follows that α(y) = 0 if y ∈ da 1 , a 2 a 3 /d . As a consequence of this, d B (y) = 0 whenever α(y) = 0. Let C := {0, a 1 , a 2 , a 3 , a 1 + a 2 , a 2 + a 3 , a 3 + a 1 , a 1 + a 2 + a 3 }. Notice that α(y) ∈ {0, 1}, for all y ∈ C. We distinguish three different cases upon the value of α := α(x), for x ∈ Z.

Case 1. α 2. We deduce that α(x -y) = α(x) -α(y) = 0 and d B (x -y) = 0, for all y ∈ C. Therefore, using (5), we obtain that µ S (x) = 0. Case 2. α = 1. We deduce that α(x -y) = 0 and d B (x -y) = 0 for all y ∈ {0, a 2 , a 3 , a 2 + a 3 }. Therefore, using (5), we obtain that

µ S (x) = -d B (x -a 1 ) + d B (x -a 1 -a 2 ) + d B (x -a 1 -a 3 ) -d B (x -a 1 -a 2 -a 3 ).
Case 3. α = 0. Since d 2, we deduce that α(x -y) = 0 and d B (x -y) = 0 for all y ∈ {a 1 , a 1 + a 2 , a 1 + a 3 , a 1 + a 2 + a 3 }. Therefore, using (5), we obtain that

µ S (x) = d B (x) -d B (x -a 2 ) -d B (x -a 3 ) + d B (x -a 2 -a 3 ).
This completes the proof. Theorem 4.4 yields an algorithm for computing µ S (x), for all x ∈ Z, which relies on the computation of four values of d B (y), where B = (da 1 , a 2 a 3 /d). It is worth mentioning that in [START_REF] Ramírez Alfonsín | The Diophantine Frobenius Problem[END_REF]Section 4.4] there are several results and methods to compute these values.

Also note that Theorem 4.4 generalizes [2, Theorem 3], where the authors provide a semi-explicit formula for S = 2q, 2q + e, 2q + 2e where q, e ∈ Z + and gcd{2q, 2q + e, 2q + 2e} = 1. Indeed, if S = a, a + e, . . . , a + ke with gcd{a, e} = 1 and k 2, then S is a complete intersection if and only if k = 2 and a is even (see [START_REF] Bermejo | Complete intersections in certain affine and projective monomial curves[END_REF]).

When is a poset equivalent to a semigroup poset?

A natural question is whether a poset P is isomorphic to a poset associated to a semigroup S since, in such a case, one might be able to calculate µ P by computing µ S instead. Let us illustrate this with the following two examples in which we can easily find an appropriate order isomorphism between the poset P and the poset associated to the semigroup N m = e 1 , . . . , e m . We consider the map ψ : P → N m defined as ψ(S) = (s 1 , . . . , s m ), where s i denotes the multiplicity of d i in S, for all S ∈ P. We consider the order in N m induced by the semigroup N m , i.e., α N m β if and only if β -α ∈ N m for all α, β ∈ N m . We have that ψ is an order isomorphism, i.e., an order preserving and order reflecting bijection. Thus, we can say that the poset of multisets of a finite set is a particular case of semigroup poset. This implies that for all S, T ∈ P such that T ⊂ S, µ P (T, S) = µ N m (ψ(T ), ψ(S)) = µ N m (ψ(S) -ψ(T )) and by Example 3.4 we retrieve the formula [START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF].

In the rest of this section, we present a characterization of those locally finite posets P isomorphic to the poset associated to a semigroup S (Theorem 5.5).

Let (P, P ) be a locally finite poset. For every x ∈ P, we set P x := {y ∈ P | x P y} and we consider the restricted Möbius function µ P (-, x) : P x → Z. It is clear that, if there exists a pointed semigroup S and an order isomorphism ψ : (P x , P ) -→ (S, S ), then µ P (-, x) can be computed by means of the Möbius function of (S, S ), since µ P (y, x) = µ S (ψ(y)) for all y ∈ P x .

The poset P x is said to be autoequivalent if and only if, for all y ∈ P x , there exists an order isomorphism g y : P x -→ P y such that g y • g z = g z • g y , for all y, z ∈ P x , and g x is the identity. For all y ∈ P x , we set l 1 (y) := {z ∈ P | there is no u ∈ P such that y u z}. Whenever P x is autoequivalent with isomorphisms {g y } x y and l 1 (x) is a finite set of n elements, we associate to P a subgroup L P ⊂ Z n in the following way.

Let l 1 (x) = {x 1 , . . . , x n } ⊂ P and consider the map f : N n -→ P defined as f (0, . . . , 0) = x, and for all α ∈ N n and all i ∈ {1, . . . , n}, f (α+e i ) = g x i (f (α)), where {e 1 , . . . , e n } is the canonical basis of N m . In particular, f (e i ) = g x i (f (0)) = g x i (x) = x i , for all i ∈ {1, . . . , n}.

Lemma 5.3. f is well defined and is surjective.

Proof. Suppose that α + e i = β + e j . Then, we set γ := α -e j = β -e i ∈ N n . Thus,

f (α + e i ) = g x i (f (α)) = g x i (g x j (f (γ))) = g x j (g x i (f (γ))) = g x j (f (β)) = f (β + e j )
and f is well defined. Take y ∈ P x . If y = x, then y = f (0). If y = x, then there exists z ∈ P x such that y ∈ l 1 (z). Therefore y = g z (x j ) for some j ∈ {1, . . . , n}. We claim that if z = f (α), then y = f (α + e j ). Indeed, f (α + e j ) = g x j (f (α)) = g x j (z) = g x j (g z (x)) = g z (g x j (x)) = g z (x j ) = y.

Now, we set L

P := {α -β ∈ Z n | f (α) = f (β)}. Lemma 5.4. L P is a subgroup of Z n . Proof. If γ ∈ L P , then -γ ∈ L P . Moreover, if γ 1 , γ 2 ∈ L P , then γ 1 + γ 2 ∈ L P . Indeed, take α, α ′ , β, β ′ ∈ N m such that f (α) = f (α ′ ), γ 1 = α -α ′ , f (β) = f (β ′ ) and γ 2 = β -β ′ . Then f (α + β) = f (α ′ + β) = f (α ′ + β ′
) and the lemma is proved.

If L is a subgroup of Z n , then its saturation is the group defined by Sat(L) := γ ∈ Z n there exists d ∈ Z + such that dγ ∈ L .

Theorem 5.5. Let P be a locally finite poset and let x ∈ P. Then, (P x , ) is isomorphic to (S, S ) for some (pointed) semigroup S ⊂ Z m if and only if P x is autoequivalent, l 1 (x) is finite and L P = Sat(L P ).

Proof. (⇒) Let S ⊂ Z m be a (pointed) semigroup and denote by {a 1 , . . . , a n } its unique minimal set of generators. Assume that ψ : P x → S is an order isomorphism. Let us prove that P x is autoequivalent, |l 1 (x)| = n and L P = Sat(L P ). First, we observe that if x i := ψ -1 (a i ), then l 1 (x) = {x 1 , . . . , x n }. And thus |l 1 (x)| = n. Now, for every y ∈ P x , we set g y : P x -→ P y z -→ ψ -1 (ψ(z) + ψ(y)). Then it is straightforward to check that g y is an order isomorphism. Moreover, g x is the identity map on P x and g y • g z = g z • g y , for all y, z ∈ P x . And thus P x is autoequivalent.

Let f : N m → P x be the map associated to {g y } y x , i.e., f (0) = x and if f (α) = y, then f (α + e j ) = g x j (f (α)). We claim that ψ(f (α)) = α i a i ∈ S, for all α = (α 1 , . . . , α n ) ∈ N n . Indeed, ψ(f (0)) = ψ(x) = 0 and if we assume that ψ(f (α)) = α i a i for some α = (α 1 , . . . , α n ) ∈ N m , then ψ(f (α + e j )) = ψ(g x j (α)) = ψ(z) + ψ(x j ) = α i a i + a j , as desired.

Since L P ⊂ Sat(L P ) by definition, let us prove that Sat(L P ) ⊂ L P . We take γ ∈ Sat(L P ), then dγ ∈ L P for some d ∈ Z + . This means that there exist α, β ∈ N n such that f (α) = f (β) and dγ = α-β. Hence, we have that α i a i = ψ(f (α)) = ψ(f (β)) = β i a i . This implies that γ i a i = 1/d ( (α i -β i )a i ) = 0. Thus, if we take α ′ , β ′ ∈ N m such that γ = α ′ -β ′ , then ψ(f (α ′ )) = ψ(f (β ′ )) and, whence, f (α ′ ) = f (β ′ ) and γ ∈ L P . And thus L P = Sat(L P ).

(⇐) Since L P = Sat(L P ), we have that Z n /L P is a torsion free group. Hence there exists a group isomorphism ρ : Z n /L P → Z m , where m = n -rk(L P ). We let a i := ρ(e i + L P ) for all i ∈ {1, . . . , n} and set S := a 1 , . . . , a n ⊂ Z m . We claim that (P x , ) and (S, S ) are isomorphic. More precisely, it is straightforward to check that the map ψ : P x -→ S y -→ α i a i , if f (α) = y is an order isomorphism.

2 .

 2 Möbius function associated to a semigroup poset Let (P, P ) be a partially ordered set, or poset for short. The strict partial order < P is the reduction of P given by a < P b if and only if a P b and a = b. Let a and b be two elements of the poset P. The interval between a and b is defined by [a, b] P := {c ∈ P | a P c P b} .

(- 1 )

 1 l c l (a, b), for all elements a and b of the poset P. Note that this sum is always finite because, for a and b given, the interval [a, b] P has finite cardinality. The concept of Möbius function for a locally finite poset (P, ) was introduced by Rota in [10]. There, Rota proves the following property of the Möbius function: for all (a, b) ∈ P × P, (2) µ P (a, a) = 1 and c∈[a,b] P µ P (a, c) = 0, if a < P b.

Proposition 2 . 1 . ([ 2 ,

 212 Proposition 1]) Let S be a pointed semigroup and let x ∈ Z m . Then, b∈S µ S (x -b) = 1 if x = 0, 0 otherwise. Proof. From (1), we know that µ S (b) = 0 for all b / ∈ S. Since S is pointed, it follows that b∈S µ S (0 -b) = µ S (0) = 1.

  b∈Z m f b µ S (x -b) = 0 for all x / ∈ i∈A c i A ⊂ {1, . . . , k} . Proof. From (3), we know that f b = A⊂{1,...,k} b-i∈A c i ∈S (-1) |A| , for all b ∈ Z m . Set ∆ := i∈A c i A ⊂ {1, . . . , k} . By Proposition 2.1, for all x / ∈ ∆ and A ⊂ {1, . . . , k}, we have that b∈S µ S x -i∈A a i -b = 0. Hence, for all x / ∈ ∆, it follows that b∈Z m α b µ S (x -b) = b∈S A⊂{1,...,k} (-1) |A| µ S x -i∈A c i -b = 0, where α b = A⊂{1,...,k} b-i∈A c i ∈S (-1) |A| = f b .

Example 3 . 4 .

 34 Let {e 1 , . . . , e m } denote the canonical basis of N m and let S = e 1 , . . . , e m = N m . Clearly, we have that

  B = (b 1 , b 2 , . . . , b k ) be a k-tuple of nonzero vectors in Z m such that the semigroup T := b 1 , . . . , b k is pointed and let b ∈ Z m . We denote by d B (b) the number of nonnegative integer representations of b by b 1 , . . . , b k , that is, the number of solutions of b = k i=1 x i b i , where x i is a nonnegative integer for all i. Since T is pointed, we know that d B (b) is finite, for all b ∈ Z m . Moreover, d B (0) = 1. It is well known (see, e.g., [8, Theorem 5.8.15]) that its generating function is given by

  b∈Z

Corollary 3 . 5 .

 35 Let S be a complete intersection pointed semigroup and assume that I S is generated by n -d S-homogeneous polynomials of S-degrees b 1 , . . . , b n-d ∈ Z m . Then, µ S (x) = A⊂{1,...,n} (-1) |A| d B x -i∈A b i , for all x ∈ Z m , where B = {b 1 , . . . , b n-d }.

Corollary 4 . 3 . [ 3 ]

 433 Let a, b ∈ Z + be relatively prime integers and consider S := a, b ⊂ N. Then, µ S (x) =    1 if x 0 and x ≡ 0 or a + b (mod ab), -1 if x 0 and x ≡ a or b (mod ab), 0 otherwise.

Example 5 . 1 .

 51 We consider the classical arithmetic Möbius function µ. Recall that for all a, b ∈ N such that a | b, we have that[START_REF] García-Sánchez | Affine semigroups having a unique Betti element[END_REF] µ(a, b) = (-1) r if b/a is a product of r different prime numbers, 0 otherwise.For every m ∈ Z + , we denote by p 1 , . . . , p m the first m prime numbers and by N m the set of integers that can be written as a product of powers of p 1 , . . . , p m . Then, for all m 1, the map ψ :N m → N m defined as ψ(p α 1 1 • • • p αm m ) = (α 1 , . . . , α m) is an order isomorphism between N m , ordered by divisibility, and the poset (N m , N m ). Hence, for every a, b ∈ N, we consider m ∈ Z + such that a, b ∈ N m and we recover the formula (6) by means of the Möbius function of N m given in Example 3.4.Example 5.2. Let D = {d 1 , . . . , d m } be a finite set and let us consider the (locally finite) poset P of multisets of D ordered by inclusion. For every S, T ∈ P such that T ⊂ S, it is well known that[START_REF] Herzog | Generators and relations of abelian semigroups and semigroup rings[END_REF] µ P (T, S) = (-1) |S\T | if T ⊂ S and S \ T is a set, 0 otherwise.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

The necessity direction of Theorem 5.5 can be stated in algebraic terms as : whenever P x is autoequivalent and l 1 (x) is finite, the subgroup L P defines a lattice ideal I := ({x αx β | α -β ∈ L P }). Moreover, P x is isomorphic to a semigroup poset (S, S ) if and only if the ideal I itself is the toric ideal of a semigroup S. The latter holds if and only if I is prime or, equivalently, if L P = Sat(L P ) (see [START_REF] Eisenbud | Binomial ideals[END_REF]).