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MÖBIUS FUNCTION OF SEMIGROUP POSETS THROUGH HILBERT

SERIES

JONATHAN CHAPPELON*, IGNACIO GARCÍA-MARCO, LUIS PEDRO MONTEJANO,
AND JORGE LUIS RAMÍREZ ALFONSÍN

Abstract. In this paper, we investigate the Möbius function µS associated to a (locally
finite) poset arising from a semigroup S of Zm. In order to do this, we introduce and
develop a new approach to study µS by using the Hilbert series associated to S. The latter
allows us to provide formulas for µS when S is a semigroup with unique Betti element, and
when S is a complete intersection numerical semigroup with three generators. We also
give a characterization for a locally finite poset to be isomorphic to a semigroup poset. We
are thus able to calculate the Möbius function of certain posets (for instance the classical
arithmetic Möbius function) by computing the Möbius function of the corresponding
semigroup poset.

1. Introduction

The Möbius function is an important concept associated to (locally finite) posets1. It
can be considered as a generalization of the classical Möbius arithmetic function on the
integers (given by the Möbius function of the poset obtained from the positive integers
partially ordered by divisibility). The Möbius function has been extremely useful in
tackling many different problems. For instance, the inclusion-exclusion principle can be
retrieved by considering the set of all subsets of a finite set partially ordered by inclusion.
We refer the reader to [18] for a large number of applications of the Möbius function.
In this paper, we investigate the Möbius function associated to posets arising naturally
from subsemigroups of Zm as follows. Let a1, . . . , an be nonzero vectors in Zm and let
S = 〈a1, . . . , an〉 denote the semigroup generated by a1, . . . , an, that is,

S = 〈a1, . . . , an〉 = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N}.

We say that S is pointed if S ∩ (−S) = {0}, where −S := {−x | x ∈ S}. Whenever S is
pointed, S induces on Zm a poset structure whose partial order 6S is defined by x 6S y
if and only if y − x ∈ S for all x and y in Zm. This (locally finite) poset will be denoted
by (Zm,6S). We denote by µS the Möbius function associated to (Zm,6S). As far as
we are aware, µS has only been investigated when S is a numerical semigroup, i.e., when
S ⊂ N and gcd{a1, . . . , an} = 1. Moreover, the only known results concerning µS are an
old theorem due to Deddens [5] which determines the value of µS when S has exactly
two generators, and a recent paper due to Chappelon and Ramı́rez Alfonśın [4] where
the authors investigate µS when S = 〈a, a + d, . . . , a + kd〉 with a, k, d ∈ Z+. In both
papers the authors approach the problem by a thorough study of the intrinsic properties
of each semigroup. It is worth pointing out that the results and techniques developed in
this paper are deeply inspired by those of [4].
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In this work we introduce and develop a new and more general method to study µS by
means of the Hilbert series of the semigroup S. This ables us to provide formulas for µS

when S belongs to some families of semigroups. Finally, we study when a locally finite
poset is isomorphic to a semigroup poset.

This paper is organized as follows. In the next section, we review some classic notions
of the Möbius function and interpret and use them for semigroup posets. In Section 3,
we recall some definitions and results about Hilbert series and prove two general results
relating the Möbius function of (Zm,6S) and the Hilbert series of S for every pointed
semigroup S. The latter are the key results that we use in Section 4 to both provide
explicit formulas for µS when S = Nm or S is a semigroup with a unique Betti element or
S = 〈a1, a2, a3〉 ⊂ N is a complete intersection numerical semigroup. Finally, in Section 5,
we determine when a locally finite poset P is isomorphic to the poset associated to a
semigroup S and, thus, µP can be computed by means of µS . In particular, we are able
to recover the classical arithmetic Möbius function and the Möbius function of the set of
all subsets of a finite set partially ordered by inclusion.

2. Möbius function associated to a semigroup poset

Let (P,6P) be a partially ordered set, or poset for short. The strict partial order <P

is the reduction of 6P given by a <P b if and only if a 6P b and a 6= b. For any a and b
in the poset P, the segment between a and b is defined by

[a, b]P := {c ∈ P | a 6P c 6P b} .

A poset is said to be locally finite if every segment has finite cardinality. In this paper,
we only consider locally finite posets.

Let a and b be elements of the poset P. A chain of length l > 0 between a and b is a
subset of [a, b]P containing a and b, with cardinality l+1 and totally ordered by <P , that
is {a0, a1, . . . , al} ⊂ [a, b]P such that

a = a0 <P a1 <P a2 <P · · · <P al−1 <P al = b.

For any nonnegative integer l, we denote by Cl(a, b) the set of all chains of length l
between a and b. The cardinality of Cl(a, b) is denoted by cl(a, b). This number always
exists because the poset P is supposed to be locally finite. For instance, the number of
chains c2(2, 12), where the poset is the set N partially ordered by divisibility, is equal to 2.
Indeed, there are exactly 2 chains of length 2 between 2 and 12 in [2, 12]N = {2, 4, 6, 12},
which are {2, 4, 12} and {2, 6, 12}.

For any locally finite poset P, the Möbius function µP is the integer-valued function on
P × P defined by

(1) µP(a, b) =
∑

l>0

(−1)lcl(a, b),

for all elements a and b of the poset P. Note that this sum is always finite because, for a
and b given, there exists a maximal length of a possible chain between a and b since the
segment [a, b]P has finite cardinality.

The concept of Möbius function for a locally finite poset (P,6) was introduced by Rota
in [18]. In this paper, Rota proves the following property of the Möbius function: for all
(a, b) ∈ P × P,

(2) µP(a, a) = 1 and
∑

c∈[a,b]P

µP(a, c) = 0.
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In this work we will consider posets associated to semigroups of Zm. We will begin by
summarizing some generalities on semigroups that are useful for the understanding of this
work. We refer the readers to [3] or, more generally, to [14] for further details.

Let S := 〈a1, . . . , an〉 ⊂ Zm denote the subsemigroup of Zm generated by a1, . . . , an ∈
Zm, i.e.,

S := 〈a1, . . . , an〉 = {x1a1 + · · ·+ xnan | x1, . . . , xn ∈ N}.

The semigroup S induces the binary relation 6S on Zm given by

x 6S y ⇐⇒ y − x ∈ S.

It turns out that 6S is an order if and only if S is pointed (see [3]). Moreover, whenever
S is pointed the poset (Zm,6S) is locally finite.

We denote by µS the Möbius function associated to (Zm,6S). It is easy to see that µS

can be considered as a univariate function of Zm. Indeed, for all x, y ∈ Zm and for all
l > 0, we have that

(3) cl(x, y) = cl(0, y − x).

The above follows since the set Cl(x, y) is in bijection with Cl(0, y − x). Indeed the map
that assigns the chain {x0, x1, . . . , xl} ∈ Cl(x, y) to the chain {0, x1 − x0, . . . , xl − x0} ∈
Cl(0, y − x) is clearly a bijection. Thus, by definition of µS and equality (3) we obtain

µS(x, y) = µS(0, y − x)

for all x, y ∈ Z.

In the sequel of this paper we shall only consider the reduced Möbius function µS :
Zm −→ Z defined by

µS(x) := µS(0, x), for all x ∈ Zm.

Thus, the formula given by (2) can be more easily presented when the locally finite poset
is (Zm,6S).

Proposition 2.1. Let S be a pointed semigroup and let x ∈ Zm. Then,
∑

b∈S

µS(x− b) =

{

1 if x = 0,
0 otherwise.

Proof. Firstly, from (1) we observe that µS(b) = 0 for all b /∈ S. Since S is pointed, if
b ∈ S then −b /∈ S and, hence,

∑

b∈S µS(0− b) = µS(0) = 1. Take x 6= 0, then from (2)

0 =
∑

b∈[0,x]Zm

µS(b) =
∑

b∈S
x−b∈S

µS(b) =
∑

b∈S
x−b∈S

µS(x− b) =
∑

b∈S

µS(x− b).

�

The formula presented in Proposition 2.1 will be very useful to get most of our results.

3. The Hilbert and Möbius series

In this section we present two results (Theorem 3.2 and Theorem 3.3), both relating
the Hilbert series of the semigroup S with the Möbius function of the poset (Zm,6S).
Before proving these theorems we recall some basic notions on multivariate Hilbert series.
For a thorough study of multivariate Hilbert series we refer the reader to [12].

Let k be any field and let S = 〈a1, . . . , an〉 be a subsemigroup of Zm. The semigroup S
induces a grading in the ring of polynomials k[x1, . . . , xn] by assigning degS(xi) := ai for all
i ∈ {1, . . . , n}. Then the S-degree of the monomial m := xα1

1 · · ·xαn
n is degS(m) :=

∑

αiai;
we say that a polynomial is S-homogeneous if all its monomials have the same S-degree.
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An ideal is S-homogeneous if it is generated by S-homogeneous polynomials. For all
b ∈ Zm, we denote by k[x1, . . . , xn]b the k-vector space formed by all S-homogeneous
polynomials of S-degree b.

Consider I ⊂ k[x1, . . . , xn] an S-homogeneous ideal, then for all b ∈ Zm we denote by
Ib the k-vector space formed by the S-homogeneous polynomials in I of S-degree b. Note
that Ib is a k-vector subspace of k[x1, . . . , xn]b. The quotient ring k[x1, . . . , xn]/I is also
graded by taking (k[x1, . . . , xn]/I)b := k[x1, . . . , xn]b/Ib for all b ∈ Zm.

Whenever S is pointed the k-vector space k[x1, . . . , xn]b has finite dimension for all
b ∈ Zm by [12, Proposition 4.1.19]. Hence, one can define the multigraded Hilbert function
of M := k[x1, . . . , xn]/I as

HFM : Zm −→ N,

where HFM(b) := dimk(Mb) = dimk(k[x1, . . . , xn]b)− dimk(Ib) for all b ∈ Zm.

For every b = (b1, . . . , bm) ∈ Zm, we denote by tb the monomial tb11 · · · tbmm in the Laurent
polynomial ring Z[t1, . . . , tm, t

−1
1 , . . . , t−1

m ]. We define the multivariate Hilbert series of M
as the following formal power series in Z[[t1, . . . , tm, t

−1
1 , . . . , t−1

m ]]:

HM(t) :=
∑

b∈Zm

HFM(b) tb.

For every S-homogeneous ideal I, the Hilbert series of M = k[x1, . . . , xn]/I can be
expressed as a quotient of polynomials in the Laurent polynomial ring in the following
way (see [12, Theorem 5.8.19]):

HM(t) =
tα h(t1, . . . , tm)

(1− ta1) · · · (1− tan)
,

where α ∈ Zm and h(t1, . . . , tm) ∈ Z[t1, . . . , tm].

Denote by IS the toric ideal of S, i.e., the kernel of the homomorphism of k-algebras

ϕ : k[x1, . . . , xn] −→ k[t1, . . . , tm, t
−1
1 , . . . , t−1

m ]

induced by ϕ(xi) = tai for all i ∈ {1, . . . , n}.

It is well known that IS is S-homogeneous (see [19, Corollary 4.3]). Therefore, it
makes sense to study the multivariate Hilbert series of k[x1, . . . , xn]/IS with respect to
the grading induced by S.

Proposition 3.1. Let S be a pointed semigroup and M := k[x1, . . . , xn]/IS. Then,

HM(t) =
∑

b∈S t
b.

Proof. Take b ∈ Zm, then k[x1, . . . , xn]b = {0} and HFM (b) = 0 whenever b /∈ S. Let
us prove that HFM(b) = 1 for all b ∈ S. Indeed, ϕ induces an isomorphism of k-vector
spaces between Mb and {α tb |α ∈ k}, for all b ∈ S. Hence, HFM (b) = dimk(Mb) = 1. �

From now on, we denote by HS(t) the multivariate Hilbert series of k[x1, . . . , xn]/IS
and we call it the Hilbert series of S. Let us now relate µS with the Hilbert series of S.

Theorem 3.2. Let c1, . . . , ck be nonzero vectors in Zm and denote

(1− tc1) · · · (1− tck) HS(t) =
∑

b∈Zm

fb t
b ∈ Z[[t1, . . . , tm, t

−1
1 , . . . , t−1

m ]].

Then,
∑

b∈Zm fb µS(x− b) = 0 for all x /∈ {
∑

i∈A ci |A ⊂ {1, . . . , k}}.



MÖBIUS FUNCTION OF SEMIGROUP POSETS THROUGH HILBERT SERIES 5

Proof. Firstly, from Proposition 3.1, we obtain that

fb =
∑

A⊂{1,...,k}
b−

∑
i∈A ci∈S

(−1)|A|,

for all b ∈ Zm. Set ∆ := {
∑

i∈A ci |A ⊂ {1, . . . , k}}. By Proposition 2.1, for all x /∈ ∆
and A ⊂ {1, . . . , k} we have that

∑

b∈S

µS

(

x−
∑

i∈A

ai − b

)

= 0.

Hence, for all x /∈ ∆ it follows that

∑

b∈Zm

αb µS(x− b) =
∑

b∈S

∑

A⊂{1,...,k}

(−1)|A|µS

(

x−
∑

i∈A

ci − b

)

= 0,

where αb =
∑

A⊂{1,...,k}
b−

∑
i∈A ci∈S

(−1)|A| = fb, which completes the proof. �

We notice that the formula (1 − tc1) · · · (1 − tck) HS(t) =
∑

b∈Zm fb t
b might have an

infinite number of terms. Nevertheless, for every x ∈ Zm the formula
∑

b∈Zm fb µS(x−b) =
0 only involves a finite number of nonzero summands since S is pointed.

As a consequence of this result, whenever we know an explicit expression of HS(t) as

HS(t) =
f(t)

(1− tc1) · · · (1− tck)
,

where f(t) ∈ Z[t1, . . . , tm, t
−1
1 , . . . , t−1

m ] for some c1, . . . , ck ∈ Zm, we can derive a recursive
formula for the Möbius function. This is the case of the so called almost arithmetic
semigroups, i.e., subsemigroups S = 〈a1, . . . , an〉 ⊂ N such that a1, . . . , an−1 form an
arithmetic progression and an ∈ Z+. In [16, Theorem 3] the authors find an expression
of the Hilbert series of these semigroups as a quotient of two polynomials needing some
previously computed parameters. In this setting, Theorem 3.2 provides a recursive formula
for µS which also depends on these parameters. Unfortunately, this recursive formula does
not allow us to give an explicit expression of µS .

Now, we consider the Möbius series GS , i.e., the generating function of the Möbius
function

GS(t) :=
∑

b∈Zm

µS(b) t
b ∈ Z[[t1, . . . , tm, t

−1
1 , . . . , t−1

m ]].

Theorem 3.3. Let S be a pointed semigroup. Then,

HS(t).GS(t) = 1.

Proof. From the definitions of HS(t) and GS(t), we obtain that

HS(t).GS(t) =

(

∑

b∈S

tb

)(

∑

b∈Zm

µS(b)t
b

)

=
∑

b∈Zm

(

∑

c∈S

µS(b− c)

)

tb.

The result follows by Proposition 2.1. �

Therefore, Theorem 3.3 states that whenever we can explicitly compute the inverse of
HS(t) we will be able to obtain µS . Corollary 3.4 (below) explains how to obtain µS when
HS(t) has a certain form.

Let B = (b1, b2, . . . , bk) be a k-tuple of nonzero vectors in Zm such that the semigroup
T := 〈b1, . . . , bk〉 is pointed and take b ∈ Zm. The denumerant dB(b) is the number of
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non-negative integer representations of b by b1, . . . , bk, that is, the number of solutions of
b =

∑k
i=1 xibi, where xi is a nonnegative integer for all i. As T is pointed, then dB(b) is

finite for all b ∈ Zm and dB(0) = 1. It is well known (see, e.g., [12, Theorem 5.8.15]) that
its generating function is given by

∑

b∈Zm

dB(b) t
b =

1

(1− tb1)(1− tb2) · · · (1− tbk)
.

Corollary 3.4. Let S be a pointed semigroup such that its Hilbert series is of the form

HS(t) =
(1− tb1)(1− tb2) · · · (1− tbk)

∑r
i=1 ci t

di
,

where b1, . . . , bk ∈ Zm are nonzero, d1, . . . , dr ∈ Zm and c1, . . . , cr are integers. Then,

µS(b) =

r
∑

i=1

ci.dB(b− di),

for all b ∈ Zm, where B = (b1, . . . , bk).

Proof. From Theorem 3.3 and the definition of the denumerant, we have

GS(t) =
1

HS(t)
=

∑r
i=1 ci t

di

(1− tb1)(1− tb2) · · · (1− tbk)
=

(

r
∑

i=1

ci t
di

)

∑

b∈Zm

dA(b)t
b

= c1
∑

b∈Zm

dA(b) t
m+d1 + · · ·+ cr

∑

b∈Zm

dA(b) t
b+dr

= c1
∑

b∈Zm

dA(b− d1) t
b + · · ·+ cr

∑

b∈Zm

dA(b− dr) t
b

=
∑

b∈Zm

(

r
∑

i=1

ci.dA(b− di)

)

tb.

This concludes the proof. �

The above result is particularly important in the following section in order to obtain
explicit formulas of the Möbius function µS when S is a complete intersection semigroup.
Recall that a pointed semigroup S = 〈a1, . . . , an〉 is a complete intersection semigroup
if its corresponding toric ideal IS is a complete intersection. Moreover, IS is a complete
intersection if it is generated by n − d S-homogeneous polynomials, where d is the di-
mension of the Q-vector space spanned by a1, . . . , an. Whenever IS is generated by n− d
S-homogeneous polynomials of S-degrees b1, . . . , bn−d ∈ Zm, by [12, Page 341], we have
that

(4) HS(t) =
(1− tb1) · · · (1− tbn−d)

(1− ta1) · · · (1− tan)
.

So, we can use Corollary 3.4.

For characterizations of complete intersection toric ideals we refer the reader to [2, 7].
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4. Explicit formulas for the Möbius function

This section is devoted to obtain explicit formulas for the Möbius function µS when
S belongs to some families of subsemigroups of Zm. As far as we are aware, the only
known results concerning µS are an old theorem due to Deddens [5] that determines the
values of µS when S = 〈a, b〉 ⊂ N, and a recent paper due to Chappelon and Ramı́rez
Alfonśın [4] where the authors investigate µS when S = 〈a, a + d, . . . , a + kd〉 ⊂ N with
a, k, d ∈ Z+ and obtain a semi-explicit formula when a is even and k = 2. In both papers
the authors approach the problem by a thorough study of the intrinsic properties of each
semigroup. Here we first provide in Theorem 4.1 an explicit formula for µS when S = Nm;
this formula will be used in the last section. We then provide formulas for µS when S
is a semigroup with a unique Betti element (Theorem 4.2) and when S is a complete
intersection numerical semigroup generated by three elements (Theorem 4.5).

These families generalize the two mentioned above, since S = 〈a, b〉 ⊂ N is a semigroup
with a unique Betti element and S = 〈a, a+d, a+2d〉 ⊂ N with a even and gcd{a, d} = 1
is a complete intersection (see [14, Theorem 3.5] or [1, Corollary 3.7]).

The results included in this section are consequences of Theorem 3.3 (for completeness,
we also include a second proof of Theorem 4.5 by using Theorem 3.2 as an appendix).

4.1. The semigroup Nm.

Let {e1, . . . , em} denote the canonical basis of Nm. For S = 〈e1, . . . , em〉 = Nm the
following result holds.

Theorem 4.1. For S = Nm, the Möbius function is given by

µNm(x) =







(−1)|A| if x =
∑

i∈A ei for some A ⊂ {1, . . . , m},

0 otherwise.

Proof. We observe that

HNm(t) =
∑

b∈Nm

tb =
1

(1− t1) · · · (1− tm)
.

Therefore, by Theorem 3.3 we derive that

GNm(t) = (1− t1) · · · (1− tm) =
∑

A⊂{1,...,m}

(−1)|A|
∏

i∈A

ti =
∑

A⊂{1,...,m}

(−1)|A| t
∑

i∈A ei,

and the result follows. �

4.2. Semigroups with a unique Betti element.

A semigroup S ⊂ Nm is said to have a unique Betti element b ∈ Nm if its corresponding
toric ideal is generated by a set of S-homogeneous polynomials of common S-degree b.
These semigroups were studied in detail by Garćıa-Sánchez, Ojeda and Rosales in [8]. In
particular they prove in [8, Corollary 10] that they are complete intersection semigroups.

Theorem 4.2. Let S = 〈a1, . . . , an〉 ⊂ Nm be a semigroup with a unique Betti element
b ∈ Nm and denote by d the dimension of the Q-vector space generated by a1, . . . , an.
Then,

µS(x) =

t
∑

j=1

(−1)|Aj |

(

kAj
+ n− d− 1

kAj

)

,

where {A1, . . . , At} = {A ⊂ {1, . . . , n} | ∃ kA ∈ N such that x−
∑

i∈A ai = kA b}.
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Proof. By (4) we have that

HS(t) =
(1− tb)n−d

∏n
i=1(1− tai)

=
(1− tb)n−d

∑

A⊂{1,...,m}(−1)|A| t
∑

i∈A ai
.

Thus, applying Corollary 3.4, we have that for all x ∈ Zm

µS(x) =
∑

A⊂{1,...,m}

(−1)|A| dB

(

x−
∑

i∈A

ai

)

,

where B is the (n− d)-uple (b, . . . , b). The equality

dB(y) =







(

k+n−d−1
k

)

if y = kb with k ∈ N,

0 otherwise,

for all y ∈ Zm, completes the proof. �

In the particular case when S = 〈a1, . . . , an〉 ⊂ N is a numerical semigroup with a
unique Betti element b ∈ N, it is proved in [8] that there exist pairwise relatively prime
integers b1, . . . , bn > 2 such that ai :=

∏

j 6=i bj , for all i ∈ {1, . . . , n}, and b =
∏n

i=1 bi. In
this case Theorem 4.2 can be refined as follows.

Corollary 4.3. Let S = 〈a1, . . . , an〉 ⊂ N be a numerical semigroup with a unique Betti
element b ∈ N. Then,

µS(x) =







(−1)|A|
(

k+n−2
k

)

if x =
∑

i∈A ai + kb for some A ⊂ {1, . . . , n}, k ∈ N,

0 otherwise.

Proof. As d = 1, by Theorem 4.2 it only suffices to prove that for every A1, A2 ⊂
{1, . . . , n}, if b divides

∑

i∈A1
ai −

∑

i∈A2
ai, then A1 = A2. We take b1, . . . , bn > 2 such

that ai =
∏

j 6=i bj , then by [8, Example 12] (see also [11, Theorem 2.9 and Remark 2.10])

we have that IS = (f2, . . . , fn), where fi := xb11 − xbii for all i ∈ {2, . . . , n}. Assume that
there exist A1, A2 ⊂ {1, . . . , n}, A1 6= A2 and that

∑

i∈A1
ai −

∑

i∈A2
ai = kb for some

k ∈ N. Thus, the binomial g :=
∏

i∈A1
xi − xb1k1

∏

i∈A2
xi 6= 0 belongs to IS and so it can

be written as a combination of f2, . . . , fn. However, this is a contradiction because xbii
does not divide

∏

j∈A1
xj for all i ∈ {1, . . . , n}. �

As a direct consequence of this result we recover Dedden’s classical result.

Corollary 4.4. Let a, b ∈ Z+ be relatively prime integers and consider S := 〈a, b〉. Then,

µS(x) =







1 if x > 0 and x ≡ 0 or a+ b (mod ab),
−1 if x > 0 and x ≡ a or b (mod ab),
0 otherwise.

4.3. Three generated complete intersection numerical semigroups.

We provide a semi-explicit formula for µS when S is a complete intersection numerical
semigroup minimally generated by the set {a1, a2, a3}.

Many authors have studied three generated numerical semigroups and one can find sev-
eral (equivalent) characterizations of the complete intersection property for them. In par-
ticular, Herzog proves in [9] that S is a complete intersection if and only if gcd{ai, aj} ak ∈
〈ai, aj〉 with {i, j, k} = {1, 2, 3}. We assume that gcd{a2, a3} a1 ∈ 〈a2, a3〉 and denote
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d := gcd{a2, a3}. Note that d > 2, otherwise a1 ∈ 〈a2, a3〉, which contradicts the mini-
mality of {a1, a2, a3}. In [9], the author also proves that if we take γ2, γ3 ∈ N such that
da1 = γ2a2 + γ3a3, then

(5) IS = (xd1 − xγ22 x
γ3
3 , x

a3/d
2 − x

a2/d
3 ),

whose S-degrees are da1 and a2a3/d, respectively.

For every x ∈ Z there exists a unique α(x) ∈ {0, . . . , d − 1} such that α(x)a1 ≡
x (mod d). It is easy to check that for every x, y ∈ Z,

(6) α(x− y) =







α(x)− α(y) if α(x) > α(y),

d+ α(x)− α(y) otherwise .

Theorem 4.5. Let S = 〈a1, a2, a3〉 be a numerical semigroup such that da1 ∈ 〈a2, a3〉
where d := gcd{a2, a3}. For all x ∈ Z, we have

µS(x) = 0

if α(x) > 2, or

µS(x) = (−1)α (dB(x
′)− dB(x

′ − a2)− dB(x
′ − a3) + dB(x

′ − a2 − a3))

otherwise, where x′ := x− α(x)a1 and B := (da1, a2 a3/d).

First proof. By (5) IS is generated by two S-homogeneous polynomials whose S-degrees
are da1 and a2a3/d. Thus, applying (4) we obtain

HS(t) =

(

1− tda1
) (

1− ta2a3/d
)

(1− ta1)(1− ta2)(1− ta3)

=

(

1− tda1
) (

1− ta2a3/d
)

1− ta1 − ta2 − ta3 + ta1+a2 + ta1+a3 + ta2+a3 − ta1+a2+a3
.

Hence, from Corollary 3.4, we have

(7) µS(x) = dB(x)− dB(x− a1)− dB(x− a2)− dB(x− a3) + dB(x− (a1 + a2))+
+dB(x− (a1 + a3)) + dB(x− (a2 + a3))− dB(x− (a1 + a2 + a3)),

for all integers x, where B := (da1, a2a3/d). Since α(da1) = α(a2a3/d) = 0, it follows that
α(y) = 0 if y ∈ 〈da1, a2a3/d〉. As a consequence of this, dB(y) = 0 whenever α(y) 6= 0.
We denote C := {0, a1, a2, a3, a1 + a2, a2 + a3, a3 + a1, a1 + a2 + a3} and observe that

α(y) ∈ {0, 1} for all y ∈ C.
We distinguish three different cases upon the value of α := α(x), for x ∈ Z.

Case 1. α > 2.
We deduce that α(x− y) = α(x)− α(y) 6= 0 and dB(x− y) = 0, for all y ∈ C. Therefore,
using (7), we obtain that µS(x) = 0.

Case 2. α = 1.
We deduce that α(x− y) 6= 0 and dB(x− y) = 0 for all y ∈ {0, a2, a3, a2+ a3}. Therefore,
using (7), we obtain that

µS(x) = −dB(x− a1) + dB(x− a1 − a2) + dB(x− a1 − a3)− dB(x− a1 − a2 − a3).

Case 3. α = 0.
Since d > 2, we deduce that α(x− y) 6= 0 and dB(x− y) = 0 for all y ∈ {a1, a1 + a2, a1 +
a3, a1 + a2 + a3}. Therefore, using (7), we obtain that

µS(x) = dB(x)− dB(x− a2)− dB(x− a3) + dB(x− a2 − a3).
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This completes the proof. �

Theorem 4.5 yields an algorithm for computing µS(x) for all x ∈ Z which relies on the
computation of four denumerants of the form dB(y), where B = (da1, a2a3/d). It is worth
to mention that in [15, Section 4.4] there are several results and methods to compute this
type of denumerants.

Also note that Theorem 4.5 generalizes [4, Theorem 3], where the authors provide a
semi-explicit formula for S = 〈2q, 2q+ e, 2q+2e〉 where q, e ∈ Z+ and gcd{2q, 2q+ e, 2q+
2e} = 1. It is easy to see that these semigroups are complete intersection, it suffices to
set a1 := 2q+ e, a2 := 2q, a3 := 2q+2e and observe that gcd{a2, a3}a1 = 2a1 = a2 + a3 ∈
〈a2, a3〉. For some other families of complete intersection numerical semigroups we refer
the reader to [1, 17].

5. When is a poset equivalent to a semigroup poset?

Let D = {d1, . . . , dm} be a finite set and let us consider the (locally finite) poset P of
multisets of D ordered by inclusion. For every S, T ∈ P such that T ⊂ S, it is well known
that

(8) µP(T, S) =

{

(−1)|S\T | if T ⊂ S and S \ T is a set,
0 otherwise.

We consider the semigroup Nm = 〈e1, . . . , em〉 and the map ψ : P → Nm defined as
ψ(S) = (s1, . . . , sm) where si denotes the multiplicity of di in S for all S ∈ P. We consider
the order in Nm induced by the semigroup Nm, i.e., α 6Nm β if and only if β − α ∈ Nm

for all α, β ∈ Nm. We have that ψ is an order isomorphism, i.e., an order preserving and
order reflecting bijection. Thus, we can say that the poset of multisets of a finite set is a
particular case of semigroup poset. This implies that for all S, T ∈ P such that T ⊂ S,
then µP(T, S) = µNm(ψ(T ), ψ(S)) = µNm(ψ(S)− ψ(T )) and by Theorem 4.1 we retrieve
the formula (8).

It is worth pointing out that we can also use the tools of previous sections to recover
the classical arithmetic Möbius function. Recall that for all a, b ∈ N such that a | b, we
have that

(9) µ(a, b) =

{

(−1)r if b/a is a product of r different prime numbers,
0 otherwise.

Indeed, for every m ∈ Z+, we denote by p1, . . . , pm the first m prime numbers and by Nm

the set of integers that can be written as a product of powers of p1, . . . , pm. Then, for
all m > 1 the map ψ : Nm → Nm defined as ψ(pα1

1 · · · pαm
m ) = (α1, . . . , αm) is an order

isomorphism between Nm ordered by divisibility and the poset (Nm,6Nm). Hence, for
every a, b ∈ N we consider m ∈ Z+ such that a, b ∈ Nm and we recover the formula (9)
by means of the Möbius function of Nm given in Theorem 4.1.

In these two examples we easily find ad-hoc order isomorphisms between the poset P
and a semigroup poset which allows us to compute µP . In this section, we provide tools
to do this systematically.

Let (P,6P) be a locally finite poset. For every x ∈ P we denote Px := {y ∈ P | x 6P y}
and we consider the restricted Möbius function µP(−, x) : Px → Z. It is clear that if there
exists a pointed semigroup S and an order isomorphism ψ : (Px,6P) −→ (S,6S), then
µP(−, x) can be computed by means of the Möbius function of (S,6S) since µP(y, x) =
µS(ψ(y)) for all y ∈ Px. In this section we characterize in Theorem 5.3 when there exists
such a pointed semigroup and such an isomorphism in terms of Px.
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The poset Px is said to be autoequivalent if and only if for all y ∈ Px there exists an
order isomorphism gy : Px −→ Py such that gy ◦ gz = gz ◦ gy for all y, z ∈ Px and gx is
the identity. For all y ∈ Px we denote by l1(y) := {z ∈ P | ∄u ∈ P such that y � u � z}.
Whenever Px is autoequivalent with isomorphisms {gy}x6y and l1(x) is a finite set of n
elements, we associate to P a subgroup LP ⊂ Zn in the following way.

Let l1(x) = {x1, . . . , xn} ⊂ P and consider the map

f : Nn −→ P

defined as f(0, . . . , 0) = x, and for all α ∈ Nn and all i ∈ {1, . . . , n}, f(α+ei) = gxi
(f(α)),

where {e1, . . . , en} is the canonical basis of Nm. In particular, f(ei) = gxi
(f(0)) = gxi

(x) =
xi for all i ∈ {1, . . . , n}.

Lemma 5.1. f is well defined and is surjective.

Proof. Suppose that α + ei = β + ej, then we set γ := α − ej = β − ei ∈ Nn. Thus,
f(α+ ei) = gxi

(f(α)) = gxi
(gxj

(f(γ))) = gxj
(gxi

(f(γ))) = gxj
(f(β)) = f(β + ej) and f is

well defined.
Take y ∈ Px. If y = x, then y = f(0). If y 6= x, then there exists z ∈ Px such that

y ∈ l1(z); therefore y = gz(xj) for some j ∈ {1, . . . , n}. We claim that if z = f(α), then
y = f(α + ej). Indeed, f(α + ej) = gxj

(f(α)) = gxj
(z) = gxj

(gz(x)) = gz(gxj
(x)) =

gz(xj) = y. �

Now we set LP := {α− β ∈ Zn | f(α) = f(β)}.

Lemma 5.2. LP is a subgroup of Zn.

Proof. If γ ∈ LP , then −γ ∈ LP clearly. Moreover, if γ1, γ2 ∈ LP , then γ1 + γ2 ∈ LP .
Indeed, take α, α′, β, β ′ ∈ Nm such that f(α) = f(α′), γ1 = α − α′, f(β) = f(β ′) and
γ2 = β − β ′. Then f(α + β) = f(α′ + β) = f(α′ + β ′) and the lemma is proved. �

For every subgroup L ⊂ Zn the saturation of L is the group

Sat(L) := {γ ∈ Zn | ∃d ∈ Z+ such that dγ ∈ L}.

Theorem 5.3. Let P be a locally finite poset and let x ∈ P. Then, (Px,6) is isomorphic
to (S,6S) for some (pointed) semigroup S ⊂ Zn if and only if Px is autoequivalent, l1(x)
is finite and LP = Sat(LP).

Proof. (⇒) Let S ⊂ Zm be a (pointed) semigroup and denote by {a1, . . . , an} its unique
minimal set of generators. Assume that ψ : Px → S is an order isomorphism; let us prove
that Px is autoequivalent, that l1(x) = n and that LP = Sat(LP). Firstly, we observe
that setting xi := ψ−1(ai), then l1(x) = {x1, . . . , xn}. Now, for every y ∈ Px we set

gy : Px −→ Py

z 7−→ ψ−1(ψ(z) + ψ(y)),

then it is straightforward to check that gy is an order isomorphism. Moreover, gx is the
identity map in Px and gy ◦ gz = gz ◦ gy for all y, z ∈ Px.
Now we take f : Nm → Px the map associated to {gy}y6x, i.e., f(0) = x and if

f(α) = y, then f(α + ej) = gxj
(f(α)). We claim that ψ(f(α)) =

∑

αiai ∈ S for all
α = (α1, . . . , αn) ∈ Nn. Indeed, ψ(f(0)) = ψ(x) = 0 and if we assume that ψ(f(α)) =
∑

αiai for some α = (α1, . . . , αn) ∈ Nm, then ψ(f(α+ ej)) = ψ(gxj
(α)) = ψ(z)+ψ(xj) =

∑

αiai + aj , as desired.
Since LP ⊂ Sat(LP) by definition, let us prove that Sat(LP) ⊂ LP . We take γ ∈

Sat(LP), then dγ ∈ LP for some d ∈ Z+. This means that there exist α, β ∈ Nn such that
f(α) = f(β) and dγ = α−β. Hence we have that

∑

αiai = ψ(f(α)) = ψ(f(β)) =
∑

βiai;
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which implies that
∑

γiai = 1/d (
∑

(αi − βi)ai) = 0. Thus, if we take α′, β ′ ∈ Nm such
that γ = α′ − β ′, then ψ(f(α′)) = ψ(f(β ′)) and, whence, f(α′) = f(β ′) and γ ∈ LP .

(⇐) Since LP = Sat(LP), we have that Zn/LP is a torsion free group; hence there exists
a group isomorphism ρ : Zn/LP → Zm, where m = n−rk(LP). We denote ai := ρ(ei+LP)
for all i ∈ {1, . . . , n} and set S := 〈a1, . . . , an〉 ⊂ Zm. We claim that (Px,6) and (S,6S)
are isomorphic. More precisely, it is straightforward to check that the map

ψ : Px −→ S
y 7−→

∑

αiai, if f(α) = y

is an order isomorphism. �

In algebraic terms, the idea under (⇐) in Theorem 5.3 is that whenever Px is autoe-
quivalent and l1(x) is finite, the subgroup LP defines a lattice ideal I := ({xα−xβ |α−β ∈
LP}). Moreover, Px is isomorphic to a semigroup poset (S,6S) if and only if the ideal
I itself is the toric ideal of a semigroup S, but this happens if and only if I is prime or,
equivalently, if LP = Sat(LP) (see, e.g., [6] or [10]).
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Appendix: Second proof of Theorem 4.5

In this appendix we give a second proof of Theorem 4.5 by using Theorem 3.2.

Proposition 5.4. Let S = 〈a1, a2, a3〉 be a numerical semigroup such that da1 ∈ 〈a2, a3〉
where d := gcd{a2, a3}. Then,

(a) µS(x) = µS(x− da1) + µS(x− a2a3/d)− µS(x− da1 − a2a3/d) for all x ∈ Z \C, and

(b)
d−1
∑

i=0

µS(x− ia1) =
d−1
∑

i=0

µS(x− ia1 − a2a3/d) for all x ∈ Z \ C ′,

where C ′ = {0, a2, a3, a2 + a3} and C = C ′ ∪ {0, a1, a1 + a2, a1 + a3, a1 + a2 + a3}.

Proof. By (5), IS is generated by two S-homogeneous polynomials whose S-degrees are
da1 and a2a3/d. Applying (4) we get that

HS(t) =
(1− tda1)(1− ta2a3/d)

(1− ta1)(1− ta2)(1− ta3)
=

1− tda1 − ta2a3/d + tda1+a2a3/d

(1− ta1)(1− ta2)(1− ta3)
.

A direct application of Theorem 3.2 proves (a). To prove (b) it suffices to observe that
(1− tda1)/(1− ta1) = 1 + t+ · · ·+ td−1, giving

HS(t) =
(1− tda1)(1− ta2a3/d)

(1− ta1)(1− ta2)(1− ta3)
=

∑d−1
i=0 (t

i − ti+(a2a3/d))

(1− ta2)(1− ta3)
,

and to apply again Theorem 3.2. �

Second proof of Theorem 4.5. We set C ′ := {0, a2, a3, a2 + a3} and C := C ′ ∪ {a1, a1 +
a2, a1+a3, a1+a2+a3}. We observe that for all y ∈ C, α(y) ∈ {0, 1}. Moreover α(y) = 0
if y ∈ C ′ and α(y) = 1 if y ∈ C \ C ′. Let x be an integer, we distinguish three different
cases upon the value of α := α(x).

Case 1. α > 2.
We observe that α(x − λ (da1) − δ (a2a3/d)) = α(x) > 2 for all λ, δ ∈ N, which implies
that x−λ (da1)− δ (a2a3/d) /∈ C. By iteratively applying Proposition 5.4 (a) we get that
µS(x) = 0.

Case 2. α = 1.
By Proposition 5.4 (b), we have that

d−1
∑

i=0

µS(y − ia1) =
d−1
∑

i=0

µS(y − ia1 − a2a3/d)

for all y /∈ C ′. Moreover, for i > 2, by Case 1 we have that µS(x − ia1) = µS(x − ia1 −
a2a3/d) = 0. This gives that

µS(y) + µS(y − a1) = µS(y − a2a3/d) + µS(y − a1 − a2a3/d)

for all y /∈ C ′. We set σ(y) := µS(y) + µS(y − a1) and have that

(10) σ(y) = σ(y − a2a3/d)

for all y /∈ C ′. Moreover, we observe that µS(x − λa2a3/d) = 1 for every λ ∈ N; hence,
x− λa2a3/d /∈ C ′. Applying (10) iteratively, we get that σ(x) = 0 and µS(x) = −µS(x−
a1).

Case 3. α = 0.
We denote τ(y) := µS(y)− µS(y − da1), then by Proposition 5.4 (a) we have that

(11) τ(y) = τ(y − a2a3/d) if y /∈ C.
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We take λ ∈ N the minimum integer such that x − λa2a3/d < 0 or x − λa2a3/d ∈ C;
an iterative application of (11) yields τ(x) = τ(x − λda1), hence µS(x) = µS(x− da1) +
τ(x − λda1). Let us compute τ(x − λda1). If x′ := x − λda1 < 0, then τ(x′) = 0.
Since α(x′) = α(x) = 0, we have that x′ ∈ C ′. A direct computation yields τ(0) = 1,
τ(a2) = τ(a3) = −1, τ(a2 + a3) = µS(da1) − µS(0) = 2 − 1 = 1 if a2 + a3 = da1 or
τ(a2 + a3) = µS(a2 + a3)− µS(a2 + a3 − da1) = 1− 0 = 1 if a2 + a3 6= da1. Hence,

µS(x) = µS(x− da1) +























1 if x ≡ 0 (mod a2a3/d),
−1 if x ≡ a2 (mod a2a3/d),
−1 if x ≡ a3 (mod a2a3/d),
1 if x ≡ a2 + a3 (mod a2a3/d),
0 otherwise.

Notice that when B = (da1, a2a3/d), then dB(y) is the number of i ∈ N such that y −
i(da1) > 0 and y − i(da1) ≡ 0 (mod a2a3/d) and thus the result follows by applying the
above recursive formula. �
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