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1. INTRODUCTION

Positron Emission Tomography (PET) is a non-invasive imaging technique that
provides quantitative maps of biochemical, biophysical and physiological parameters of the in-
vivo human brain [1,2]. PET images offer imprecise anatomical information because of the
poor spatial resolution, poor statistics and because the tracer does not reflect the anatomy.
Accurate and reproducible analysis of PET images requires other information coming from
anatomical databases or from Magnetic Resonance Image (MRI) of the same patient [3].

Conversely, Magnetic Resonance Imaging offers accurate in-vivo localisation of
anatomical landmarks [4]. It has been used to estimate individual variations and left-right
asymmetries of sulci and gyri. Hence, it is of great interest to superimpose functional PET data
and anatomical MRI data. There are three modern approaches to this problem

The stereotaxic proportional grid of Talairach [5] is frequently used. It defines spatial
coordinates of brain sulci and gyri, and of cytoarchitectonic fields. Despite the application of
scaling factors, the accuracy of the superimposition of a standard brain atlas onto any given
examination is about one to two centimetres at the cortical level, because of inter-individual
variations [6].

A second approach is based on templates upon a standard brain. Global deformations
are sometimes integrated in this approach [7] but it seems that all inter-individual variations
cannot be taken into account.

A third approach determines cortical maps based on the topology of sulci and gyri
[8,9].

Our work is based on the last method. Our objective is to automatically recognize
cortical sulci of any brain MRI examination, with respect to an anatomical atlas. The
deformations of the sulci can be computed. In this paper, we deal with the identification of the
lateral sulcus (Sylvian fissure) on 3D MR Images.
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Previously [10], we proposed a heuristic method based on spatial location to recognize
the lateral sulcus. Here, a new approach is presented, based on continuous relaxation, to
identify cortical human sulci. Initial data are first described. Elastic and inexact matching are
summarized. Then, we introduce our method. Finally, we present results on the lateral sulcus
and give perspectives of this work.

2. INITIAL DATA AND PREPROCESSING

Brain MR Images are obtained from five young sane volunteers with a General Electric
Sigma Advantage machine. No information about sex and age is available. MR Images are
composed of 120 sections of 256x256 isotropic voxels (1.3x1.3x1.3mm3). An automatic
procedure [11] puts this set in the Talairach's coordinate system, then isolates the brain from
other parts (skull, eyes orbits, skin). A multi level thresholding operation splits the set into
cerebro-spinal fluid (CSF), white matter and grey matter.

A sulcus is a cerebral structure, filled with Cerebro-Spinal Fluid (CSF), at the location
where the cortex enters the brain. Thus, CSF on our MR images of the brain corresponds to
cortical sulci.

By application of a 3D skeletonization and skew curve thinning algorithms [12], limits
of any sulcus can be drawn at the cortical tevel (figure 7).

Each sulcus is described by a graph of segments. A segment corresponds to the set of
voxels lying between two intercepts. Since the Talairach’s atlas gives only a rough
approximation of the average landmarks, we have defined a window in which the lateral sulcus
is always present. We have a limited number of segments which can belong to the lateral
sulcus, in order to improve computation times. Because this sulcus is approximately situated in
a plane, we use a 2D lateral projection of the image.

Figure 1. Initial image and skeleton

Our problem is now to find identical patterns on the Atlas and on the MR image, i.e. to
find a matching between two graphs of segments. The large variety of numbers, patterns and
positions of the real sulci requires elastic matching, which allows deformations. To match
graphs of segments, several operations are possible :

Deletion or insertion of a segment in a graph, which corresponds to inexact matching,

Modification (length, orientation) of a segment in a graph, which corresponds to elastic
matching.

We have combined these two operations : we first use inexact matching to determine
elements shared by the two graphs. Then, deformations are computed using elastic matching

3. METHODS

3.1. Inexact matching

Three kinds of methods try to bring out the largest structures of two graphs :

Metric methods [13] quantize the correspondence between two graphs with similarity
and correlation measures. They may be explained with the physical analogy of "templates and
springs". These methods minimize a metric which depends upon three measures :

- similarity between the matched input elements' relations and the reference relations

between templates;

- similarity between input data and templates;

- cost of missing elements.

Tree search [14] and backtracking build and explore the solution space. Although
numerous variants and heuristics improve computation times, these algorithms are still time
consuming. Polygamy is not allowed, i.e. one vertex of a graph cannot match two vertices on
the other graph.

Maximal cliques search [15] is an NP-hard problem which has the same disadvantages
as tree search.

Constraint propagation is a stochastic approach, and relaxation techniques [16],
applied to graph matching, will be explained later.

3.2. Elastic matching

The intuitive idea of elastic matching is very simple : a transformation is iteratively
applied to warp a graph toward another one. Formulation in terms of optimization is done by
means of a cost measure. The number of iterations can be controlled by a similarity measure.
Local and elastic deformations are compensated by these methods. They differ about
optimization methods and deformation models.

Gee {17] use BROIT's algorithm, based on Navier's equations which describe elastic
deformations of a solid. A multi-resolution stage proceeds step-by-step in a coarse to fine
deformation process, increasing local similarity and global consistency. Two matching
structures are used : the outer edge of the brain and the brain ventricles. The topology of these
structures must be identical.

Elastic nets [18] and snakes [19] minimize a function based on geometric (angle,
length, curvature, ...) and photometric (intensity) criteria. Topologically identical patterns can
be processed by these methods.

Using rigid deformations, fast registration and recognition of curves and surfaces have
been implemented by means of B-Splines [20].

BURR's algorithm [21] proceeds by Gaussian smoothed deformations and multi-
resolution stage. This algorithm has been used on dot patterns, grey-scale 2D images and



edges in 2D medical images. It computes deformations of any point and new constraints can be
easily added.

4. PROPOSED SYSTEM

Elastic matching methods have potential applications for graphs matching if the graphs
share the same topology [22]. As a first step, segments common to the atlas and to the
examined brain are retained by a bi-relaxation labeling process. As a second step, elastic
matching is applied to the simplified sulcus.

The relaxation method [16] is used as a labeling process between a set of objects -
sulcus to identify - and a set of labels - sulcus of an atlas. It is a parallel iterative method which
optimizes the constraints to be satisfied.

4.1, Relaxation

Let g denote a set of n objects and G denote a set of N labels. 7 and [ refer respectively
to an object of g and a label of G. Dj; is the set of all pairs (7;.J) such that label 7 at object i is
compatible with label J at object j. Label pairs which are not in Dj; represent pairs of
incompatible labels at the corresponding objects 7 and j.

The continuous relaxation labeling process is a stochastic approach for the
identification of objects by measuring the compatibilities along arcs which define the graphs. A
constraint function Rjj(1;J) takes on real values from 0 to 1. The magnitude of Rj;1;J) is
proportional to the strength of the constraint between pairs (unknown 7, label /) and (unknown
J, label J). The constraints R,j(],x/) when objects (or labels) are not neighbors, or for
unmatching couples are null. Finally, p;(I) denotes an estimation of the likelihood that object
matches label / according to :

N
Ospi(J)s1 and Y pi(l)=1
I=1

A consistent labeling is a mapping in which all the constraints are satisfied. The
prototype algorithm is a parallel iterative procedure that increasingly satisfies the constraints.
At each loop, the labeling is turned into a more consistent one, by maximazing the gain A(p)
defined by :

_ n n
Ap)= 33 S Spill)xpi(J)xRij(1,J) with 1,J € Dj.
=1 T j=17

The gain A(p) is iteratively maximized by a gradient based optimization. Hummel and
al. [15] make clear that a good approximation for the new assignment is given by :

K k-l 28k
P =pi (1) (1+ ¥ ¥ 2><Pj (J)xRij(1,J))
J=dJ =1
The process is repeated until the labeling, while becoming more consistent, leads to an
almost individual assignment.

4.2, Constraints
Relational similarities associated to constraints describe geometrical features between

segments of the sulcus. We define two binary relations p) and p,.

In most cases, the main characteristic of a sulcus is the continuity along segments, with
short length breaks. To take this feature into account, the first relation is the smallest distance
between two segments (figure 2), i.e. the distance of the nearest points :

P (i) =distyn(i})

The second characteristic between two related segments is the angle between their
principal axes. As the orientations of the sulcus in the Talairach's coordinate system are
roughly constant, we define the second relation as the angle between the sulci's bisecting line

and a determined axis :
p,(izj)=angle(bisecting line (i;j), A)
The global constraint between (i;I) and (j;J) is defined by :

@GN - () ey (i;j)—pz(I;J)I>
(&)1 O,

Ry ()= exp<

The parameters o) and O, determine the relative influence of each relation. A
maximum value of R,'j(],'J) is obtained if the relations are equal for labels and objects. Large
differences between relations yield a null value of Rij(I J).

4.3. Bi-relaxation '
A relaxation labeling process defines a homomorphism from the set of objects to a

subset of labels. In practice, the relaxation process identifies one sulcus in the unknown image
with respect to the atlas. Two problems must be taken into account :

- The unknown label is attributed if one segment does not exist on the atlas.

- Several segments have the same label on the atlas (many-to-one relation).

Disparities are due to- inter-individual variabilities, data capture and image processing.
Identical topologies are needed to compute local deformations.

A8 i i
X dmin/
\ N i
. ] \mm
J

Angle function Distance function

Figure 2. Relational similarities
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Figure 3. The bi-relaxation labeling process

In this way, we introduce two operators. A segment without relation is deleted while
segments with many-to-one relations are merged.

Then, the one-to-one mapping is obtained by considering two relaxation processes,
each followed by merge and remove operators. The functional diagram is shown figure 3. The
first relaxation process, from atlas to patient, identifies segments of a patient's image which
have to be removed or merged. The second one carries out the same operation onto the atlas.
The process ends when no modification occurs in the two graphs. The final result is the set of
segments with identical topology on the atlas and on the patient’s examination.

4.4. Initialization

Initial values of coefficients p;(7) are usually computed from a distance based on label
intrinsic features, which are a priori estimations.

In our problem, there are no intrisic features. The length of a sulcus depends on the real
configuration of the brain and on errors in the segmentation process. The absolute position in
the Talairach's system gives some information about the segment label. Depth of a sulcus is not
a sufficient discriminant feature. In order to validate the proposed system on spatial relations,
initial values are equally distributed.

In practice, large different numbers and lengths of segments in the two graphs decrease
the efficiency of merging and deletion operators. In this case, the longest segments of the
smallest graph are halved.

4.5. Merging and deletion
Ideally, labeling between the set of labels and the set of objects is a one-to-one

mapping, i.e. :
3 (i,I) / pi(To) =1 and ¥I=Ig, pi(D) =0,

but in the case of different topological configurations, although visually identical, and
with the similarity relation, several segments of a graph may map a unique segment to the
second one. These segments may be merged under certain conditions (figure 4). In the same
way, segments with no matching may be removed.

\ ‘ 250 | 2 gain
. ___——-—J-"'_' 200
) 6<150° -

100

]
| .

No delctions 0

Merge i and j

Iteration
50

Figure 4. Merging and deletion Figure 5. Gain of the relaxation

The segments are considered as neighbors if their minimum distance is less than a
threshold. This threshold is equal to 10% of the average length of the segments.

Merging : two segments are merged if the three following conditions are satisfied :

- they are neighboring ;

- the angle between the two segments is less than 150 degrees ;

- the two segments have the same mapping in the other graph.

Deletion : one segment is deleted if it has no mapping in the other graph and if it
cannot connect two parts of the sulcus, i.e. :

- it has exactly 2 neighboring segments and the angle between at least one of these two
neighbors and the examined segment is less than 150 degrees ,

- it has more than 2 neighboring segments.

4.6. Control
The gain of the relaxation process is defined as the last value of A(p). Variations are

shown figure 5. The function Again/gain determines the end of the process. A threshold value
has been fixed to 10-5 (figure 3).

Let ng and NG (resp. gain and GAIN) denote the final segments numbers (resp. the
final values of A(p)) in each relaxation process. The function ¢(0),0,) is defined by

gain  GAIN

o(s;.5,) = g G

$(0),04) is the gain's difference scaled to the unit of segment. $(0,07) estimates the
fitness of the matching if less than 50% of segments have not been cancelled by the deletion
operator. Optimal values of o] and o, are automatically estimated using this function.

4.7, Deformations

The computation of deformations between the MR Image and the atlas is based on
Burr's algorithm [21].

As a first step, correspondences between voxels in contours in the two images are used
to stretch one image (patient's image) toward its goal (atlas). Gaussian smoothed deformation
is used to match contours. As a second step, the resulting stretched image is used to warp it
further toward its goal, using Gaussian smoothed deformations. The process is iterated with
decreasing stiffness. As iterations continue, the resulting image better approximates the goal
image.

Let T(x;y;z;) denote the displacement vector of the matched contours obtained after
the first step. The distortion vector at a point M(x,y,z) is given by
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with

F(x,y,2) = exp(

The parameter B is an elasticity constant. A large elasticity constant results in more
significant weight distant points and the image becomes more elastic. For small elasticity
constant, the image becomes more rigid and deformations are interpolated locally. In practice,
the process starts with a large value of . In subsequent iterations the value of B is gradually
decreased.

This method has been used in three dimensions and the results are satisfactory when the
graphs to be matched have the same topology. The correspondence between the 2D inexact
matching of the lateral sulcus and the 3D elastic deformation is actually established manually.

S. EXPERIMENTS AND RESULTS

5.1. Results
To validate our approach, we have simulated an anatomical atlas by an MR Image. Our

experiments are based on 55 pairs of lateral sulei. This sulcus, which is always visible on an
MR Image, shows large asymmetries between the left and right hemisphere of the same patient.
It shows also a different number of parts and a lot of variation in the positions of these parts,
from patient to patient. The identification of this sulcus represents a complete coverage of the
main recognition problems of other sulci. Moreover, the lateral sulcus is simple to detect and
to be manually checked.

Figure 6 illustrates the difficulties. The final result is two sulci of identical topologies.
On the set of 55 pairs, 48 have given exact matching while 7 have failed. The failures are due
to two images in which the position of the lateral sulcus with respect to Talairach's atlas shows
a large difference. It seems that the accuracy of orientation must be better than 30 degrees.

5.2, Parameters
The function ¢ estimates the smoothness of a matching, in order to define experimental

values of the parameters 0| and 0. Qualitatively, we have defined three levels of smoothness :
- A null value of ¢ leads to an exact matching (figure 7);
- An intermediate value of ¢ leads to a correct matching;
- A large value gives an incorrect matching.

Figure 6. Example : on the left side, the simulated atlas and patient image skeleton. On the
right side, common parts of the lateral sulcus on the initial image

Example 1 Exact Example 2  Correct | Example 3 False

Step -1- -3- -1- -2- -1- -5-

gain 193.3 114.4 97.03 78.6 203.2 120.3
GAIN 196.9 111.4 98.9 83.9 110.8 61.6
ng 21 13 20 17 22 16
nG 20 13 22 18 15 10

[ -0.64 0.0 0.34 -0.04 1.8 1.35

Figure 7. Function §(0},07) in 3 typical cases

Function ¢ reachcs definitely a minimum for a smooth matching. Conversely, this
minimum specifies the parameters which provide an exact matching. Each of 55 examples has
been tested for different values of o} and ;. These tests have established two points -

- A satisfactory matching corresponds to a minimum of ¢

- On the set of 55 pairs, a standard set of parameters 0|5 and 0 provides 48 correct

matchings.

6. CONCLUSION

The initial goal of this work was the identification of segments describing the sulcus on
MR Images. The deformation, computed by an elastic matching, has led to the necessity of
identical topology and the resort to the system proposed.

Tais approach, based on relaxation, models relational geometric features between
elements of a sulcus and between sulci, in order to build common sets of segments. Results are



satisfactory to recognize lateral sulci on 2D MR Images. The parameters o and oy can be
obtained from a set of tests.

We presently work on the generalisation of 3D geometrical relations and the extension
to other sulci of brain MRI examinations by integrating relations between sulci and other
structures like ventricles.
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