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The Degrees of Freedom of Partly Smooth Regularizers

Samuel Vaiter · Charles Deledalle ·
Jalal Fadili · Gabriel Peyré ·
Charles Dossal

Abstract In this paper, we are concerned with regularized regression prob-
lems where the prior regularizer is a proper lower semicontinuous and convex
function which is also partly smooth relative to a Riemannian submanifold.
This encompasses as special cases several known penalties such as the Lasso
(`1-norm), the group Lasso (`1−`2-norm), the `∞-norm, and the nuclear norm.
This also includes so-called analysis-type priors, i.e. composition of the pre-
viously mentioned penalties with linear operators, typical examples being the
total variation or fused Lasso penalties. We study the sensitivity of any regu-
larized minimizer to perturbations of the observations and provide its precise
local parameterization. Our main sensitivity analysis result shows that the
predictor moves locally stably along the same active submanifold as the ob-
servations undergo small perturbations. This local stability is a consequence
of the smoothness of the regularizer when restricted to the active submani-
fold, which in turn plays a pivotal role to get a closed form expression for the
variations of the predictor w.r.t. observations. We also show that, for a variety
of regularizers, including polyhedral ones or the group Lasso and its analysis
counterpart, this divergence formula holds Lebesgue almost everywhere. When
the perturbation is random (with an appropriate continuous distribution), this
allows us to derive an unbiased estimator of the degrees of freedom and of the
risk of the estimator prediction. Our results hold true without requiring the
design matrix to be full column rank. They generalize those already known in
the literature such as the Lasso problem, the general Lasso problem (analysis
`1-penalty), or the group Lasso where existing results for the latter assume
that the design is full column rank.
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1 Introduction

1.1 Regression and Regularization

We consider a model

E(Y |X) = h(Xβ0), (1)

where Y = (Y1, . . . , Yn) is the response vector, β0 ∈ Rp is the unknown vector
of linear regression coefficients, X ∈ Rn×p is the fixed design matrix whose
columns are the p covariate vectors, and the expectation is taken with respect
to some σ-finite measure. h is a known real-valued and smooth function Rn →
Rn. The goal is to design an estimator of β0 and to study its properties. In the
sequel, we do not make any specific assumption on the number of observations
n with respect to the number of predictors p. Recall that when n < p, (1) is
underdetermined, whereas when n > p and all the columns of X are linearly
independent, it is overdetermined.

Many examples fall within the scope of model (1). We here review two of
them.

Example 1 (GLM) One naturally thinks of generalized linear models (GLMs)
(McCullagh and Nelder 1989) which assume that conditionally on X, Yi are in-
dependent with distribution that belongs to a given (one-parameter) standard
exponential family. Recall that the random variable Z ∈ R has a distribution
in this family if its distribution admits a density with respect to some reference
σ-finite measure on R of the form

p(z; θ) = B(z) exp(zθ − ϕ(θ)), θ ∈ Θ ⊆ R ,

where Θ is the natural parameter space and θ is the canonical parameter. For
model (1), the distribution of Y belongs to the n-parameter exponential family
and its density reads

f(y|X;β0) =

(
n∏
i=1

Bi(yi)

)
exp

(
〈y, Xβ0〉 −

n∑
i=1

ϕi ((Xβ0)i)

)
, Xβ0 ∈ Θn ,

(2)
where 〈·, ·〉 is the inner product, and the canonical parameter vector is the lin-
ear predictor Xβ0. In this case, h(µ) = (hi(µi))16i6n, where hi is the inverse
of the link function in the language of GLM. Each hi is a monotonic differen-
tiable function, and a typical choice is the canonical link hi = ϕ′i, where ϕ′i is
one-to-one if the family is regular (Brown 1986).
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Example 2 (Transformations) The second example is where h plays the
role of a transformation such as variance-stabilizing transformations (VSTs),
symmetrizing transformations, or bias-corrected transformations. There is an
enormous body of literature on transformations, going back to the early 1940s.
A typical example is when Yi are independent Poisson random variables ∼
P ((Xβ0)i), in which case hi takes the form of the Anscombe bias-corrected
VST. See (DasGupta 2008, Chapter 4) for a comprehensive treatment and
more examples.

1.2 Variational Estimators

Regularization is now a central theme in many fields including statistics, ma-
chine learning and inverse problems. It allows one to impose on the set of
candidate solutions some prior structure on the object to be estimated. This
regularization ranges from squared Euclidean or Hilbertian norms (Tikhonov
and Arsenin 1997), to non-Hilbertian norms that have sparked considerable
interest in the recent years.

Given observations (y1, . . . , yn), we consider the class of estimators ob-
tained by solving the convex optimization problem

β̂(y) ∈ Argmin
β∈Rp

F (β, y) + J(β) . (P(y))

The fidelity term F is of the following form

F (β, y) = F0(Xβ, y) (3)

where F0(·, y) is a general loss function assumed to be a proper, convex and
sufficiently smooth function of its first argument; see Section 3 for a de-
tailed exposition of the smoothness assumptions. The regularizing penalty J
is proper lower semicontinuous and convex, and promotes some specific notion
of simplicity/low-complexity on β̂(y); see Section 3 for a precise description
of the class of regularizing penalties J that we consider in this paper. The
type of convex optimization problem in (P(y)) is referred to as a regularized
M -estimator in Negahban et al (2012), where J is moreover assumed to have
a special decomposability property.

We now provide some illustrative examples of loss functions F and regu-
larizing penalty J routinely used in signal processing, imaging sciences and
statistical machine learning.

Example 3 (Generalized linear models) Generalized linear models in the
exponential family falls into the class of losses we consider. Indeed, taking the
negative log-likelihood corresponding to (2) gives1

F0(µ, y) =
n∑
i=1

ϕi (µi)− 〈y, µ〉 . (4)

1 Strictly speaking, the minimization may have to be over a convex subset of Rp.
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It is well-known that if the exponential family is regular, then ϕi is proper,
infinitely differentiable, its Hessian is definite positive, and thus it is strictly
convex (Brown 1986). Therefore, F0(·, y) shares exactly the same properties.
We recover the squared loss F0(µ, y) = 1

2 ||y−µ||
2 for the standard linear models

(Gaussian case), and the logistic loss F0(µ, y) =
∑n
i=1 log (1 + exp(µi))−〈y, µ〉

for logistic regression (Bernoulli case).
GLM estimators with losses (4) and `1 or `1 − `2 (group) penalties have

been previously considered and some of their properties studied including in
(Bunea 2008; van de Geer 2008; de Geer 2008; Meier et al 2008; Bach 2010;
Kakade et al 2010); see also (Bühlmann and van de Geer 2011, Chapter 3, 4
and 6).

Example 4 (Lasso) The Lasso regularization is used to promote the sparsity
of the minimizers, see (Chen et al 1999; Tibshirani 1996; Osborne et al 2000;
Donoho 2006; Candès and Plan 2009; Bickel et al 2009), and (Bühlmann and
van de Geer 2011) for a comprehensive review. It corresponds to choosing J
as the `1-norm

J(β) = ||β||1 =

p∑
i=1

|βi|. (5)

It is also referred to as `1-synthesis in the signal processing community, in
contrast to the more general `1-analysis sparsity penalty detailed below.

Example 5 (General Lasso) To allow for more general sparsity penalties,
it may be desirable to promote sparsity through a linear operator D = (d1, . . . ,
dq) ∈ Rp×q. This leads to the so-called analysis-type sparsity penalty (a.k.a.
general Lasso after Tibshirani and Taylor (2012)) where the `1-norm is pre-
composed by D∗, hence giving

J(β) = ||D∗β||1 =

q∑
j=1

|〈dj , β〉|. (6)

This of course reduces to the usual lasso penalty (5) when D = Idp. The
penalty (6) encapsulates several important penalties including that of the 1-D
total variation (Rudin et al 1992), and the fused Lasso (Tibshirani et al 2005).
In the former, D∗ is a finite difference approximation of the derivative, and
in the latter, D∗ is the concatenation of the identity matrix Idp and the finite
difference matrix to promote both the sparsity of the vector and that of its
variations.

Example 6 (`∞ Anti-sparsity) In some cases, the vector to be reconstructed
is expected to be flat. Such a prior can be captured using the `∞ norm (a.k.a.
Tchebycheff norm)

J(β) = ||β||∞ = max
i∈{1,...,p}

|βi|. (7)

More generally, it is worth mentioning that a finite-valued function J is polyhe-
dral convex (including Lasso, general Lasso, `∞) if and only if can be expressed
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as max
i∈{1,...,q}

〈di, β〉−bi, where the vectors di define the facets of the sublevel set

at 1 of the penalty (Rockafellar 1996). The `∞ regularization has found appli-
cations in computer vision (Jégou et al 2012), vector quantization (Lyubarskii
and Vershynin 2010), or wireless network optimization (Studer et al 2012).

Example 7 (Group Lasso) When the covariates are assumed to be clus-
tered in a few active groups/blocks, the group Lasso has been advocated since
it promotes sparsity of the groups, i.e. it drives all the coefficients in one group
to zero together hence leading to group selection, see (Bakin 1999; Yuan and
Lin 2006; Bach 2008; Wei and Huang 2010) to cite a few. The group Lasso
penalty reads

J(β) = ||β||1,2 =
∑
b∈B

||βb||2. (8)

where βb = (βi)i∈b is the sub-vector of β whose entries are indexed by the block
b ∈ B where B is a disjoint union of the set of indices i.e.

⋃
b∈B = {1, . . . , p} such

that b, b′ ∈ B, b∩b′ = ∅. The mixed `1−`2 norm defined in (8) has the attractive
property to be invariant under (groupwise) orthogonal transformations.

Example 8 (General Group Lasso) One can push the structured sparsity
idea one step further by promoting group/block sparsity through a linear op-
erator, i.e. analysis-type group sparsity. Given a collection of linear operators
{Db}b∈B, that are not all orthogonal, the analysis group sparsity penalty is

J(β) = ||D∗β||1,2 =
∑
b∈B

||D∗bβ||2. (9)

This encompasses the 2-D isotropic total variation (Rudin et al 1992), where
β is a 2-D discretized image, and each D∗bβ ∈ R2 is a finite difference approx-
imation of the gradient of β at a pixel indexed by b. The overlapping group
Lasso (Jacob et al 2009) is also a special case of (9) by taking D∗b : β 7→ βb to
be a block extractor operator (Peyré et al 2011; Chen et al 2010).

Example 9 (Nuclear norm) The natural extension of low-complexity pri-
ors to matrix-valued objects β ∈ Rp1×p2 (where p = p1p2) is to penalize the sin-
gular values of the matrix. Let Uβ ∈ Rp1×p1 and Vβ ∈ Rp2×p2 be the orthonor-
mal matrices of left and right singular vectors of β, and λ : Rp1×p2 → Rp2

is the mapping that returns the singular values of β in non-increasing or-
der. If j ∈ Γ0(Rp2), i.e. convex, lower semi-continuous and proper, is an ab-
solutely permutation-invariant function, then one can consider the penalty
J(β) = j(λ(β)). This is a so-called spectral function, and moreover, it can
be also shown that J ∈ Γ0(Rp1×p2) (Lewis 2003b). The most popular spectral
penalty is the nuclear norm obtained for j = || · ||1,

J(β) = ||β||∗ = ||λ(β)||1 . (10)
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This penalty is the best convex candidate to enforce a low-rank prior. It has
been widely used for various applications, including low rank matrix comple-
tion (Recht et al 2010; Candès and Recht 2009), robust PCA (Candès et al
2011), model reduction (Fazel et al 2001), and phase retrieval (Candès et al
2013).

1.3 Sensitivity Analysis

A chief goal of this paper is to investigate the sensitivity of any solution β̂(y)
to the parameterized problem (P(y)) to (small) perturbations of y. Sensitiv-
ity analysis2 is a major branch of optimization and optimal control theory.
Comprehensive monographs on the subject are (Bonnans and Shapiro 2000;
Mordukhovich 1992). The focus of sensitivity analysis is the dependence and
the regularity properties of the optimal solution set and the optimal values
when the auxiliary parameters (e.g. y here) undergo a perturbation. In its
simplest form, sensitivity analysis of first-order optimality conditions, in the
parametric form of the Fermat rule, relies on the celebrated implicit function
theorem.

The set of regularizers J we consider is that of partly smooth functions rela-
tive to a Riemannian submanifold as detailed in Section 3. The notion of partial
smoothness was introduced in (Lewis 2003a). This concept, as well as that of
identifiable surfaces (Wright 1993), captures essential features of the geometry
of non-smoothness which are along the so-called “active/identifiable manifold”.
For convex functions, a closely related idea was developed in (Lemaréchal et al
2000). Loosely speaking, a partly smooth function behaves smoothly as we
move on the identifiable manifold, and sharply if we move normal to the man-
ifold. In fact, the behaviour of the function and of its minimizers (or critical
points) depend essentially on its restriction to this manifold, hence offering a
powerful framework for sensitivity analysis theory. In particular, critical points
of partly smooth functions move stably on the manifold as the function un-
dergoes small perturbations (Lewis 2003a; Lewis and Zhang 2013).

Getting back to our class of regularizers, the core of our proof strategy
relies on the identification of the active manifold associated to a particular
minimizer β̂(y) of (P(y)). We exhibit explicitly a certain set of observations,
denoted H (see Definition 3), outside which the initial non-smooth optimiza-
tion (P(y)) boils down locally to a smooth optimization along the active man-
ifold. This part of the proof strategy is in close agreement with the one devel-
oped in (Lewis 2003a) for the sensitivity analysis of partly smooth functions.
See also (Bolte et al 2011, Theorem 13) for the case of linear optimization over
a convex semialgebraic partly smooth feasible set, where the authors proves
a sensitivity result with a zero-measure transition space. However, it is im-
portant to stress that neither the results of (Lewis 2003a) nor those of (Bolte
et al 2011; Drusvyatskiy and Lewis 2011) can be applied straightforwardly in

2 The meaning of sensitivity is different here from what is usually intended in statistical
sensitivity and uncertainty analysis.
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our context for two main reasons (see also Remark 1 for a detailed discus-
sion). In all these works, a non-degeneracy assumption is crucial while it does
not necessarily hold in our case, and this is precisely the reason we consider
the boundary of the sets HM in the definition of the transition set H. More-
over, in the latter papers, the authors are concerned with a particular type
of perturbations (see Remark 1) which does not allow to cover our class of
regularized problems except for restrictive cases such as X injective. For our
class of problems (P(y)), we were able to go beyond these works by solving
additional key challenges that are important in a statistical context, namely:
(i) we provide an analytical description of the set H involving the boundary
of HM, which entails that H is potentially of dimension strictly less than n,
hence of zero Lebesgue measure, as we will show under a mild o-minimality
assumption. (ii) we prove a general sensitivity analysis result valid for any
proper lower semicontinuous convex partly smooth regularizer J ; (iii) we com-

pute the first-order expansion of β̂(y) and provide an analytical form of the

weak derivative of y 7→ Xβ̂(y) valid outside a set involving H. If this set is of
zero-Lebesgue measure, this allows us to get an unbiased estimator of the risk
on the prediction Xβ̂(Y ).

1.4 Degrees of Freedom and Unbiased Risk Estimation

The degrees of freedom (DOF) of an estimator quantifies the complexity of
a statistical modeling procedure (Efron 1986). It is at the heart of several
risk estimation procedures and thus allows one to perform parameter selection
through risk minimization.

In this section, we will assume that F0 in (3) is strictly convex, so that

the response (or the prediction) µ̂(y) = Xβ̂(y) is uniquely defined as a single-
valued mapping of y (see Lemma 2). That is, it does not depend on a particular

choice of solution β̂(y) of (P(y)).

Let µ0 = Xβ0. Suppose that h in (1) is the identity and that the observa-
tions Y ∼ N (µ0, σ

2Idn). Following (Efron 1986), the DOF is defined as

df =
n∑
i=1

cov(Yi, µ̂i(Y ))

σ2
.

The well-known Stein’s lemma (Stein 1981) asserts that, if y 7→ µ̂(y) is weakly
differentiable function (i.e. typically in a Sobolev space over an open subset
of Rn), such that each coordinate y 7→ µ̂i(y) ∈ R has an essentially bounded
weak derivative3

E
Å∣∣∣∂µ̂i
∂yi

(Y )
∣∣∣ã <∞, ∀i ,

3 We write the same symbol as for the derivative, and rigorously speaking, this has to be
understood to hold Lebesgue-a.e.
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then its divergence is an unbiased estimator of its DOF, i.e.“df = div(µ̂)(Y )
def.
= tr(Dµ̂(Y )) and E(“df) = df ,

where Dµ̂ is the Jacobian of y 7→ µ̂(y). In turn, this allows to get an unbiased
estimator of the prediction risk E(||µ̂(Y ) − µ0||2) through the SURE (Stein
1981).

Extensions of the SURE to independent variables from an exponential fam-
ily are considered in (Hudson 1978) for the continuous case, and (Hwang 1982)
in the discrete case. Eldar (2009) generalizes the SURE principle to continuous
multivariate exponential families.

1.5 Contributions

We consider a large class of losses F0, and of regularizing penalties J which are
proper, lower semicontinuous, convex and partly smooth functions relative to a
Riemannian submanifold, see Section 3. For this class of regularizers and losses,
we first establish in Theorem 1 a general sensitivity analysis result, which
provides the local parametrization of any solution to (P(y)) as a function of the
observation vector y. This is achieved without placing any specific assumption
on X, should it be full column rank or not. We then derive an expression of
the divergence of the prediction with respect to the observations (Theorem 2)
which is valid outside a set of the form G ∩H, where G is defined in Section 5.
Using tools from o-minimal geometry, we prove that the transition set H is
of Lebesgue measure zero. If G is also negligible, then the divergence formula
is valid Lebesgue-a.e.. In turn, this allows us to get an unbiased estimate of
the DOF and of the prediction risk (Theorem 3 and Theorem 4) for model (1)
under two scenarios: (i) Lipschitz continuous non-linearity h and an additive
i.i.d. Gaussian noise; (ii) GLMs with a continuous exponential family. Our
results encompass many previous ones in the literature as special cases (see
discussion in the next section). It is important however to mention that though
our sensitivity analysis covers the case of the nuclear norm (also known as the
trace norm), unbiasedness of the DOF and risk estimates is not guaranteed in
general for this regularizer as the restricted positive definiteness assumption
(see Section 4) may not hold at any minimizer (see Example 27), and thus G
may not be always negligible.

1.6 Relation to prior works

In the case of standard Lasso (i.e. `1 penalty (5)) with Y ∼ N (Xβ0, σ
2Idn) and

X of full column rank, (Zou et al 2007) showed that the number of nonzero
coefficients is an unbiased estimate for the DOF. Their work was generalized
in (Dossal et al 2013) to any arbitrary design matrix. Under the same Gaussian
linear regression model, unbiased estimators of the DOF for the general Lasso
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penalty (6), were given independently in (Tibshirani and Taylor 2012; Vaiter
et al 2013).

A formula of an estimate of the DOF for the group Lasso when the design
is orthogonal within each group was conjectured in (Yuan and Lin 2006). Kato
(2009) studied the DOF of a general shrinkage estimator where the regression
coefficients are constrained to a closed convex set C. His work extends that
of (Meyer and Woodroofe 2000) which treats the case where C is a convex
polyhedral cone. When X is full column rank, (Kato 2009) derived a divergence
formula under a smoothness condition on the boundary of C, from which an
unbiased estimator of the degrees of freedom was obtained. When specializing
to the constrained version of the group Lasso, the author provided an unbiased
estimate of the corresponding DOF under the same group-wise orthogonality
assumption on X as (Yuan and Lin 2006). Hansen and Sokol (2014) studied the
DOF of the metric projection onto a closed set (non-necessarily convex), and
gave a precise representation of the bias when the projector is not sufficiently
differentiable. An estimate of the DOF for the group Lasso was also given
by (Solo and Ulfarsson 2010) using heuristic derivations that are valid only
when X is full column rank, though its unbiasedness is not proved.

Vaiter et al (2012) also derived an estimator of the DOF of the group
Lasso and proved its unbiasedness when X is full column rank, but without
the orthogonality assumption required in (Yuan and Lin 2006; Kato 2009).
When specialized to the group Lasso penalty, our results establish that the
DOF estimator formula in (Vaiter et al 2012) is still valid while removing the
full column rank assumption. This of course allows one to tackle the more
challenging rank-deficient or underdetermined case p > n.

2 Notations and preliminaries

Vectors and matrices Given a non-empty closed set C ⊂ Rp, we denote PC
the orthogonal projection on C. For a subspace T ⊂ Rp, we denote

βT = PT β and XT = X PT .

For a set of indices I ⊂ N∗, we will denote βI (resp. XI) the subvector (resp.
submatrix) whose entries (resp. columns) are those of β (resp. of X) indexed
by I. For a linear operator A, A∗ is its adjoint. For a matrix M , M> is its
transpose and M+ its Moore-Penrose pseudo-inverse.

Sets In the following, for a non-empty set C ⊂ Rp, we denote conv C and
cone C respectively its convex and conical hulls. ιC is the indicator function
of C (takes 0 in C and +∞ otherwise), and NC(β) is the cone normal to C
at β. For a non-empty convex set C, its affine hull aff C is the smallest affine
manifold containing it. It is a translate of par C, the subspace parallel to C,
i.e. par C = aff C −β = R(C −C) for any β ∈ C. The relative interior ri C (resp.
relative boundary rbd C) of C is its interior (resp. boundary) for the topology
relative to its affine hull.
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Functions For a C1 vector field v : y ∈ Rn 7→ v(y), Dv(y) denotes its Jacobian
at y. For a C2 smooth function f̃ , df̃(β)[ξ] = 〈∇f̃(β), ξ〉 is its directional
derivative, ∇f̃(β) is its (Euclidean) gradient and ∇2f̃(β) is its (Euclidean)
Hessian at β. For a bivariate function g : (β, y) ∈ Rp × Rn → R that is C2

with respect to the first variable β, for any y, we will denote ∇g(β, y) and
∇2g(β, y) the gradient and Hessian of g at β with respect to the first variable.

A function f : β ∈ Rp 7→ R ∪ {+∞} is lower semicontinuous (lsc) if
its epigraph is closed. Γ0(Rp) is the class of convex and lsc functions which
are proper (i.e. not everywhere +∞). ∂f is the (set-valued) subdifferential
operator of f ∈ Γ0(Rp). If f is differentiable at β then ∇f(β) is its unique
subgradient, i.e. ∂f(β) = {∇f(β)}.

Consider a function J ∈ Γ0(Rp) such that ∂J(β) 6= ∅. We denote Sβ the
subspace parallel to ∂J(β) and its orthogonal complement Tβ , i.e.

Sβ = par(∂J(β)) and Tβ = S⊥β . (11)

We also use the notation

e(β) = Paff(∂J(β))(0),

i.e. the projection of 0 onto the affine hull of ∂J(β).

Differential and Riemannian geometry Let M be a C2-smooth em-
bedded submanifold of Rp around β? ∈ M. To lighten notation, henceforth
we shall state C2-manifold instead of C2-smooth embedded submanifold of
Rp. Tβ(M) denotes the tangent space to M at any point β ∈ M near β?.
The natural embedding of a submanifold M into Rp permits to define a Rie-
mannian structure on M, and we simply say M is a Riemannian manifold.
For a vector v ∈ Tβ(M)⊥, the Weingarten map of M at β is the operator
Aβ(·, v) : Tβ(M)→ Tβ(M) defined as

Aβ(ξ, v) = −PTβ(M) dV [ξ]

where V is any local extension of v to a normal vector field onM. The defini-
tion is independent of the choice of the extension V , and Aβ(·, v) is a symmetric
linear operator which is closely tied to the second fundamental form of M;
see (Chavel 2006, Proposition II.2.1).

Let f be a real-valued function which is C2 onM around β?. The covariant
gradient of f at β is the vector ∇Mf(β) ∈ Tβ(M) such that

〈∇Mf(β), ξ〉 =
d

dt
f (PM(β + tξ))

∣∣
t=0

,∀ξ ∈ Tβ(M) .

The covariant Hessian of f at β is the symmetric linear mapping ∇2
Mf(β)

from Tβ(M) into itself defined as

〈∇2
Mf(β)ξ, ξ〉 =

d2

dt2
f (PM(β + tξ))

∣∣
t=0

,∀ξ ∈ Tβ(M) .

This definition agrees with the usual definition using geodesics or connections
(Miller and Malick 2005). Assume now that M is a Riemannian embedded
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submanifold of Rp, and that a function f has a smooth restriction onM. This
can be characterized by the existence of a smooth extension (representative)
of f , i.e. a smooth function f̃ on Rp such that f̃ and f agree onM. Thus, the
Riemannian gradient ∇Mf(β) is also given by

∇Mf(β) = PTβ(M)∇f̃(β) (12)

and, ∀ξ ∈ Tβ(M), the Riemannian Hessian reads

∇2
Mf(β)ξ = PTβ(M) d (∇Mf) (β)[ξ] = PTβ(M) d

Ä
β 7→ PTβ(M)∇f̃(β)

ä
[ξ]

= PTβ(M)∇2f̃(β) PTβ(M) ξ + Aβ
Ä
ξ,PTβ(M)⊥ ∇f̃(β)

ä
, (13)

where the last equality comes from (Absil et al 2013, Theorem 1). When M
is an affine or linear subspace of Rp, then obviously M = β + Tβ(M), and

Aβ
Ä
ξ,PTβ(M)⊥ f̃(β)

ä
= 0, hence (13) becomes

∇2
Mf(β) = PTβ(M)∇2f̃(β) PTβ(M) . (14)

Similarly to the Euclidean case, for a real-valued bivariate function g that is
C2 onM around the first variable β, for any y, we will denote ∇Mg(β, y) and
∇2
Mg(β, y) the Riemannian gradient and Hessian of g at β with respect to the

first variable. See e.g. (Lee 2003; Chavel 2006) for more material on differential
and Riemannian manifolds.

3 Partly Smooth Functions

3.1 Partial Smoothness

Toward the goal of studying the sensitivity behaviour of β̂(y) and µ̂(y) with
regularizers J ∈ Γ0(Rp), we restrict our attention to a subclass of these func-
tions that fulfill some regularity assumptions according to the following defi-
nition.

Definition 1 Let J ∈ Γ0(Rp) and a point β such that ∂J(β) 6= ∅. J is said to
be partly smooth at β relative to a set M⊆ Rp if

1. Smoothness: M is a C2-manifold and J restricted to M is C2 around β.

2. Sharpness: Tβ(M) = Tβ
def.
= par(∂J(β))⊥.

3. Continuity: The set-valued mapping ∂J is continuous at β relative to M.

J is said to be partly smooth relative to the manifoldM if J is partly smooth
at each point β ∈M relative to M.

Observe that M being affine or linear is equivalent to M = β + Tβ . A closed
convex set C is partly smooth at a point β ∈ C relative to a C2-manifold M
locally contained in C if its indicator function ιC maintains this property.

Lewis (2003a, Proposition 2.10) allows to prove the following fact (known
as local normal sharpness).
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Fact 1 If J is partly smooth at β relative to M, then all β′ ∈ M near β
satisfy

Tβ′(M) = Tβ′ .

In particular, when M is affine or linear, then

∀β′ ∈M near β, Tβ′ = Tβ .

It can also be shown that the class of partly smooth functions enjoys a
powerful calculus. For instance, under mild conditions, it is closed under pos-
itive combination, pre-composition by a linear operator and spectral lifting,
with closed-form expressions of the resulting partial smoothness manifolds and
their tangent spaces, see (Lewis 2003a; Vaiter et al 2014).

It turns out that except the nuclear norm, the regularizing penalties that
we exemplified in Section 1 are partly smooth relative to a linear subspace.
The nuclear norm is partly smooth relative to the fixed-rank manifold.

Example 10 (Lasso) We denote (ai)16i6p the canonical basis of Rp. Then,
J = || · ||1 is partly smooth at β relative to

M = Tβ = Span{(ai)i∈supp(β)} where supp(β)
def.
= {i ∈ {1, . . . , p} : βi 6= 0} .

Example 11 (General Lasso) Vaiter et al (2015, Proposition 9) relates the
partial smoothness subspace associated to a convex partly smooth regularizer
J ◦D∗, where D is a linear operator, to that of J . In particular, for J = || · ||1,
J ◦D∗ is partly smooth at β relative to

M = Tβ = Ker(D∗Λc) where Λ = supp(D∗β).

Example 12 (`∞ Anti-sparsity) It can be readily checked that J = || · ||∞
is partly smooth at β relative to

M = Tβ = {β′ : β′I ∈ R sign(βI)} where I = {i : βi = ||β||∞} .

Example 13 (Group Lasso) The partial smoothness subspace associated
to β when the blocks are of size greater than 1 can be defined similarly, but
using the notion of block support. Using the block structure B, one has that
the group Lasso regularizer is partly smooth at β relative to

M = Tβ = Span{(ai)i∈suppB(β)},

where

suppB(β) = {i ∈ {1, . . . , p} : ∃b ∈ B, βb 6= 0 and i ∈ b} .

Example 14 (General Group Lasso) Using again (Vaiter et al 2015, Propo-
sition 9), we can describe the partial smoothness subspace for J = ||D∗ · ||B,
which reads

M = Tβ = Ker(D∗Λc) where Λ = suppB(D∗β).
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Example 15 (Nuclear norm) Piecing together (Daniilidis et al 2013, The-
orem 3.19) and Example 10, the nuclear norm can be shown to be partly
smooth at β ∈ Rp1×p2 relative to the set

M = {β′ : rank(β′) = r} , r = rank(β),

which is a C2-manifold around β of dimension (p1 + p2 − r)r; see (Lee 2003,
Example 8.14).

Example 16 (Indicator function of a partly smooth set C) Let C be a
closed convex and partly smooth set at β ∈ C relative to M. Observe that
when β ∈ ri C, M = Rp. For β ∈ rbd C, M is locally contained in rbd C.

We now consider an instructive example of a partly smooth function rela-
tive to a non-flat active submanifold that will serve as a useful illustration in
the rest of the paper.

Example 17 (J = max(|| · || − 1, 0)) We have J ∈ Γ0(Rp) and continuous. It
is then differentiable Lebesgue-a.e., except on the unit sphere Sp−1. For β
outside Sp−1, J is parly smooth at β relative to Rp. For β ∈ Sp−1, J is partly
smooth at β relative to Sp−1. Obviously, Sp−1 is a C2-smooth manifold.

3.2 Riemannian Gradient and Hessian

We now give expressions of the Riemannian gradient and Hessian for the case
of partly smooth functions relative to a C2-manifold. This is summarized in
the following fact which follows by combining (12), (13), Definition 1 and
Daniilidis et al (2009, Proposition 17).

Fact 2 If J is partly smooth relative at β relative to M, then for any β′ ∈M
near β

∇MJ(β′) = PTβ′ (∂J(β′)) = e(β′) ,

and this does not depend on the smooth representation J̃ of J on M. In turn,

∇2
MJ(β) = PTβ ∇2J̃(β) PTβ +A(·,PSβ ∇J̃(β)) .

Let’s now exemplify this fact by providing the expressions of the Rieman-
nian Hessian for the examples discussed above.

Example 18 (Polyhedral penalty) Polyhedrality of J implies that it is
affine nearby β along the partial smoothness subspace M = β + Tβ , and
its subdifferential is locally constant nearby β alongM. In turn, the Rieman-
nian Hessian of J vanishes locally, i.e. ∇2

MJ(β′) = 0 for all β′ ∈M near β. Of
course, this holds for the Lasso, general Lasso and `∞ anti-sparsity penalties
since they are all polyhedral.
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Example 19 (Group Lasso) Using the expression of M = Tβ in Exam-
ple 13, it is straightforward to show that

∇2
MJ(β) = δβ ◦Qβ⊥ ,

where, for Λ = suppB(β),

δβ : Tβ → Tβ , v 7→
®
vb/||βb|| if βb 6= 0

0 otherwise

and

Qβ⊥ : Tβ → Tβ , v 7→
®
vb − 〈βb, vb〉||βb||2 βb if βb 6= 0

0 otherwise
.

Example 20 (General Group Lasso) Applying the chain rule to Exam-
ple 19, we get

∇2
MJ(β) = PKer(D∗

Λc
)D
(
δD∗β ◦Q(D∗β)⊥

)
D∗ PKer(D∗

Λc
),

where Λ = suppB(D∗β) and the operator δD∗β ◦Q(D∗β)⊥ is defined similarly
to Example 19.

Example 21 (Nuclear norm) For β ∈ Rp1×p2 with rank(β) = r, let β =
U diag(λ(β))V ∗ be a reduced rank-r SVD decomposition, where U ∈ Rp1×r

and V ∈ Rp2×r have orthonormal columns, and λ(β) ∈ (R+\{0})r is the vector
of singular values (λ1(β), · · · , λr(β)) in non-increasing order. From the partial
smoothness of the nuclear norm at β (Example 15) and its subdifferential, one
can deduce that

Tβ(M) = Tβ =
{
UA∗ +BV ∗ : A ∈ Rp2×r, B ∈ Rp1×r

}
and (15)

∇M|| · ||∗(β) = e(β) = UV ∗.

It can be checked that the orthogonal projector on Tβ is given by

PTβ W = UU∗W +WV V ∗ − UU∗WV V ∗

Let ξ ∈ Tβ and W ∈ Sβ . Then, from (Absil et al 2013, Section 4.5), the
Weingarten map reads

Aβ (ξ,W ) = Wξ∗β+∗ + β+∗ξ∗W where β+∗ def.
= U diag(λ(β))−1V ∗. (16)

In turn, from Fact 2, the Riemannian Hessian of the nuclear norm reads

∇2
M|| · ||∗(β)(ξ) = PTβ ∇2fi|| · ||∗(β)(PTβ ξ)

+ PSβ ∇fi|| · ||∗(β)ξ∗β+∗ + β+∗ξ∗ PSβ ∇fi|| · ||∗(β),

where fi|| · ||∗ is any smooth representative of the nuclear norm at β on M.
Owing to the smooth transfer principle (Daniilidis et al 2013, Corollary 2.3),
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the nuclear norm has a C2-smooth (and even convex) representation on M
near β which is fl||β′||∗ = ‚�||λ(β′)||1 =

r∑
i=1

λi(β
′).

Combining this with (Lewis 1995, Corollary 2.5), we then have ∇fi|| · ||∗(β) =

UV ∗, and thus Aβ

(
ξ,PSβ ∇fi|| · ||∗(β)

)
= 0, or equivalently,

∇2
M|| · ||∗(β)(ξ) = PTβ ∇2fi|| · ||∗(β)(PTβ ξ). (17)

The expression of the Hessian ∇2fi|| · ||∗(β) can be obtained from the derivative
of UV ∗ using either (Candès et al 2012, Theorem 4.3) or (Deledalle et al 2012,
Theorem 1) when β is full-rank with distinct singular values, or from (Lewis
and Sendov 2001, Theorem 3.3) in the case where β is symmetric with possibly
repeated eigenvalues.

Example 22 (Indicator function of a partly smooth set C) Let C be a
closed convex and partly smooth set at β ∈ C relative toM. From Example 16,
it is then clear that the zero-function is a smooth representative of ιC on M
around β. In turn, the Riemannian gradient and Hessian of ιC vanish around
β on M.

Example 23 (J = max(|| · || − 1, 0)) Let β ∈ Sp−1. We have Tβ = (Rβ)
⊥

, and
the orthogonal projector onto Tβ is

PTβ = Id− ββ>.

The Weingarten map then reduces to

Aβ (ξ, v) = −ξ〈β, v〉, ξ ∈ Tβ and v ∈ Sβ .

Moreover, the zero-function is a smooth representative of J on Sp−1. It then
follows that ∇2

MJ(β) = 0.

4 Sensitivity Analysis of β̂(y)

In all the following, we consider the variational regularized problem (P(y)).
We recall that J ∈ Γ0(Rp) and is partly smooth. We also suppose that the
fidelity term fulfills the following conditions:

∀ y ∈ Rn, F (·, y) ∈ C2(Rp) and ∀β ∈ Rp, F (β, ·) ∈ C2(Rn). (CF )

Combining (13) and the first part of assumption (CF ), we have for all y ∈ Rn

∇2
MF (β, y)(β, y)ξ = PTβ ∇2F (β, y) PTβ +Aβ

(
ξ,PSβ ∇F (β, y)

)
PTβ . (18)

When M is affine or linear, equation (18) becomes

∇2
MF (β, y)(β, y)ξ = PTβ ∇2F (β, y) PTβ . (19)
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4.1 Restricted positive definiteness

In this section, we aim at computing the derivative of the (set-valued) map

y 7→ β̂(y) whenever this is possible. The following condition plays a pivotal
role in this analysis.

Definition 2 (Restricted Positive Definiteness) A vector β ∈ Rp is said
to satisfy the restricted positive definiteness condition if, and only if,

〈(∇2
MF (β, y) +∇2

MJ(β))ξ, ξ〉 > 0 ∀ 0 6= ξ ∈ Tβ . (Cβ,y)

Condition (Cβ,y) has a convenient re-writing in the following case.

Lemma 1 Let J ∈ Γ0(Rp) be partly smooth at β ∈ Rp relative to M, and set
T = Tβ. Assume that ∇2

MF (β, y) and ∇2
MJ(β) are positive semidefinite on

T . Then

(Cβ,y) holds if and only if Ker(∇2
MF (β, y)) ∩Ker(∇2

MJ(β)) ∩ T = {0}.

For instance, the positive semidefiniteness assumption is satisfied when M is
an affine or linear subspace.

When F takes the form (3) with F0 the squared loss, condition (Cβ,y) can
be interpreted as follows in the examples we discussed so far.

Example 24 (Polyhedral penalty) Recall that a polyhedral penalty is partly
smooth at β relative to M = β + Tβ . Combining this with Example 18, con-
dition (Cβ,y) specializes to

Ker(XTβ ) = {0}.

Lasso Applying this to the Lasso (see Example 10), (Cβ,y) reads Ker(XΛ) =
{0}, with Λ = supp(β). This condition is already known in the literature, see
for instance (Dossal et al 2013).

General Lasso In this case, Example 11 entails that (Cβ,y) becomes

Ker(X) ∩Ker(D∗Λc) = {0}, where Λ = supp(D∗β).

This condition was proposed in (Vaiter et al 2013).

Example 25 (Group Lasso) For the case of the group Lasso, by virtue of
Lemma 2(ii) and Example 19, one can see that condition (Cβ,y) amounts to
assuming that the system {Xbβb : b ∈ B, βb 6= 0} is linearly independent. This
condition appears in (Liu and Zhang 2009) to establish `2-consistency of the
group Lasso. It goes without saying that condition (Cβ,y) is much weaker than
imposing that XΛ is full column rank, which is standard when analyzing the
Lasso.
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Example 26 (General group Lasso) For the general group Lasso, let Iβ ={
i : bi ∈ B and D∗biβ 6= 0

}
, i.e. the set indexing the active blocks of D∗β.

Combining Example 14 and Example 20, one has

Ker(∇2
MJ(β)) ∩Ker(D∗Λc) ={

h ∈ Rp : D∗bih = 0 ∀i /∈ Iβ and D∗bih ∈ R D∗biβ ∀i ∈ Iβ
}
,

where Λ = suppB(D∗β). Indeed, δD∗β is a diagonal strictly positive linear
operator, and Q(D∗β)⊥ is a block-wise linear orthogonal projector, and we get
for h ∈ Ker(D∗Λc),

h ∈ Ker(∇2
MJ(β)) ⇐⇒ 〈h, ∇2

MJ(β)h〉 = 0

⇐⇒ 〈D∗h,
(
δD∗β ◦Q(D∗β)⊥

)
D∗h〉 = 0

⇐⇒
∑
i∈Iβ

||P(D∗
bi
β)⊥(D∗bih)||2

||D∗biβ||
= 0

⇐⇒ D∗biβ ∈ R D∗biβ ∀i ∈ Iβ .

In turn, by Lemma 2(ii), condition (Cβ,y) is equivalent to saying that 0 is the
only vector in the set{

h ∈ Rp : Xh = 0 and D∗bih = 0 ∀i /∈ Iβ and D∗bih ∈ R D∗biβ ∀i ∈ Iβ
}
.

Observe that when D is a Parseval tight frame, i.e. DD∗ = Id, the above
condition is also equivalent to saying that the system

{
(XD)bi D

∗
bi
β : i ∈ Iβ

}
is linearly independent.

Example 27 (Nuclear norm) We have seen in Example 21 that the nuclear
norm has a C2-smooth representative which is also convex. It then follows
from (17) that the Riemannian Hessian of the nuclear norm at β is positive
semidefinite on Tβ , where Tβ is given in (15).

As far as F is concerned, one cannot conclude in general on positive
semidefiniteness of its Riemannian Hessian. Let’s consider the case where
β ∈ Sp, the vector space of real p1 × p1 symmetric matrices endowed with
the trace (Frobenius) inner product 〈β, β′〉 = tr(ββ′). From (16) and (18), we
have for any ξ ∈ Tβ ∩ Sp1

〈ξ, ∇2
MF (β, y)(ξ)〉 =〈ξ, PTβ ∇2F (β, y)(PTβ ξ)〉

+ 2〈ξU diag(λ(β))−1U>ξ, PSβ ∇F (β, y)〉.

Assume that β is a global minimizer of (P(y)), which by Lemma 3, implies
that

PSβ ∇F (β, y) = U⊥ diag(γ)U⊥
>

where U⊥ ∈ Rn×(p1−r) is a matrix whose columns are orthonormal to U , and
γ ∈ [−1, 1]p1−r. We then get

〈ξ, ∇2
MF (β, y)(ξ)〉 =〈ξ, PTβ ∇2F (β, y)(PTβ ξ)〉

+ 2〈U⊥>ξU diag(λ(β))−1U>ξU⊥, diag(γ)〉.



18 Samuel Vaiter et al.

It is then sufficient that β is such that the entries of γ are positive for
∇2
MF (β, y) to be indeed positive semidefinite on T . In this case, Lemma 1

applies.

In a nutshell, Lemma 1 does not always apply to the nuclear norm as
∇2
MF (β, y) is not always guaranteed to be positive semidefinite in this case.

One may then wonder whether there exist partly smooth functions J , with
a non-flat active submanifold, for which Lemma 1 applies, at least at some
minimizer of (P(y)). The answer is affirmative for instance for the regularizer
of Example 17.

Example 28 (J = max(|| · || − 1, 0)) Let β ∈ Sp−1. From Example 23, we
have for ξ ∈ Tβ

〈ξ, ∇2
MF (β, y)ξ〉 = 〈ξ, ∇2F (β, y)ξ〉 − ||ξ||2〈β, ∇F (β, y)〉.

Assume that β is a global minimizer of (P(y)), which by Lemma 3, implies
that

−∇F (β, y) ∈ β[0, 1]⇒ −〈β, ∇F (β, y)〉 ∈ [0, 1].

Thus, 〈ξ, ∇2
MF (β, y)ξ〉 > 0, for all ξ ∈ Tβ . Since from Example 23,∇2

MJ(β) =
0, Lemma 1 applies at β. Condition (Cβ,y) then holds if, and only if,∇2

MF (β, y)
is positive definite on Tβ . For the case of a quadratic loss, this is equivalent to

ker(X) ∩ Tβ = {0} or β is not a minimizer of F (·, y).

4.2 Sensitivity analysis: Main result

Let us now turn to the sensitivity of any minimizer β̂(y) of (P(y)) to perturba-
tions of y. Because of non-smoothness of the regularizer J , it is a well-known
fact in sensitivity analysis that one cannot hope for a global claim, i.e. an
everywhere smooth mapping4 y 7→ β̂(y). Rather, the sensitivity behaviour is
local. This is why the reason we need to introduce the following transition
space H, which basically captures points of non-smoothness of β̂(y).

Let’s denote the set of all possible partial smoothness active manifoldsMβ

associated to J as

M = {Mβ}β∈Rp . (20)

For any M ∈ M , we denote ıM the set of vectors sharing the same partial
smoothness manifold M,ıM = {β′ ∈ Rp : Mβ′ =M} .

For instance, when J = || · ||1, ıMβ is the cone of all vectors sharing the same
support as β.

4 To be understood here as a set-valued mapping.
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Definition 3 The transition space H is defined as

H =
⋃
M∈M

HM, where HM = bd(Πn+p,n(AM)),

where M is given by (20), and we denote

Πn+p,n :

®
Rn × ıM −→ Rn

(y, β) 7−→ y

the canonical projection on the first n coordinates, bd C is the boundary of the
set C, and

AM =
¶

(y, β) ∈ Rn × ıM : −∇F (β, y) ∈ rbd ∂J(β)
©
.

Remark 1 Before stating our result, some comments about this definition are
in order. When bd is removed in the definition of HM, we recover the classical
setting of sensitivity analysis under partial smoothness, where HM contains the
set of degenerate minimizers (those such that 0 is in the relative boundary of
the subdifferential of F (·, y)+J). This is considered for instance in (Bolte et al
2011; Drusvyatskiy and Lewis 2011) who studied sensitivity of the minimizers

of β 7→ fν(β)
def.
= f(β) − 〈ν, β〉 to perturbations of ν when f ∈ Γ0(Rp) and

partly smooth; see also (Drusvyatskiy et al 2015) for the semialgebraic non-
necessarily non-convex case. These authors showed that for ν outside a set
of Lebesgue measure zero, fν has a non-degenerate minimizer with quadratic
growth of fν, and for each ν̄ near ν, the perturbed function fν̄ has a unique
minimizer that lies on the active manifold of fν with quadratic growth of fν̄.
These results however do not apply to our setting in general. To see this,
consider the case of (P(y)) where F takes the form (3) with F0 the quadratic
(the same applies to other losses in the exponential family just as well). Then,
(P(y)) is equivalent to minimizing fν, with f = J + ||X · ||2 and ν = 2X>y.
It goes without saying that, in general (i.e. for any X), a property valid for ν
outside a zero Lebesgue measure set does not imply it holds for y outside a zero
Lebesgue measure set. To circumvent such a difficulty, our key contribution is
to consider the boundary of HM. This turns out to be crucial to get a set of
dimension potentially strictly less than n, hence negligible, as we will show
under a mild o-minimality assumption (see Section 6). However, doing so,
uniqueness of the minimizer is not longer guaranteed.

In the particular case of the Lasso (resp. general Lasso), i.e. F0 is the
squared loss, J = || · ||1 (resp. J = ||D∗ · ||1), the transition space H specializes
to the one introduced in (Dossal et al 2013) (resp. (Vaiter et al 2013)). In
these specific cases, since J is a polyhedral gauge, H is in fact a union of
affine hyperplanes. The geometry of this set can be significantly more complex
for other regularizers. For instance, for J = || · ||1,2, it can be shown to be a
semi-algebraic set (union of algebraic hyper-surfaces). Section 6 is devoted to
a detailed analysis of this set H.

We are now equipped to state our main sensitivity analysis result, whose
proof is deferred to Section 8.3.
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Theorem 1 Assume that (CF ) holds. Let y 6∈ H, and β̂(y) a solution of

(P(y)) where J ∈ Γ0(Rp) is partly smooth at β̂(y) relative to M def.
= M

β̂(y)
and

such that (C
β̂(y),y

) holds. Then, there exists an open neighborhood V ⊂ Rn of

y, and a mapping β̃ : V →M such that

1. For all ȳ ∈ V, β̃(ȳ) is a solution of (P(ȳ)), and β̃(y) = β̂(y).
2. the mapping β̃ is C1(V) and

∀ ȳ ∈ V, Dβ̃(ȳ) = −(∇2
MF (β̃(ȳ), ȳ)+∇2

MJ(β̃(ȳ)))+ PTβ̃(ȳ)
D(∇F )(β̃(ȳ), ȳ),

(21)
where D(∇F )(β, y) is the Jacobian of ∇F (β, ·) with respect to the second
variable evaluated at y.

Theorem 1 can be extended to the case where the data fidelity is of the form
F (β, θ) for some parameter θ, with no particular role of y here.

5 Sensitivity Analysis of µ̂(y)

We assume in this section that F takes the form (3) with

∀ (µ, y) ∈ Rn × Rn, ∇2F0(µ, y) is positive definite. (Cdp)

This in turn implies that F0(·, y) is strictly convex for any y (the converse is
obviously not true). Recall that this condition is mild and holds in many situa-
tions, in particular for some losses (4) in the exponential family, see Section 1.2
for details.

We have the following simple lemma.

Lemma 2 Suppose the condition (Cdp) is satisfied. The following holds,

(i) All minimizers of (P(y)) share the same image under X and J .
(ii) If the partial smoothness submanifoldM at β is affine or linear, then (Cβ,y)

holds if, and only if, Ker(X) ∩ Ker(∇2
MJ(β)) ∩ T = {0}, where T = Tβ

and ∇2
MJ(β) is given in Fact 2.

Owing to this lemma, we can now define the prediction

µ̂(y) = Xβ̂(y) (22)

without ambiguity given any solution β̂(y), which in turn defines a single-
valued mapping µ̂. The following theorem provides a closed-form expression
of the local variations of µ̂ as a function of perturbations of y. For this, we
define the following set that rules out the points y where (C

β̂(y),y
) does not

hold for any any minimizer.

Definition 4 (Non-injectivity set) The Non-injectivity set G is

G =
{
y /∈ H : (C

β̂(y),y
) does not hold for any minimizer β̂(y) of (P(y))

}
.
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Theorem 2 Under assumptions (CF ) and (Cdp), the mapping y 7→ µ̂(y) is
C1(Rn \ (H ∪ G)). Moreover, for all y 6∈ H ∪ G,

div(µ̂)(y)
def.
= tr(Dµ̂(y)) = tr(∆(y)) (23)

where

∆(y) = −XT (∇2
MF (µ̂(y), y) +∇2

MJ(β̂(y)))+ XT
> D(∇F0)(µ̂(y), y),

∇2
MF (µ̂(y), y) = XT

>∇2F0(µ̂(y), y)XT + Aβ
Ä
·, XS

>∇F0(µ̂(y), y)
ä

and β̂(y) is any solution of (P(y)) such that (C
β̂(y),y

) holds and J ∈ Γ0(Rp) is

partly smooth at β̂(y) relative to M, with T = S⊥ = T
β̂(y)

.

This result is proved in Section 8.5.
A natural question that arises is whether the set G is of full (Hausdorff)

dimension or not, and in particular, whether there always exists a solution
β̂(y) such that (C

β̂(y),y
) holds, i.e. G is empty. Though we cannot provide an

affirmative answer to this for any partly smooth regularizer, and this has to be
checked on a case-by-case basis, it turns out that G is indeed empty for many
regularizers of interest as established in the next result.

Proposition 1 The set G is empty when:

(i) J ∈ Γ0(Rp) is polyhedral, and in particular, when J is the Lasso, the general
Lasso or the `∞ penalties.

(ii) J is the general group Lasso penalty, and a fortiori the group Lasso.

The proof of these results is constructive.

We now exemplify the divergence formula (23) when F0 is the squared loss.

Example 29 (Polyhedral penalty) Thanks to Example 18, it is immediate
to see that (23) boils down to

div(µ̂)(y) = rankXT
β̂(y)

= dimT
β̂(y)

where we used the rank-nullity theorem and that Lemma 2(ii) holds at β̂(y),
which always exists by Proposition 1.

Example 30 (Lasso and General Lasso) Combining together Example 11
and Example 29 yields

div(µ̂)(y) = dim Ker(D∗Λc), Λ = supp(D∗β̂(y)) ,

where β̂(y) is such that Lemma 2(ii) holds. For the Lasso, Example 10 allows
to specialize the formula to

div(µ̂)(y) = | supp(β̂(y))|.
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The general Lasso case was investigated in (Vaiter et al 2013) and (Tibshirani
and Taylor 2012), and the Lasso in (Dossal et al 2013) and (Tibshirani and
Taylor 2012).

Example 31 (`∞ Anti-sparsity) By virtue of Example 29 and Example 12,
we obtain in this case

div(µ̂)(y) = p− |I|+ 1, where I =
¶
i : β̂i(y) = ||β̂(y)||∞

©
and β̂(y) is such that Lemma 2(ii) holds, and such a vector always exists by
Proposition 1.

Example 32 (Group Lasso and General Group Lasso) For the general
group Lasso, piecing together Example 14 and Example 20, it follows that

div(µ̂)(y) = tr

Å
XT

(
XT
>XT + PT D

(
δ
D∗β̂(y)

◦Q
(D∗β̂(y))⊥

)
D∗ PT

)+

XT
>
ã

where T = Ker(D∗Λc), Λ = suppB(D∗β̂(y)), and β̂(y) is such that Lemma 2(ii)
holds; such a vector always exists by Proposition 1. For the group Lasso, we
get using Example 13 that

div(µ̂)(y) = tr

Å
XΛ

(
XΛ
>XΛ +

(
δ
D∗β̂(y)

◦Q
(D∗β̂(y))⊥

)
Λ,Λ

)−1

XΛ
>
ã

where
(
δ
D∗β̂(y)

◦ Q
(D∗β̂(y))⊥

)
Λ,Λ

is the submatrix whose rows and columns

are those of δ
D∗β̂(y)

◦ Q
(D∗β̂(y))⊥

indexed by Λ = suppB(β̂(y)). This result

was proved in (Vaiter et al 2012) in the overdetermined case. An immediate
consequence of this formula is obtained when X is orthonormal5, in which case
one recovers the expression of Yuan and Lin (2006),

div(µ̂)(y) = |Λ| −
∑

b∈B,D∗
b
β̂(y)6=0

|b| − 1

||yb||
.

The general group Lasso formula is new to the best of our knowledge, and will
be illustrated in the numerical experiments on the isotropic 2-D total variation
regularization widely used in image processing.

We could also provide a divergence formula for the nuclear norm, but
as we discussed in Example 27, we cannot always guarantee the existence
of a solution that satisfies (C

β̂(y),y
). However, one can still find other partly

smooth functions J with a non-flat submanifold for which this existence can
be certified. The function of Example 17 is again a prototypical example.

5 Obviously, Lemma 2(ii) holds in such a case at the unique minimizer β̂(y).
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Example 33 (J = max(|| · || − 1, 0)) For β ∈ Sp−1. If β is a minimizer of
(P(y)) is not a minimizer of F (·, y), from Example 28, we have that∇2

MF (β, y)
is positive definite on T = Tβ . Thus, we get for the case of the squared loss,
that

div(µ̂)(y) = tr
(
XT

Ä
XT
>XT + PT 〈Xβ, y −Xβ〉

ä+
XT
>
)
.

6 Degrees of Freedom and Unbiased Risk Estimation

From now on, we will assume that

the set M is finite. (CM )

Assumption (CM ) holds in many important cases, including the examples
discussed in the paper: polyhedral penalties (e.g. the Lasso, general Lasso or
`∞-norm), as well as for the group Lasso and its general form.

Throughout this section, we use the same symbols to denote weak deriva-
tives (whenever they exist) as for derivatives. Rigorously speaking, the identi-
ties have to be understood to hold Lebesgue-a.e. (Evans and Gariepy 1992).

So far, we have shown that outside H ∪ G, the mapping y 7→ µ̂(y) enjoys
(locally) nice smoothness properties, which in turn gives closed-form formula
of its divergence. To establish that such formula holds Lebesgue a.e., a key
argument that we need to show is that H is of negligible Lebesgue measure.
This is where o-minimal geometry enters the picture. In turn, for Y drawn
from some appropriate probability measures with density with respect to the
Lebesgue measure, this will allow us to establish unbiasedness of quadratic
risk estimators.

6.1 O-minimal Geometry

Roughly speaking, to be able to control the size of H, the function J cannot
be too oscillating in order to prevent pathological behaviours. We now briefly
recall here the definition. Some important properties of o-minimal structures
that are relevant to our context together with their proofs are collected in
Section A. The interested reader may refer to (van den Dries 1998; Coste 1999)
for a comprehensive account and further details on o-minimal structures.

Definition 5 (Structure) A structure O expanding R is a sequence (Ok)k∈N
which satisfies the following axioms:

1. Each Ok is a Boolean algebra of subsets of Rk, with Rk ∈ Ok.
2. Every semi-algebraic subset of Rk is in Ok.
3. If A ∈ Ok and B ∈ Ok′ , then A×B ∈ Ok+k′ .
4. If A ∈ Ok+1, then Πk+1,k(A) ∈ Ok, where Πk+1,k : Rk+1 → Rk is the

projection on the first k components.

The structure O is said to be o-minimal if, moreover, it satisfies
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5. (o-minimality) Sets in O1 are precisely the finite unions of intervals and
points of R.

In the following, a set A ∈ Ok is said to be definable.

Definition 6 (Definable set and function) Let O be an o-minimal struc-
ture. The elements of Ok are called the definable subsets of Rp, i.e. Ω ⊂ Rk
is definable if Ω ∈ Ok. A map f : Ω → Rm is said to be definable if its graph
G(f) = {(x, u) ∈ Ω × Rm : u = f(x)} ⊆ Rk × Rm is a definable subset of
Rk × Rm (in which case m times applications of axiom 4 implies that Ω is
definable).

A fundamental class of o-minimal structures is the collection of semi-
algebraic sets, in which case axiom 4 is actually a property known as the Tarski-
Seidenberg theorem (Coste 2002). For example, in the special case where q is
a rational number, J = || · ||q is semi-algebraic. When q ∈ R is not rational,
|| · ||q is not semi-algebraic, however, it can be shown to be definable in an o-
minimal structure. To see this, we recall from (van den Dries and Miller 1996,
Example 5 and Property 5.2) that there exists a (polynomially bounded) o-
minimal structure that contains the family of functions {t > 0 : tγ , γ ∈ R}
and restricted analytic functions. Functions F0 that correspond to the expo-
nential family losses introduced in Example 3 are also definable.

Our o-minimality assumptions requires the existence of an o-minimal struc-
ture O such that

F , J and M, ∀M ∈M , are definable in O. (CO)

6.2 Degrees of Freedom and Unbiased Risk Estimation

We assume in this section that F takes the form (3) and that

∀ y ∈ Rn, F0(·, y) is strongly convex with modulus τ (Csconv)

and

∃L > 0, sup
(µ,y)∈Rn×Rn

||D(∇F0)(µ, y)|| 6 L. (CL)

Obviously, assumption (Csconv) implies (Cdp), and thus the claims of the
previous section remain true. Moreover, this assumption holds for the squared
loss, but also for some losses of the exponential family (4), possibly adding a
small quadratic term in β. As far as assumption (CL) is concerned, it is easy to
check that it is fulfilled with L = 1 for any loss of the exponential family (4),
since D(∇F0)(µ, y) = −Id.

Non-linear Gaussian regression. Assume that the observation model (1)
specializes to Y ∼ N (h(Xβ0), σ2Idn), where h is Lipschitz continuous.
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Theorem 3 The following holds.

(i) Under condition (CO), H is of Lebesgue measure zero;
(ii) Under conditions (Csconv) and (CL), h ◦ µ̂ is Lipschitz continuous, hence

weakly differentiable, with an essentially bounded gradient.
(iii) If conditions (CO), (Csconv), (CF ) and (CL) hold, and G is of zero-Lebesgue

measure, then,

(a) “df = tr(Dh(µ̂(Y ))∆(Y )) is an unbiased estimate of df = E(div(h ◦
µ̂(Y ))), where ∆(Y ) is as given in Theorem 2.

(b) The SURE

SURE(h ◦ µ̂)(Y ) =||Y − h(µ̂(Y ))||2 + 2σ2“df − nσ2 (24)

is an unbiased estimator of the risk E
(
||h(µ̂(Y ))− h(µ0)||2

)
.

This theorem is proved in Section 8.7.

GLM with the continuous exponential family. Assume that the obser-
vation model (1) corresponds to the GLM with a distribution which belongs
to a continuous standard exponential family as parameterized in (2). From the
latter, we have

∇ logB(y) =

Å
∂ logBi(yi)

∂yi

ã
i

.

Theorem 4 Suppose that conditions (CO), (Csconv), (CF ) and (CL) hold,
and G is of zero-Lebesgue measure. Then,

(i) “df = tr(∆(Y )) is an unbiased estimate of df = E(div(µ̂(Y ))).
(ii) The SURE

SURE(µ̂)(Y ) =||∇ logB(Y )− µ̂(Y )||2 + 2“df − (||∇ logB(Y )||2 − ||µ0||2)
(25)

is an unbiased estimator of the risk E
(
||µ̂(Y )− µ0||2

)
.

This theorem is proved in Section 8.7. Recall from Section 5 that there are
many regularizers where G is indeed empty, and for which Theorem 3 and 4
then apply.

Though SURE(µ̂)(Y ) depends on µ0, which is obviously unknown, it is
only through an additive constant, which makes it suitable for parameter se-
lection by risk minimization. Moreover, even if it is not stated here explicitly,
Theorem 4 can be extended to unbiasedly estimate other measures of the risk,
including the projection risk, or the estimation risk (in the full rank case)
through the Generalized Stein Unbiased Risk Estimator as proposed in (Eldar
2009, Section IV), see also (Vaiter et al 2013) in the Gaussian case.
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7 Simulation results

Experimental setting. In this section, we illustrate the efficiency of the pro-
posed DOF estimator on a parameter selection problem in the context of
some imaging inverse problems. More precisely, we consider the linear Gaus-
sian regression model Y ∼ N (Xβ0, σ

2Idn) where β0 ∈ Rp=p1×p2 is a column-
vectorized version of an image defined on a 2-D discrete grid of size p1 × p2.
The estimation of β0 is achieved by solving (P(y)) with

F (β, y) = F0(Xβ, y) = ||Xβ − y||2 and J(β) = λ||D∗β||1,2

where D∗β ∈ Rp×2 is the 2-D discrete gradient vector field of the image β, and
λ > 0 is the regularization parameter. Clearly, J is the isotropic total variation
regularization (Rudin et al 1992), which is a special case of the general group
Lasso penalty (9) for blocks of size 2.

We aim at proposing an automatic and objective way to choose λ. This
can be achieved typically by minimizing the SURE given in (24) with h being
the identity, i.e.

SURE(µ̂)(Y ) = ||Y − µ̂(Y )||2 + 2σ2“df − nσ2

where “df = tr(∆(Y )) according to Theorem 3(iii)-(a), and the expression of
∆(Y ) is obtained from that of the general group Lasso in Example 32 with
D∗ the discrete 2-D gradient operator, and −D is the discrete 2-D divergence
operator. Owing to Proposition 1(ii) and Theorem 3(iii), the given SURE is
indeed an unbiased estimator of the prediction risk.

As the image size p can be large, the exact computation of tr(∆(y)) can
become computationally intractable. Instead, we devise an approach based on
Monte-Carlo (MC) simulations (see, Vonesch et al 2008, for more details), that
is “dfMC

(z) = 〈z, ∆(Y )z〉

with z a realization of Z ∼ N (0, Idn). It is clear that EZ
(“dfMC

(Z)
)

= “df .

It remains to compute the vector∆(y)z. This is achieved by taking∆(y)z =
Xν, where ν is a solution of(

X>X + λD
(
δ
D∗β̂(y)

◦Q
(D∗β̂(y))⊥

)
D∗
)
ν = X>z subject to ν ∈ T,

where we recall that T = Ker(D∗Λc), Λ = suppB(D∗β̂(y)). Taking into account
the constraint on T through its Lagrange multiplier ζ, solving for ν boils down
to solving the following linear system with a symmetric and positive-definite
matrixÇ

X>X + λD
(
δ
D∗β̂(y)

◦Q
(D∗β̂(y))⊥

)
D∗ DΛc

D∗Λc 0

åÅ
ν
ζ

ã
=

Å
X>z

0

ã
. (26)
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Fig. 1 (a) Original image β0. (b) Blurry observation y. (c) β̂(y) obtained for the value of
λ minimizing the SURE estimate. (d-f) Prediction risk, average SURE and its confidence
interval (± standard deviation) as a function of λ respectively for the finite difference ap-
proach (Ramani et al 2008), the iterative approach (Vonesch et al 2008), and our proposed
approach.

Numerical solvers. In all experiments, optimization problem (P(y)) was solved
using Douglas-Rachford proximal splitting algorithm (Combettes and Pesquet
2007) with 2 · 104 iterations. Once the support Λ is identified with sufficiently
high accuracy, the linear problem (26) is solved using the generalized minimal
residual method (GMRES, Saad and Schultz 1986) with a relative accuracy of
10−7.

Our proposed SURE estimator is compared for different values of λ with
the approach of (Ramani et al 2008) based on finite difference approximations,
as well as the approaches of (Vonesch et al 2008; Deledalle et al 2014) based on
iterative chain rule differentiations. All curves are averaged on 40 independent
realizations of Y and Z and their corresponding confidence intervals at ± their
standard deviation are displayed.

Deconvolution. We first consider an image of size p = 34 × 42 with grayscale
values ranging in [0, 255] obtained from a close up of the standard cameraman
image.X is a circulant matrix representing a periodic discrete convolution with
a Gaussian kernel of width 1.5 pixel. The observation y is finally obtained by
adding a zero-mean white Gaussian noise with σ = 5. Figure 1 depicts the
evolution of the prediction risk and its SURE estimates as a function of λ.
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Fig. 2 (a) Original image β0. (b) Least squares estimate X+y. (c) β̂(y) obtained for the
value of λ minimizing the SURE estimate. (d-f) Prediction risk, average SURE and its
confidence interval (± standard deviation) as a function of λ respectively for the finite
difference approach (Ramani et al 2008), the iterative approach (Deledalle et al 2014), and
our proposed approach.

Compressive sensing. We next consider an image of size p = 34 × 42 with
grayscale values ranging in [0, 255] obtained from a close up of the standard
barbara image. Now, X is a matrix corresponding to the composition of a
periodic discrete convolution with a square kernel, and a random sub-sampling
matrix with n/p = 0.5. The noise standard deviation is again σ = 5. Figure 2
shows the evolution of the prediction risk and its SURE estimates as a function
of λ.

Discussion. The three approaches seem to provide the same results with av-
erage SURE curves that align very tightly with those of the prediction risk,
with relatively small standard deviation compared to the range of variation of
the prediction risk.

It is worth observing that the SURE obtained with finite differences (Ra-
mani et al 2008) or with iterative differentiations (Vonesch et al 2008; Deledalle
et al 2014) estimate the risk at the last iterate provided by the optimization

algorithm to solve (P(y)), which is not exactly β̂(y) in general. In fact, what is

important is not β̂(y) by itself but rather its group support Λ. Thus, provided
Λ has been perfectly identified, the three approaches provide, as observed, the
same estimate of the risk up to machine precision. It may then be important
to run the solver with a large number of iterations in order to provide an ac-
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curate estimation of the risk. Even more important, solutions of (26) should
be accurate enough to avoid bias in the estimation. The choice of 2 · 104 itera-
tions for Douglas-Rachford and relative accuracy of 10−7 for GMRES appears
in our simulations as a good trade-off between negligible bias and reasonable
computational time.

8 Proofs

This section details the proofs of our results.

8.1 Preparatory lemma

By standard arguments of convex analysis, the following lemma gives the first-
order sufficient and necessary optimality condition of a minimizer of (P(y)).

Lemma 3 A vector β̂(y) ∈ Rp is a minimizer of (P(y)) if, and only if,

−∇F (β̂(y), y) ∈ ∂J(β̂(y)).

If J is partly smooth at β̂(y) relative to M, then

−∇MF (β̂(y), y) = ∇MJ(β̂(y)) = e(β̂(y)).

Proof The first monotone inclusion is just the first-order necessary and suffi-
cient minimality condition for our convex program. The second claim follows
from (12) and Fact 2. ut

8.2 Proof of Lemma 1

The equivalence is a consequence of simple arguments from linear algebra.
Indeed, when both ∇2

MF (β, y) and ∇2
MJ(β) are positive semidefinite on T ,

we have 〈(∇2
MF (β, y)ξ, ξ〉 > 0 and 〈(∇2

MJ(β)ξ, ξ〉 > 0, ∀ ξ ∈ T . Thus, for
(Cβ,y) to hold, it is necessary and sufficient that @ 0 6= ξ ∈ T such that
ξ ∈ Ker(∇2

MF (β, y)) and ξ ∈ Ker(∇2
MF (β, y)), which is exactly what we

state.

When M = β + T , the Riemannian hessians ∇2
MF (β, y) and ∇2

MJ(β)
are given by (19) and (14). Convexity and smoothness of F (·, y) combined
with (19) imply that ∇2

MF (β, y) is positive semidefinite. Moreover, convexity
and partial smoothness of J also yield that ∇2

MJ(β) is positive semidefinite,
see (Liang et al 2014, Lemma 4.6). ut
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8.3 Proof of Theorem 1

Let y 6∈ H. To lighten the notation, we will drop the dependence of β̂ on y,
where β̂ is a solution of (P(y)) such that (C

β̂,y
) holds.

Let the constrained problem on M

min
β∈M

F (β, y) + J(β). (P(y)M)

We define the notion of strong critical points that will play a pivotal role in
our proof.

Definition 7 A point β̂ is a strong local minimizer of a function f : M →
R∪{+∞} if f grows at least quadratically locally around β̂ on M, i.e. ∃δ > 0

such that f(β) > f(β̂) + δ||β − β̂||2, ∀β ∈M near β̂.

The following lemma gives an equivalent characterization of strong critical
points that will be more convenient in our context.

Lemma 4 Let f ∈ C2(M). A point β̂ is a strong local minimizer of f if, and

only if, it is a critical point of f , i.e. ∇Mf(β̂) = 0, and satisfies the restricted
positive definiteness condition

〈∇2
Mf(β̂)ξ, ξ〉 > 0 ∀ 0 6= ξ ∈ T

β̂
(M).

Proof (of Lemma 4) The proof follows by combining the discussion after
(Lewis 2003a, Definition 5.4) and (Miller and Malick 2005, Theorem 3.4). ut

We now define the following mapping

Γ : (β, y) ∈M× Rn 7→ ∇MF (β, y) +∇MJ(β).

We split the proof of the theorem in three steps. We first show that there
exists a continuously differentiable mapping ȳ 7→ β̃(ȳ) ∈ M and an open
neighborhood Vy of y such that every element ȳ of Vy satisfies Γ (β̃(ȳ), ȳ) = 0.

Then, we prove that β̃(ȳ) is a solution of (P(ȳ)) for any ȳ ∈ Vy. Finally, we
obtain (21) from the implicit function theorem.

Step 1: construction of β̃(ȳ). Using assumption (CF ), the sum and smooth
perturbation calculus rules of partial smoothness (Lewis 2003a, Corollary 4.6
and Corollary 4.7) entail that the function (β, y) 7→ F (β, y) + J(x) is partly

smooth at (β̂, y) relative to M× Rm, which is a C2-manifold of Rp × Rm.
Moreover, it is easy to see that M× Rm satisfies the transversality condition
of (Lewis 2003a, Assumption 5.1). By assumption (C

β̂,y
), β̂ is also a strong

global minimizer of (P(y)M), which implies in particular that Γ (β̂, y) = 0; see
Lemma 4. It then follows from (Lewis 2003a, Theorem 5.5) that there exist

open neighborhoods Ṽy of y and Ṽ
β̂

of β̂ and a continuously differentiable
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mapping β̃ : Ṽy →M∩ Ṽβ̂ such that β̃(y) = β̂, and ∀ȳ ∈ Ṽy, (P(ȳ)M) has a

unique strong local minimizer, i.e.

Γ (β̃(ȳ), ȳ) = 0 and (Cβ̃(ȳ),ȳ) holds,

where we also used local normal sharpness property from partial smoothness
of J ; see Fact 1.

Step 2: β̃(ȳ) is a solution of (P(ȳ)). We now have to check the first-order op-
timality condition of (P(ȳ)), i.e. that −∇F (β̃(ȳ), ȳ) ∈ ∂J(β̃(ȳ)); see Lemma 3.
We distinguish two cases.

• Assume that −∇F (β̂, y) ∈ ri ∂J(β̂). The result then follows from (Lewis
2003a, Theorem 5.7(ii)) which, moreover, allows to assert in this case that
−∇F (β̃(ȳ), ȳ) ∈ ri ∂J(β̃(ȳ)).

• We now turn to the case where −∇F (β̂, y) ∈ rbd ∂J(β̂). Observe that

(y, β̂) ∈ AM. In particular y ∈ Πn+p,n(AM). Since by assumption y 6∈ H,
one has y 6∈ bd(Πn+p,n(AM)). Hence, there exists an open ball B(y, ε) for
some ε > 0 such that B(y, ε) ⊂ Πn+p,n(AM). Thus for every ȳ ∈ B(y, ε),

there exists β̄ ∈ ıM such that

−∇F (β̄, ȳ) ∈ rbd ∂J(β̄).

Since β̄ ∈ M, β̄ is also a critical point of (P(ȳ)M). But from Step 1, β̃(ȳ)
is unique, whence we deduce that β̃(ȳ) = β̄. In turn, we conclude that

∀ȳ ∈ B(y, ε), −∇F (β̃(ȳ), ȳ) ∈ rbd ∂J(β̃(ȳ)) ⊂ ∂J(β̃(ȳ)).

Step 3: Computing the differential. In summary, we have built a mapping
β̃ ∈ C1(V), with V = Ṽy ∩ B(y, ε)), such that β̃(ȳ) is a solution of (P(ȳ)) and
fulfills (Cβ̃(ȳ),ȳ). We are then in position to apply the implicit function theorem

to Γ , and we get the Jacobian of the mapping β̃ as

Dβ̃(ȳ) = −
Ä
∇2
MF (β̃(ȳ), ȳ) +∇2

MJ(β̃(ȳ))
ä+

D(∇MF )(β̃(ȳ), ȳ)

where

D(∇MF )(β, y) = PTβ D(∇F )(β, y),

where the equality is a consequence of (12) and linearity. ut

8.4 Proof of Lemma 2

(i) See (Vaiter et al 2015, Lemma 8).
(ii) This is a specialization of Lemma 1 using (Cdp) and (14). ut
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8.5 Proof of Theorem 2

We can now prove Theorem 2. At any y /∈ H ∪ G, we consider β̂(y) a solution
of (P(y)). By assumption, (C

β̂,y
) holds. According to Theorem 1, one can

construct a mapping y 7→ β̃(ȳ) which is a solution to (P(ȳ)), coincides with

β̂(y) at y, and is C1 for ȳ in a neighborhood of y. Thus, by Lemma 2, µ̂(ȳ) =
Xβ̃(ȳ) is a single-valued mapping, which is also C1 in a neighbourhood of y.
Moreover, its differential is equal to ∆(y) as given, where we applied the chain
rule in (18). ut

8.6 Proof of Proposition 1

The proofs of both statements are constructive.

(i) Polyhedral penalty: any polyhedral convex J can be written as (Rockafellar
1996)

J(β) = max
i∈{1,...,q}

{〈di, β〉 − bi}+ ιC(β),

C = {β ∈ Rp : 〈ak, β〉 6 ck} , k ∈ {1, . . . , r}.

It is straightforward to show that

∂J(β) = conv{di}i∈Iβ + cone{ak}k∈Kβ , where

Iβ = {i : 〈di, β〉 − bi = J(β)} and Kβ = {j : 〈aj , β〉 = ci} ,

and

Tβ = {h : 〈h, di〉 = 〈h, dj〉 = τβ , ∀i, j ∈ Iβ}∩{h : 〈h, ak〉 = 0, ∀k ∈ Kβ} .

Let β̂ be a solution of (P(y)) for J as above. Recall from Example 24 that
(C
β̂,y

) is equivalent to Ker(X) ∩ T
β̂

= {0}. Suppose that this condition

does not. Thus, there exists a nonzero vector h ∈ T
β̂

such that the vector

vt = β̂ + th, t ∈ R, satisfies Xvt = Xβ̂. Moreover,

〈vt, di〉 − bi =

{
J(β̂) + tτ

β̂
, if i ∈ I

β̂

〈β̂, di〉 − bi + t〈h, di〉 < J(β̂) + t〈h, di〉 otherwise.

and

〈vt, ak〉 =

{
ck, if k ∈ K

β̂

〈β̂, ak〉+ t〈h, ak〉 < ck + t〈h, ak〉 otherwise.

Thus, for t ∈]− t0, t0[, where

t0 = min

(
min
i/∈I

β̂

{
J(β̂)− 〈β̂, di〉+ bi
|〈h, di〉 − τβ̂ |

}
, min
k/∈K

β̂

®
ck − 〈β̂, ak〉
|〈h, ak〉|

´)
,
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we have Ivt = I
β̂

and Kvt = K
β̂
. Moreover, vt ∈ C. Therefore, for all such

t, we indeed have ∂J(vt) = ∂J(β̂) and Tvt = T
β̂
. Altogether, we get that

−X>∇F0(Xvt, y) = −X>∇F0(Xβ̂, y) ∈ ∂J(β̂) = ∂J(vt),

i.e. vt is a solution to (P(y)). Thus, by Lemma 2, we deduce that F0(Xvt, y) =

F0(Xβ̂, y) and J(vt) = J(β̂). The continuity assumption (CF ) yields

F0(Xvt0 , y) = F0(Xβ̂, y).

Furthermore, since J is lsc and vt is a minimizer of (P(y)), we have

lim inf
t→t0

J(vt) > J(vt0) > lim sup
t→t0

J(vt) ⇐⇒ J(vt0) = lim
t→t0

J(vt) = J(β̂).

Consequently, vt0 is a solution of (P(y)) such that I
β̂

( Ivt0 or/and

K
β̂

( Kvt0
, which in turn implies Tvt0 ( T

β̂
. Iterating this argument,

we conclude.
(ii) General group Lasso: Let β̂ be a solution of (P(y)) for J = ||D∗ · ||1,2, and

I
β̂

=
¶
i : bi ∈ B and D∗bi β̂ 6= 0

©
, i.e. the set indexing the active blocks

of D∗β̂. We recall from Example 14 that the partial smoothness subspace
M = T

β̂
= Ker(D∗Λc), where Λ = suppB(D∗β̂).

From Lemma 3 and the subdifferential of the group Lasso, β̂ is indeed a
minimizer if and only if there exists η ∈ Rp such that

−X>∇F0(Xβ̂, y) +
∑
i∈I

Dbiηbi = 0 and

ηbi =
D∗bi

β̂

||D∗
bi
β̂||

if i ∈ I
β̂

||ηbi || 6 1 otherwise.

(27)

Suppose that (C
β̂,y

) (or equivalently Lemma 2(ii)) does not hold at β̂. This

is equivalent to the existence of a nonzero vector h ∈ Rp in the set at the
end of Example 26. Let vt = β̂ + th, for t ∈ R. By construction, vt obeys

vt ∈ Tβ̂ ⇐⇒ ∀i /∈ I
β̂
, D∗bivt = 0

and Xvt = Xβ̂

and ∀i ∈ I
β̂
,∃µi ∈ R, D∗bivt = (1 + tµi)D

∗
bi β̂.

Let
t0 = min {|t| : 1 + tµi = 0, i ∈ I} = min

i∈I
β̂
,µi 6=0

|µi|−1.

For all t ∈] − t0, t0[, we have 1 + tµi > 0 for i ∈ I
β̂

and Ivt = I
β̂

(in fact

Tvt = T
β̂

by Fact 1), and thus

D∗bivt

||D∗bivt||
=

D∗bi β̂

||D∗bi β̂||
, ∀i ∈ Ivt .
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Moreover, −X>∇F0(Xvt, y) = −X>∇F0(Xβ̂, y). Inserting the last state-
ments in (27), we deduce that vt is a solution of (P(y)).

From Lemma 2(i), we get that F0(Xvt, y) = F0(Xβ̂, y) and ||D∗vt||1,2 =

||D∗β̂||1,2. By continuity of F0(·, y) (assumption (CF )), and of || · ||1,2 one
has

F0(Xvt0) = F0(Xβ̂) and ||D∗vt0 ||1,2 = ||D∗β̂||1,2.
Clearly, we have constructed a solution vt0 of (P(y)) such that Ivt0 ( I

β̂
,

hence Ker(∇2
MJ(vt0))∩Tvt0 ( Ker(∇2

MJ(β̂))∩T
β̂
. Iterating this argument

shows the result. ut

Remark 1 For the general group Lasso, the iterative construction is guaran-
teed to terminate at a non-trivial point. Indeed, if it were not the case, then
eventually one would construct a solution such that 0 6= h ∈ Ker(X)∩Ker(D∗)
leading to a contradiction with a classical condition in regularization theory.
Moreover, Ker(X) ∩Ker(D∗) = {0} is a sufficient (and necessary in our case)
condition to ensure boundedness of the set of solutions to (P(y)).

8.7 Proof of Theorem 3

(i) We obtain this assertion by proving that all HM are of zero measure for
all M, and that the union is over a finite set, because of (CM ).
• Since J is definable by (CO), ∇F (β, y) is also definable by virtue of

Proposition 2.
• Given M∈M which is definable, ıM is also definable. Indeed, ıM can

be equivalently writtenıM =M∩
{
β : ∃ε > 0,∀β′ ∈M∩ B(β, ε), J ∈ C2(β′)

}
∩
{
β : ∀(u, v) ∈ (∂J(β))2, 〈u− v, β′〉 = 0,∀β′ ∈ Tβ(M)

}
∩ {β : ∀βr ∈M→ β and u ∈ ∂J(β),∃ur → u s.t. ur ∈ ∂J(βr)} .

Each of the four sets above capture a property of partial smoothness as
introduced in Definition 1. ıM involves M which is definable, its tan-
gent space (which can be shown to be definable as a mapping of β using
Proposition 2), ∂J whose graph is definable thanks to Proposition 3,
continuity relations and algebraic equations, whence definability follows
after interpreting the logical notations (conjunction, existence and uni-
versal quantifiers) in the first-order formula in terms of set operations,
and using axioms 1-4 of definability in an o-minimal structure.

• Let D : Rp ⇒ Rp the set-valued mapping whose graph is

gph(D) = {(β, η) : η ∈ ri ∂J(β)} .

From Lemma 8, gph(D) is definable. Since the graph ∂J is closed
(Lemaréchal and Hiriart-Urruty 1996), and definable (Proposition 3),
the set

{(β, η) : η ∈ rbd ∂J(β)} = gph(∂J) \ gph(D) ,
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is also definable by axiom 1. This entails that AM is also a definable
subset of Rn × ıM since

AM = (Rn × ıM× Rn) ∩ {(y, β, η) : η = −∇F (βT , y)}
∩ (Rn × {(β, η) : η ∈ rbd ∂J(β)}) .

• By axiom 4, the canonical projection Πn+p,n(AM) is definable, and
its boundary HT = bd(Πn+p,n(AM)) is also definable by (Coste 1999,
Proposition 1.12) with a strictly smaller dimension than Πn+p,n(AM)
(Coste 1999, Theorem 3.22).

• We recall now from (Coste 1999, Theorem 2.10) that any definable
subset A ⊂ Rn in O can be decomposed (stratified) in a disjoint finite
union of q subsets Ci, definable in O, called cells. The dimension of A
is (Coste 1999, Proposition 3.17(4))

d = max
i∈{1,...,q}

di 6 n ,

where di = dim(Ci). Altogether we get that

dimHM = dim bd(Πn+p,n(AM)) < dimΠn+p,n(AM) = d 6 n

whence we deduce thatH is of zero measure with respect to the Lebesgue
measure on Rn since the union is taken over the finite set M by (CM ).

(ii) F0(·, y) is strongly convex with modulus τ if, and only if,

F0(µ, y) = G(µ, y) +
τ

2
||µ||2

where G(·, y) is convex and satisfies (CF ), and in particular its domain in
µ is full-dimensional. Thus, (P(y)) amounts to solving

min
β∈Rp

τ

2
||Xβ||2 +G(Xβ, y) + J(β).

It can be recasted as a constrained optimization problem

min
µ∈Rn,β∈Rp

τ

2
||µ||2 +G(µ, y) + J(β) s.t. µ = Xβ.

Introducing the image (XJ) of J under the linear mapping X, it is equiv-
alent to

min
µ∈Rn

τ

2
||µ||2 +G(µ, y) + (XJ)(µ) , (28)

where (XJ)(µ) = min
{β∈Rp : µ=Xβ}

J(β) is the co-called pre-image of J under

X. This is a proper closed convex function, which is finite on Span(X).
The minimization problem amounts to computing the proximal point at 0
of G(·, y) + (XJ), which is a proper closed and convex function. Thus this
point exists and is unique.
Furthermore, by assumption (CL), the difference function

F0(·, y1)− F0(·, y2) = G(·, y1)−G(·, y2)
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is Lipschitz continuous on Rp with Lipschitz constant L||y1 − y2||. It then
follows from (Bonnans and Shapiro 2000, Proposition 4.32) that µ̂(·) is Lip-
schitz continuous with constant 2L/τ . Moreover, h is Lipschitz continuous,
and thus so is the composed mapping h ◦ µ̂(·). From (Evans and Gariepy
1992, Theorem 5, Section 4.2.3), weak differentiability follows.
Rademacher theorem asserts that a Lipschitz continuous function is dif-
ferentiable Lebesgue a.e. and its derivative and weak derivative coincide
Lebesgue a.e., (Evans and Gariepy 1992, Theorem 2, Section 6.2). Its weak
derivative, whenever it exsist, is upper-bounded by the Lipschitz constant.
Thus

E
Å∣∣∣∂(h ◦ µ̂)i

∂yi
(Y )
∣∣∣ã < +∞ .

(iii) Now, by the chain rule (Evans and Gariepy 1992, Remark, Section 4.2.2),
the weak derivative of h ◦ µ̂(·) at y is precisely

D(h ◦ µ̂)(y)) = Dh (µ̂(y))∆(y) .

This formula is valid everywhere except on the set H ∪ G which is of
Lebesgue measure zero as shown in (i). We conclude by invoking (ii) and

Stein’s lemma (Stein 1981) to establish unbiasedness of the estimator “df
of the DOF.

(iv) Plugging the DOF expression (iii) into that of the SURE (Stein 1981,
Theorem 1), the statement follows.
ut

8.8 Proof of Theorem 4

For (i)-(iii), the proof is exactly the same as in Theorem 3. For (iv): combining
the DOF expression (iii) and (Eldar 2009, Theorem 1), and rearranging the
expression yields the stated result. ut

9 Conclusion

In this paper, we proposed a detailed sensitivity analysis of a class of estimators
obtained by minimizing a general convex optimization problem with a regu-
larizing penalty encoding a low complexity prior. This was achieved through
the concept of partial smoothness. This allowed us to derive an analytical
expression of the local variations of these estimators to perturbations of the
observations, and also to prove that the set where the estimator behaves non-
smoothly as a function of the observations is of zero Lebesgue measure. Both
results paved the way to derive unbiased estimators of the prediction risk in
two random scenarios, one of which covers the (continuous) exponential fam-
ily. This analysis covers a large set of convex variational estimators routinely
used in statistics, machine learning and imaging (most notably group sparsity
and multidimensional total variation penalty). The simulation results confirm
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our theoretical findings and show that our risk estimator provides a viable way
for automatic choice of the problem hyperparameters.
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A Basic Properties of o-minimal Structures

In the following results, we collect some important stability properties of o-minimal struc-
tures. To be self-contained, we also provide proofs. To the best of our knowledge, these
proofs, although simple, are not reported in the literature or some of them are left as exer-
cices in the authoritative references van den Dries (1998); Coste (1999). Moreover, in most
proofs, to show that a subset is definable, we could just write the appropriate first-order for-
mula (see (Coste 1999, Page 12)(van den Dries 1998, Section Ch1.1.2)), and conclude using
(Coste 1999, Theorem 1.13). Here, for the sake of clarity and avoid cryptic statements for
the non-specialist, we will translate the first order formula into operations on the involved
subsets, in particular projections, and invoke the above stability axioms of o-minimal struc-
tures. In the following, n denotes an arbitrary (finite) dimension which is not necessarily
the number of observations used previously the paper.

Lemma 5 (Addition and multiplication) Let f : Ω ⊂ Rn → Rp and g : Ω ⊂ Rn ⊂ Rp

be definable functions. Then their pointwise addition and multplication is also definable.

Proof Let h = f + g, and

B = (Ω × R×Ω × R×Ω × R) ∩ (Ω × R× gph(f)× gph(h)) ∩ S

where S = {(x, u, y, v, z, w) : x = y = z, u = v + w} is obviously an algebraic (in fact linear)
subset, hence definable by axiom 2. Axiom 1 and 2 then imply that B is also definable. Let
Π3n+3p,n+p : R3n+3p → Rn+p be the projection on the first n + p coordinates. We then
have

gph(h) = Π3n+3p,n+p(B)

whence we deduce that h is definable by applying 3n+ 3p times axiom 4. Definability of the
pointwise multiplication follows the same proof taking u = v · w in S. ut

Lemma 6 (Inequalities in definable sets) Let f : Ω ⊂ Rn → R be a definable function.
Then {x ∈ Ω : f(x) > 0}, is definable. The same holds when replacing > with <.

Clearly, inequalities involving definable functions are accepted when defining definable sets.
There are many possible proofs of this statement.

Proof (1) Let B = {(x, y) ∈ R× R : f(x) = y} ∩ (Ω × (0,+∞), which is definable thanks
to axioms 1 and 3, and that the level sets of a definable function are also definable. Thus

{x ∈ Ω : f(x) > 0} = {x ∈ Ω : ∃y, f(x) = y, y > 0} = Πn+1,n(B) ,

and we conclude using again axiom 4. ut

Yet another (simpler) proof.

Proof (2) It is sufficient to remark that {x ∈ Ω : f(x) > 0} is the projection of the set{
(x, t) ∈ Ω × R : t2f(x)− 1 = 0

}
, where the latter is definable owing to Lemma 5. ut

Lemma 7 (Derivative) Let f : I → R be a definable differentiable function on an open
interval I of R. Then its derivative f ′ : I → R is also definable.
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Proof Let g : (x, t) ∈ I ×R 7→ g(x, t) = f(x+ t)− f(x). Note that g is definable function on
I × R by Lemma 5. We now write the graph of f ′ as

gph(f ′) = {(x, y) ∈ I × R : ∀ε > 0,∃δ > 0, ∀t ∈ R, |t| < δ, |g(x, t)− yt| < ε|t|} .

Let C =
{

(x, y, v, t, ε, δ) ∈ I × R5 : ((x, t), v) ∈ gph(g)
}

, which is definable since g is de-
finable and using axiom 3. Let

B =
{

(x, y, v, t, ε, δ) : t2 < δ2, (v − ty)2 < ε2t2
}
∩ C .

The first part in B is semi-algebraic, hence definable thanks to axiom 2. Thus B is also
definable using axiom 1. We can now write

gph(f ′) = R3 \
(
Π5,3

(
R5 \Π6,5(B)

))
∩ (I × R) ,

where the projectors and completions translate the actions of the existential and universal
quantifiers. Using again axioms 4 and 1, we conclude. ut

With such a result at hand, this proposition follows immediately.

Proposition 2 (Differential and Jacobian) Let f = (f1, · · · , fp) : Ω → Rp be a dif-
ferentiable function on an open subset Ω of Rn. If f is definable, then so its differential
mapping and its Jacobian. In particular, for each i = 1, · · · , n and j = 1, · · · , p, the partial
derivative ∂fi/∂xj : Ω → R is definable.

We provide below some results concerning the subdifferential.

Proposition 3 (Subdifferential) Suppose that f is a finite-valued convex definable func-
tion. Then for any x ∈ Rn, the subdifferential ∂f(x) is definable.

Proof For every x ∈ Rn, the subdifferential ∂f(x) reads

∂f(x) =
{
η ∈ Rn : f(x′) > f(x) + 〈η, x′ − x〉 ∀x′ ∈ Rn

}
.

Let K = {(η, x′) ∈ Rn × Rn : f(x′) < f(x) + 〈η, x′ − x〉}. Hence, ∂f(x) = Rn \Π2n,n(K).
Since f is definable, the set K is also definable using Lemma 5 and 6, whence definability
of ∂f(x) follows using axiom 4. ut

Lemma 8 (Graph of the relative interior) Suppose that f is a finite-valued convex de-
finable function. Then, the set

{(x, η) : η ∈ ri ∂f(x)}

is definable.

Proof Denote C = {(x, η) : η ∈ ri ∂f(x)}. Using the characterization of the relative interior
of a convex set (Rockafellar 1996, Theorem 6.4), we rewrite C in the more convenient form

C = {(x, η) : ∀u ∈ Rn, ∀z ∈ Rn, f(z)− f(x) > 〈u, z − x〉,
∃t > 1, ∀x′ ∈ Rn, f(x′)− f(x) > 〈(1− t)u+ tη, x′ − x〉}.

Let D = Rn × Rn × Rn × Rn × (1,+∞)× Rn and K defined as

K =
{

(x, η, u, z, t, x′)∈D : f(z)− f(x) > 〈u, z − x〉), f(x′)− f(x) > 〈(1− t)u+ tη, x′ − x〉
}
.

Thus,

C = R2n \Π3n,2n

(
R3n \Π4n,3n

(
Π4n+1,4n

(
R4n × (1,+∞) \Π5n+1,4n+1(K)

)))
,

where the projectors and completions translate the actions of the existential and universal
quantifiers. Using again axioms 4 and 1, we conclude. ut
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Liang J, Fadili MJ, Peyré G, Luke R (2014) Activity Identification and Local Linear Con-

vergence of Douglas–Rachford/ADMM under Partial Smoothness. arXiv:14126858



The Degrees of Freedom of Partly Smooth Regularizers 41

Liu H, Zhang J (2009) Estimation consistency of the group lasso and its applications. Journal
of Machine Learning Research 5:376–383

Lyubarskii Y, Vershynin R (2010) Uncertainty principles and vector quantization. Informa-
tion Theory, IEEE Transactions on 56(7):3491–3501

McCullagh P, Nelder JA (1989) Generalized Linear Models, second edition edn.
Monographs on Statistics & Applied Probability, Chapman & Hall/CRC, URL
http://www.worldcat.org/isbn/0412317605

Meier L, Geer SVD, Buhlmann P (2008) The group lasso for logistic regression. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 70(1):51–71

Meyer M, Woodroofe M (2000) On the degrees of freedom in shape-restricted regression.
Annals of Statistics 28(4):1083–1104

Miller SA, Malick J (2005) Newton methods for nonsmooth convex minimization: connec-
tions among-lagrangian, riemannian newton and sqp methods. Mathematical program-
ming 104(2-3):609–633

Mordukhovich B (1992) Sensitivity analysis in nonsmooth optimization. Theoretical As-
pects of Industrial Design (D A Field and V Komkov, eds), SIAM Volumes in Applied
Mathematics 58:32–46

Negahban S, Ravikumar P, Wainwright MJ, Yu B (2012) A unified framework for high-
dimensional analysis of M-estimators with decomposable regularizers. Statistical Science
27(4):538–557

Osborne M, Presnell B, Turlach B (2000) A new approach to variable selection in least
squares problems. IMA journal of numerical analysis 20(3):389–403
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Vaiter S, Peyré G, Fadili MJ (2014) Model Consistency of Partly Smooth Regularizers.
arXiv:1405.1004
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