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The Degrees of Freedom of Partly Smooth Regularizers

Samuel Vaiter · Charles Deledalle ·

Gabriel Peyré · Jalal Fadili ·

Charles Dossal

Abstract In this paper, we are concerned with regularized regression prob-
lems where the prior penalty is a partly smooth function relative to a linear
manifold. This encompasses as special cases the Lasso (ℓ1 regularizer), the
group Lasso (ℓ1 − ℓ2 regularizer) and the ℓ∞-norm regularizer penalties. This
also includes so-called analysis-type priors, i.e. composition of the previously
mentioned penalties with linear operators, typical examples being the total
variation or fused Lasso priors. We study the sensitivity of any regularized
minimizer to perturbations of the observations and provide its precise local
parameterization. Our main result shows that, when the observations are out-
side a set of zero Lebesgue measure, the predictor moves locally stably along
the same linear space as the observations undergo small perturbations. This
local stability is a consequence of the piecewise smoothness of the regularizer,
which in turn plays a pivotal role to get a closed form expression for the varia-
tions of the predictor w.r.t. observations which holds almost everywhere. When
the perturbation is random (with an appropriate continuous distribution), this
allows us to derive an unbiased estimator of the degrees of freedom and of the
risk of the estimator prediction. Our results hold true without requiring the
design matrix to be full column rank. They generalize those already known in
the literature such as the Lasso problem, the general Lasso problem (analysis
ℓ1-penalty), or the group Lasso where existing results for the latter assume
that the design is full column rank.
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75775 Paris Cedex 16, France
E-mail: {samuel.vaiter,gabriel.peyre}@ceremade.dauphine.fr

Charles Deledalle, Charles Dossal
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1 Introduction

1.1 Regression and Regularization

We consider a model
E(Y |X) = h(Xβ0), (1)

where Y = (Y1, . . . , Yn) is the response vector, β0 ∈ R
p is the unknown vector

of linear regression coefficients, X ∈ R
n×p is the fixed design matrix whose

columns are the p covariate vectors, and the expectation is taken with respect
to some σ-finite measure. h is a known real-valued and smooth function R

n →
R

n. The goal is to design an estimator of β0 and to study its properties. In the
sequel, we do not make any specific assumption on the number of observations
n with respect to the number of predictors p. Recall that when n < p, (1) is
underdetermined, whereas when n > p and all the columns of X are linearly
independent, it is overdetermined.

Many examples fall within the scope of model (1). We here review two of
them.

Example 1 (GLM) One naturally thinks of generalized linear models (GLMs)
(McCullagh and Nelder 1989) which assume that conditionally on X , Yi are in-
dependent with distribution that belongs to a given (one-parameter) standard
exponential family. Recall that the random variable Z ∈ R has a distribution
in this family if its distribution admits a density with respect to some reference
σ-finite measure on R of the form

p(z; θ) = B(z) exp(zθ − ϕ(θ)), θ ∈ Θ ⊆ R ,

where Θ is the natural parameter space and θ is the canonical parameter. For
model (1), the distribution of Y belongs to the n-parameter exponential family
and its density reads

f(y|X ;β0) =

(
n∏

i=1

Bi(yi)

)
exp

(
〈y, Xβ0〉 −

n∑

i=1

ϕi ((Xβ0)i)

)
, Xβ0 ∈ Θn ,

(2)
where 〈·, ·〉 is the inner product, and the canonical parameter vector is the
linear predictorXβ0. In this case, h(µ) = (hi(µi))16i6n, where hi is the inverse
of the so-called link function in the language of GLM. Each hi is a monotonic
differentiable function, and a typical choice is the canonical link hi = ϕ′

i, where
ϕ′
i is known to be one-to-one if the family is regular (Brown 1986). Well-known

examples are the identity link hi(t) = t (Gaussian distribution, linear model),
the reciprocal link hi(t) = −1/t (Gamma and exponential distributions), and
the logit link hi(t) =

1
1+exp(−t) (Bernoulli distribution, logistic regression).

Example 2 (Transformations) The second example is where h plays the
role of a transformation such as variance-stabilizing transformations (VSTs),
symmetrizing transformations, or bias-corrected transformations. There is an
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enormous body of literature on transformations, going back to the early 1940s.
A typical example is when Yi are indepedent Poisson random variables ∼
P ((Xβ0)i), in which case hi takes the form of the Anscombe bias-corrected
VST. See (DasGupta 2008, Chapter 4) for a comprehensive treatment and
more examples.

Regularization is now a central theme in many fields including statistics,
machine learning and inverse problems. It allows one to impose on the set of
candidate solutions some prior structure on the object to be estimated. This
regularization ranges from squared Euclidean or Hilbertian norms (Tikhonov
and Arsenin 1997), to non-Hilbertian norms that have sparked considerable
interest in the recent years. Of particular interest are sparsity-inducing penal-
ties, such as the ℓ1 norm, which has been intensively investigated in the recent
years, e.g. (Chen et al 1999; Tibshirani 1996; Osborne et al 2000; Donoho
2006; Candès and Plan 2009; Bickel et al 2009); see (Bühlmann and van de
Geer 2011) for a comprehensive review. When the covariates are assumed to be
clustered in a few active groups/blocks, the group Lasso has been advocated
since it promotes sparsity of the groups, i.e. it drives all the coefficients in
one group to zero together hence leading to group selection, see (Bakin 1999;
Yuan and Lin 2006; Bach 2008; Wei and Huang 2010) to cite a few. Another
popular regularization is the total variation seminorm, introduced in the ROF
model (Rudin et al 1992), and the fused Lasso penalty (Tibshirani et al 2005).

1.2 Variational Estimators

Given observations (y1, . . . , yn), we consider the class of estimators obtained
as the solution of the convex optimization problem

β̂(y) ∈ Argmin
β∈Rp

F (β, y) + J(β) . (P(y))

The fidelity term F is of the following form

F (β, y) = F0(Xβ, y) (3)

where F0(·, y) is a general loss function assumed to be a proper, convex and
sufficiently smooth function of its first argument ; see Section 2 for a de-
tailed exposition of the smoothness assumptions. The regularizing penalty J
is proper, continuous and convex, and promotes some specific features on the
solution β̂(y); see Section 2 for a precise description of the class of regularizing
penalties J that we consider in this paper. The type of convex optimization
problem in (P(y)) is referred to as a regularized M -estimator in Negahban
et al (2012), where J is morever assumed to have a special decomposability
property.

We now provide some illustrative examples of loss functions F and regu-
larizing penalty J routinely used in signal processing, imaging sciences and
statistical machine learning.
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Example 3 (Generalized linear models) Generalized linear models in the
exponential family falls into the class of losses we consider. Indeed, taking the
negative log-likelihood corresponding to (2) gives1

F0(µ, y) =

n∑

i=1

ϕi (µi)− 〈y, µ〉 . (4)

It is well-known that if the exponential family is regular, then ϕi is proper,
infinitely differentiable, its hessian is definite positive, and thus it is strictly
convex (Brown 1986). Therefore, F0(·, y) shares exactly the same properties.
We recover the squared loss F0(µ, y) =

1
2 ||y−µ||2 for the standard linear models

(Gaussian case), and the logistic loss F0(µ, y) =
∑n

i=1 log (1 + exp(µi))−〈y, µ〉
for logistic regression (Bernoulli case).

GLM estimators with losses (4) and ℓ1 or ℓ1 − ℓ2 (group) penalties have
been previously considered and some of their properties studied including in
(Bunea 2008; van de Geer 2008; de Geer 2008; Meier et al 2008; Bach 2010;
Kakade et al 2010); see also (Bühlmann and van de Geer 2011, Chapter 3, 4
and 6).

Example 4 (Lasso) The Lasso regularization is used to promote the sparsity
of the solution and corresponds to choosing J as the ℓ1-norm

J(β) = ||β||1 =

p∑

i=1

|βi|. (5)

It is also refered to as ℓ1-synthesis in the signal processing community, in
contrast to the more general ℓ1-analysis sparsity penalty detailed below.

Example 5 (General Lasso) To allow for general regularization penalties,
it may be desirable to promote sparsity through a linear operatorD = (d1, . . . , dq) ∈
R

p×q. This leads to the so-called analysis-type sparsity penalty (a.k.a. general
Lasso after Tibshirani and Taylor (2012)) where the ℓ1-norm is pre-composed
by D∗, hence giving

J(β) = ||D∗β||1 =

q∑

j=1

|〈dj , β〉|. (6)

This of course reduces to the usual lasso penalty (5) when D = Idp. The
penalty (6) encapsulates several important penalties including that of the 1-D
total variation (Rudin et al 1992), and the fused Lasso (Tibshirani et al 2005).
In the former, D∗ is a finite difference approximation of the derivative, and
in the latter, D∗ is the concatenation of the identity matrix Idp and the finite
difference matrix to promote both the sparsity of the vector and that of its
variations.

1 Strictly speaking, the minimization may have to be over a convex subset of Rp.
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Example 6 (Group Lasso) In some applications, the sparsity of the param-
eter vector β is structured into groups. One then often wants to promote spar-
sity at the group level. This is achieved with the group Lasso penalty (Bakin
1999; Yuan and Lin 2006)

J(β) = ||β||1,2 =
∑

b∈B

||βb||2. (7)

where βb = (βi)i∈b is the sub-vector of β whose entries are indexed by the block
b ∈ B where B is a disjoint union of the set of indices i.e.

⋃
b∈B = {1, . . . , p}

such that b, b′ ∈ B, b∩b′ = ∅. (7) is a mixed ℓ1−ℓ2 norm which has the attractive
property to be invariant under (groupwise) orthogonal transformations.

Example 7 (Analysis Group Lasso) One can push the structured spar-
sity idea one step further by promoting group/block sparsity through a linear
operator, i.e. analysis-type group sparsity. Given a collection of linear opera-
tors {Db}b∈B, that are not all orthogonal, the analysis group sparsity penalty
is

J(β) = ||D∗β||1,2 =
∑

b∈B

||D∗
bβ||2. (8)

This encompasses the 2-D isotropic total variation (Rudin et al 1992), where β
is a 2-D discretized image, and each D∗

bβ ∈ R
2 is a finite difference approxima-

tion of the gradient of β at a pixel indexed by b. This point of view allows also
to extend the original group penalty (7) to the case where the blocks b ∈ B
overlap, by taking D∗

b : β 7→ βb to be a block extractor operator (Peyré et al
2011; Chen et al 2010).

1.3 Sensitivity Analysis

A chief goal of this paper is to investigate the sensitivity of any solution β̂(y)
to the parameterized problem (P(y)) to (small) perturbations of y. Sensitiv-
ity analysis2 is a major branch of optimization and optimal control theory.
Comprehensive monographs on the subject are (Bonnans and Shapiro 2000;
Mordukhovich 1992). The focus of sensitivity analysis is the dependence and
the regularity properties of the optimal solution set and the optimal values
when the auxiliary parameters (e.g. y here) undergo a perturbation. In its
simplest form, sensitivity analysis of first-order optimality conditions, in the
parametric form of the Fermat rule, relies on the celebrated implicit function
theorem.

The set of priors J we consider (coined piecewise regular or partly smooth
regularizers relative to a linear manifold, as detailed in Section 2) can be seen as
a special case of the broader class of “partly smooth” functions (Lewis 2003).
The latter unifies many non-smooth functions known in the literature. The

2 The meaning of sensitivity is different here from what is usually intended in satistical
sensitivity and uncertainty analysis.
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notion of partial smoothness (as well as identifiable surfaces (Wright 1993))
captures essential features of the geometry of non-smoothness which are along
the so-called “active/identifiable manifold”. For convex functions, a closely
related idea was developed in (Lemaréchal et al 2000). Loosely speaking, a
partly smooth function behaves smoothly as we move on the identifiable man-
ifold, and sharply if we move normal to the manifold. In fact, the behaviour of
the function and of its minimizers (or critical points) depend essentially on its
restriction to this manifold, hence offering a powerful framework for sensitivity
analysis theory. In particular, critical points of partly smooth functions move
stably on the manifold as the function undergoes small perturbations (Lewis
2003; Lewis and Zhang 2013).

Getting back to our class of regularizers, it turns out that our active/identi-
fiable manifold is actually a linear subspace. Indeed, the core of our proof
strategy relies on the identification of a certain linear subspace (that we coin

model subspace), denoted T = Tβ̂(y) associated to a particular minimizer β̂(y)

of (P(y)). We exhibit explicitly a certain set of observations, denoted H (see
Definition 3), outside which the initial non-smooth optimization (P(y)) boils
down locally to a smooth optimization constrained by T . This part of the proof
strategy is in close agreement with the one developed in (Lewis 2003) for the
sensitivity analysis of partly smooth functions. See also (Bolte et al 2011,
Theorem 13) for the case of linear optimization over a convex semialgebraic
partly smooth feasible set, where the authors proves a sensitivity result with a
zero-measure transition space. However, for our special class of regularizers, we
were able to go beyond by solving additional key challenges that are important
in a statistical context, namely: (i) we provide an analytical description of the
set H; (ii) we prove that this set is of zero Lebesgue measure; (iii) we compute

the first-order expansion of β̂(y) and provide an analytical form of the weak

derivative of Xβ̂(y). Altogether, this allows to get an unbiased estimator of

the risk on the prediction Xβ̂(Y ).

1.4 Degrees of Freedom and Unbiased Risk Estimation

The degrees of freedom (DOF) of an estimator quantifies the complexity of
a statistical modeling procedure (Efron 1986). It is at the heart of several
risk estimation procedures and thus allows one to perform parameter selection
through risk minimization.

In this section, we will assume that F0 in (3) is strictly convex, so that

the response (or the prediction) µ̂(y) = Xβ̂(y) is uniquely defined as a single-
valued mapping of y (see Lemma 1). That is, it does not depend on a particular

choice of solution β̂(y) of (P(y)). Let µ0 = Xβ0.
Suppose that h in (1) is the identity and that the observations Y ∼

N (µ0, σ
2Idn). Following (Efron 1986), the DOF is defined as

df =
n∑

i=1

cov(Yi, µ̂i(Y ))

σ2
.
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The well-known Stein’s lemma (Stein 1981) asserts that, if y 7→ µ̂(y) is weakly
differentiable function (i.e. typically in a Sobolev space over an open subset
of Rn), such that each coordinate y 7→ µ̂i(y) ∈ R has an essentially bounded
weak derivative3

E

(∣∣∣∂µ̂i

∂yi
(Y )
∣∣∣
)

< ∞, ∀i ,

then its divergence is an unbiased estimator of its DOF, i.e.

d̂f = div(µ̂)(Y ) = tr(Dµ̂(Y )) and E(d̂f) = df ,

where Dµ̂ is the Jacobian of y 7→ µ̂(y). In turn, this allows to get an unbiased
estimator of the prediction risk E(||µ̂(Y ) − µ0||2) through the SURE (Stein
Unbiased Risk Estimate, Stein 1981).

Extensions of the SURE to independent variables from an exponential fam-
ily are considered in (Hudson 1978) for the continuous case, and (Hwang 1982)
in the discrete case. Eldar (2009) generalizes the SURE principle to continuous
multivariate exponential families.

1.5 Contributions

We consider a large class of losses F0, and of regularizing penalties J which are
finite-valued convex and partly smooth functions relative to linear manifold,
following the definition of (Vaiter et al 2013). We recall it in Section 2. For
this class of regularizers and losses, we first establish in Theorem 1 a general
sensivity analysis result, which provides the local parametrization of any so-
lution to (P(y)) as a function of the observation vector y. This is achieved
without placing any specific assumption on X , should it be full column rank
or not. With such a result at hand, we derive an expression of the divergence of
the prediction with respect to the observations (Theorem 2). Using tools from
o-minimal geometry, we prove that this divergence formula is valid Lebesgue-
a.e.. In turn, this allows us to get an unbiased estimate of the DOF and of
the prediction risk (Theorem 3 and Theorem 4) for model (1) under two sce-
narios: (i) Lipschitz continuous non-linearity h and an additive i.i.d. Gaussian
noise; (ii) GLMs with a continuous exponential family. Our results encompass
some previous ones in the literature as special cases (see discussion in the next
section).

1.6 Relation to prior works

In the case of standard Lasso (i.e. ℓ1 penalty (5)) with Y ∼ N (Xβ0, σ
2Idn) and

X of full column rank, (Zou et al 2007) showed that the number of nonzero
coefficients is an unbiased estimate for the DOF. Their work was generalized

3 We write the same symbol as for the derivative, and rigorously speaking, this has to be
understood to hold Lebesgue-a.e.
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in (Dossal et al 2013) to any arbitrary design matrix. Under the same Gaussian
linear regression model, unbiased estimators of the DOF for the Lasso with
ℓ1-analysis penalty (6), were given independently in (Tibshirani and Taylor
2012; Vaiter et al 2012a).

A formula of an estimate of the DOF for the group Lasso when the design
is orthogonal within each group was conjectured in (Yuan and Lin 2006). Kato
(2009) studied the DOF of a general shrinkage estimator where the regression
coefficients are constrained to a closed convex set C. His work extends that
of (Meyer and Woodroofe 2000) which treats the case where C is a convex
polyhedral cone. WhenX is full column rank, (Kato 2009) derived a divergence
formula under a smoothness condition on the boundary of C, from which an
unbiased estimator of the degrees of freedom was obtained. When specializing
to the constrained version of the group Lasso, the author provided an unbiased
estimate of the corresponding DOF under the same group-wise orthogonality
assumption onX as (Yuan and Lin 2006). Hansen and Sokol (2014) studied the
DOF of the metric projection onto a closed set (non-necessarily convex), and
gave a precise representation of the bias when the projector is not sufficiently
differentiable. An estimate of the DOF for the group Lasso was also given
by (Solo and Ulfarsson 2010) using heuristic derivations that are valid only
when X is full column rank, though its unbiasedness is not proved.

Vaiter et al (2012b) also derived an estimator of the DOF of the group
Lasso and proved its unbiasedness when X is full column rank, but without
the orthogonality assumption required in (Yuan and Lin 2006; Kato 2009).
When specialized to the group Lasso penalty, our results establish that the
DOF estimator formula in (Vaiter et al 2012b) is still valid while removing
the full column rank assumption. This of course allows one to tackle the more
challenging rank-deficient or underdetermined case p > n.

1.7 Notations

In the following, for any subspace T ⊂ R
p, we denote PT the orthogonal

projection on T and

βT = PT (β) and XT = X PT .

For any matrix A, A∗ denotes its transpose.
For a subspace T ⊂ R

p, and any function g ∈ C2(T × R
n), we denote

D2
1gT (β, y) = PT ◦D2

1g(β, y) ◦ PT

which can be understood as the Hessian of the mapping β ∈ T 7→ g(β, y), i.e.
the restriction of g(·, y) to T . Of course, when T is the whole space, we recover
the “full” Hessian.

We also denote D2
12g(β, y) the Jacobian of the mapping y ∈ R

n 7→ ∇1g(β, y)
with respect to y, and ∇1g(β, y) is the gradient of g w.r.t the first variable at
(β, y).
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We now turn to the notion of model space. The interested reader may refer
to (Vaiter et al 2013) and references therein for a comprehensive treatment.
Consider a convex continuous, hence of full domain, function J . We denote

S̄β = aff(∂J(β))

the affine hull of the sub-differential at β (i.e. the smallest affine manifold
containing it), and

e (β) = argmin
e∈S̄β

||e||,

i.e. e (β) is the orthogonal projection of the origin on S̄β. We denote the
subspaces

Sβ = S̄β − e (β) and Tβ = S⊥
β . (9)

We denote the set of all possible subspaces Tβ as

T = {Tβ ⊂ R
p : β ∈ R

p} .

For any T ∈ T , we denote T̃ the set of vectors sharing the same subspace T ,

T̃ = {β ∈ R
p : Tβ = T } .

For instance, when J = || · ||1, T̃ is the cone of all the vectors sharing the same
support.

We give in the following examples of the model subspace associated to
some convex partly smooth regularizers that are popular in the literature.

Example 8 (Lasso regularizer) We denote (ai)16i6p the canonical basis of
R

p. In the case J(β) = ||β||1, the model space of a vector β ∈ R
p is given by

Tβ = Span{(ai)i∈supp(β)} where supp(β) = {i ∈ {1, . . . , p} : βi 6= 0} .

Example 9 (General Lasso regularizer) Proposition 9 in (Vaiter et al 2013)
relates the model subspace and vector associated to a convex partly smooth
regularizer J ◦D∗, where D is a linear operator, to those of J . Let us illustrate
this in the case where J = || · ||1. For J(β) = ||D∗β||1, one has

Tβ = KerD∗
Λ where Λ = supp(D∗β)c.

Example 10 (Group Lasso regularizer) The model space associated to β
when the blocks are of size greater than 1 can be defined similarly, but using
the notion of block support. Using the block structure B, one has

Tβ = Span{(ai)i∈suppB β)},

where

suppB(β) = {i ∈ {1, . . . , p} : ∃b ∈ B, βb 6= 0 and i ∈ b} .
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2 Partly Smooth Functions with Linear Manifold

2.1 Partial Smoothness

Toward the goal of studying the sensitivity behaviour of β̂(y) and µ̂(y) with
non-negative finite-valued convex regularizers J , we restrict our attention to a
subclass of these functions that fulfill some regularity assumptions according
to the following definition.

Definition 1 A finite-valued convex function J is said to be partly smooth
at β relative to a linear manifold M ⊆ R

p if

1. Smoothness:

J restricted to M is C2 around β. (Csm)

2. Sharpness: M = Tβ.
3. Continuity:

The set-valued mapping ∂J is continuous at β relative to M. (Ccont)

J is said to be partly smooth relative to the linear manifold M ∈ T if J is
partly smooth at each point β ∈ M relative to M.

It turns out that the sharpness property is locally stable (Lewis 2003, Proposi-
tion 2.10), meaning that if it holds at β implies that it also holds at all nearby
points in M. This can be formally written as

∃ε > 0, ∀β′ ∈ Tβ ∩ B(β, ε) ⇒ Tβ = Tβ′ . (Csharp)

We will also assume in the following that

The set T is finite. (CT )

Some remarks are in order. Assumption (Csharp) amounts to saying that
there exists a neighbourhood of β on Tβ on which this subspace model is con-
stant. The above class of partly smooth functions is closed under addition and
pre-composition by a linear operator, see see (Vaiter et al 2013). Many well-
studied regilarizing penalties are partly smooth relative to a linear manifold,
including the ℓ1, the ℓ1 − ℓ2, the ℓ∞ norms, and their analysis-type versions
and/or positive combinations, see (Vaiter et al 2013, Section 6) for a detailed
discussion of the examples.

Assumption (CT ) holds in many important cases, including the Lasso (ℓ1-
norm) and group Lasso (ℓ1 − ℓ2) penalties, the ℓ∞-norm, as well as their
analysis-type counterparts (composition with linear operators). However, our
definition precludes the case of the nuclear norm (also known as the trace
norm). Indeed, in this case, the function is still partly smooth bu relatively to
non-linear smooth manifold composed of matrices with fixed rank. We refer to
(Vaiter et al 2014) for a detailed discussion of the model manifold properties
of this regularizer. Our results thus do not cover the latter.
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2.2 Restriction and Second-Order Derivative of the Regularizer

We denote

JT : βT ∈ T 7→ J(βT ) ∈ R
+

the restriction of J to T for some subspace T ⊂ T . Hence the hessian of JT is
well-defined on T . We illustrate this definition on several examples.

Example 11 (Lasso and general Lasso) For J = || · ||1, one has

∀βT ∈ T, ∇JT (βT ) = sign(βT ) ,

and thus, D2JT (βT ) = 0. This is also the case for the analysis ℓ1-penalty
(general Lasso), see for instance (Vaiter et al 2012a). This property basically
reflects the fact that these regularizers are polyhedral, hence piecewise affine.

Example 12 (Group Lasso) For J = || · ||1,2 as defined in (8), we have

D2JT (βT ) = δβ ◦ Pβ⊥ ,

where, for I = suppB(β),

δβ : v ∈ R
|I| 7→ (vb/||βb||)b⊂I ∈ R

|I|

and Pβ⊥ : v ∈ R
|I| 7→ (Pβ⊥

b
vb)b⊂I ∈ R

|I| ,

where

Pβ⊥

b
vb = vb −

〈βb, vb〉

||βb||2
βb

is the orthogonal projector on β⊥
b .

3 Sensitivity Analysis of β̂(y)

In all the following, we consider a variational regularized problem of the form
of (P(y)). We assume that the fidelity term enjoys the following properties.

∀ (y, β) ∈ R
n × R

p, F (·, y) ∈ C2(Rp) and ∇1F (β, ·) ∈ C1(Rn). (CF )

In this section, we aim at computing the derivative of the map y 7→ β̂(y)
whenever this is possible. The following condition plays a pivotal role in this
analysis.

Definition 2 (Restricted Injectivity) A vector β ∈ R
p with T = Tβ is

said to satisfy the restricted injectivity condition if, and only if,

T ∩ ker(D2
1FT (β, y)) ∩ ker(D2JT (β)) = {0}. (Cβ,y)
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Example 13 (Lasso) For the Lasso problem, i.e. J = || · ||1 and F0 is the
squared loss, condition (Cβ,y) reads ker(XI) = {0}, where I is the support
of the vector β. This condition is already known in the literature, see for
instance (Dossal et al 2013) in the context of DOF estimation.

Example 14 (Group Lasso) For the group Lasso, i.e. J = || · ||1,2 and F0 is
the squared loss, condition (Cβ,y) amounts to assuming that the collection of
vectors (Xbβb)b⊂I is linearly independent, where I = suppB(β). This condition
appears in (Liu and Zhang 2009) to establish ℓ2-consistency of the group Lasso.
It goes without saying that condition (Cβ,y) is much weaker than imposing that
XI is full column rank, which is standard when analyzing the Lasso.

Let us now turn to the sensitivity of a minimizer β̂(y) of (P(y)) to pertur-
bations of y. Because of non-smoothness of the regularizer J , it is a well-known
fact in sensitivity analysis that one cannot hope for a global claim, i.e. an ev-
erywhere smooth mapping4 y 7→ β̂(y). Rather, the sensitivity behaviour is
local. This is why the reason we need to introduce the following transition
space H, which will be shown to contain points of non-smoothness of β̂(y).

Definition 3 The transition space H is defined as

H =
⋃

T∈T

HT , where HT = bd(Πn+p,n(AT )),

where we have denoted

Πn+p,n :

{
R

n × T̃ −→ R
n

(y, βT ) 7−→ y

the canonical projection on the first n coordinates, bdC is the boundary of the
set C, and

AT =
{
(y, βT ) ∈ R

n × T̃ : −∇1F (βT , y) ∈ rbd ∂J(βT )
}
.

Here, rbd ∂J(βT ) is the relative boundary of ∂J(βT ) defined as its boundary
in the topology of its affine hull.

In the particular case of the Lasso (resp. general Lasso), i.e. F0 is the
squared loss, J = || · ||1 (resp. J = ||D∗ · ||1), the transition space specializes
to the one introduced in (Dossal et al 2013) (resp. (Vaiter et al 2012a)). In
these specific cases, since J is a polyhedral gauge, H is in fact a union of
affine hyperplanes. The geometry of this set can be significantly more complex
for other regularizers. For instance, for J = || · ||1,2, it can be shown to be a
semi-algebraic set (union of algebraic hyper-surfaces). Section 5 is devoted to
a detailed analysis of this set H.

We are now equipped to state our main sensitivity analysis result, whose
proof is deferred to Section 6.2.

4 To be understood here as a set-valued mapping.
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Theorem 1 Let y 6∈ H, and β⋆ a solution of (P(y)) such that (Cβ⋆,y) holds.

Then, there exists an open neighborhood V ⊂ R
n of y, and a mapping β̃ : V →

T such that

1. For all ȳ ∈ V, β̃(ȳ) is a solution of (P(ȳ)), and β̃(y) = β⋆.
2. the mapping β̃ is C1(V) and

∀ ȳ ∈ V , Dβ̃(ȳ) = −(D2
1FT (β

⋆, ȳ) + D2JT (β
⋆))−1 ◦ PT ◦D2

12F (β⋆, ȳ),
(10)

where T = Tβ⋆.

Theorem 1 can be extended to the case where the data fidelity is of the form
F (β, θ) for some parameter θ, with no particular role of y here. One now may
wonder whether condition (Cβ⋆,y) is restrictive, and in particular, whether
there exists always a solution β⋆ such that it holds. In the following section,
we give an affirmative answer with the proviso that the loss F0 is strictly
convex.

4 Sensitivity Analysis of µ̂(y)

We assume in this section that F takes the form (3) with

∀ (µ, y) ∈ R
n × R

n, D2
1F0(µ, y) is definite positive. (Cdp)

This in turn implies that F0(·, y) is strictly convex for any y (the converse
is obviously not true). Recall that this condition is mild and holds in many
situations, in particular for losses (4) in the exponential family, see Section 1.2
for details.

Under this condition, the following immediate lemma (proved in Section 6.3)
gives a convenient re-writing of condition (Cβ⋆,y).

Lemma 1 Assume that condition (Cdp) holds. For β ∈ R
p, and T = Tβ, the

two following are equivalent.

(i) (Cβ,y) holds.
(ii) ker(XT ) ∩ ker(D2JT (β)) = {0}.

Furthermore, all minimizers of (P(y)) share the same image under X.

Owing to this lemma, we can now define the prediction

µ̂(y) = Xβ̂(y) (11)

without ambiguity given any solution β̂(y), which in turn defines a single-
valued mapping µ̂. The following theorem provides a closed-form expression
of the local variations of µ̂ as a function of perturbations of y.
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Theorem 2 Under assumption (Cdp), the mapping y 7→ µ̂(y) is C1(Rn \H).
For all y 6∈ H, there exists a solution β⋆ of (P(y)) such that (Cβ⋆,y) is satisfied.
Moreover, for all y 6∈ H,

Dµ̂(y) = ∆(y) (12)

where

∆(y) = −XT ◦ (X∗
T ◦D2

1F0(Xβ⋆, y) ◦XT +D2JT (β
⋆))−1 ◦X∗

T ◦D2
12F0(Xβ⋆, y)

where β⋆ is any solution of (P(y)) such that (Cβ⋆,y) holds and T = Tβ⋆.

This Theorem is proved in Section 6.3.

Example 15 (Lasso) For the Lasso problem, the above divergence formula
boils down to

div(µ̂)(y) = | supp(β⋆)|,

where β⋆ is a solution of (P(y)) such that (Cβ⋆,y) holds. Indeed, the ℓ1-norm
is affine on the model subspace T = Tβ⋆ , and thus D2JT (β

⋆) = 0, as already
remarked in Section 2.2. This result was proved in (Dossal et al 2013), see also
(Tibshirani and Taylor 2012).

Example 16 (General Lasso) The general Lasso case was investigated in (Vaiter
et al 2012a) and (Tibshirani and Taylor 2012). In this case, using again the
fact that D2JT (β

⋆) = 0, one has

div(µ̂)(y) = dimKerD∗
Λ, Λ = supp(D∗β⋆)c ,

where β⋆ is such that (Cβ⋆,y) holds.

5 Degrees of Freedom and Unbiased Risk Estimation

Throughout this section, we use the same symbols to denote weak derivatives
(whenever they exist) as for derivatives. Rigorously speaking, the identities
have to be understood to hold Lebesgue-a.e. (Evans and Gariepy 1992).

So far, we have shown that outside the transition space H, the mapping
µ̂(y) enjoys (locally) nice smoothness properties, which in turn gives closed-
form formula of its divergence. To establish that such formal hold Lebesgue
a.e., a key argument that we need to show is that H is of negligible Lebesgue
measure. This is where o-minimal geometry enters the picture. In turn, for
Y drawn from some appropriate probability measures with density with re-
spect to the Lebesgue measure, this will allow us to establish unbiasedness of
quadratic risk estimators.
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5.1 O-minimal Geometry

Roughly speaking, to be able to control the size of H, the function J cannot
be too oscillating in order to prevent pathological behaviours. We now briefly
recall here the definition. Some important properties of o-minimal structures
that are relevant to our context together with their proofs are collected in
Section A. The interested reader may refer to (van den Dries 1998; Coste 1999)
for a comprehensive account and further details on o-minimal structures.

Definition 4 (Structure) A structure O expanding R is a sequence (On)n∈N

which satisfies the following axioms:

1. Each On is a Boolean algebra of subsets of Rn, with R
n ∈ On.

2. Every semi-algebraic subset of Rn is in On.
3. If A ∈ On and B ∈ On, then A×B ∈ On+n′ .
4. If A ∈ On+1, then Πn+1,n(A) ∈ On, where Πn+1,n : Rn+1 → R

n is the
projection on the first n components.

The structure O is said to be o-minimal if, moreover, it satisfies

5. (o-minimality) Sets in O1 are precisely the finite unions of intervals and
points of R.

In the following, a set A ∈ On is said to be definable.

Definition 5 (Definable set and function) Let O be an o-minimal struc-
ture. The elements of On are called the definable subsets of Rn, i.e. Ω ⊂ R

n

is definable if Ω ∈ On. A map f : Ω → R
p is said to be definable if its

graph G(f) = {(x, u) ∈ Ω × R
p : u = f(x)} ⊆ R

n × R
p is a definable subset

of Rn × R
p (in which case p times applications of axiom 4 implies that Ω is

definable).

A fundamental class of o-minimal structures is the collection of semi-
algebraic sets, in which case axiom 4 is actually a property known as the Tarski-
Seidenberg theorem (Coste 2002). For example, in the special case where q is
a rational number, J = || · ||q is semi-algebraic. When q ∈ R is not ratio-
nal, || · ||q is not semi-algebraic, however, it can be shown to be definable in
an o-minimal structure. To see this, we recall from (van den Dries and Miller
1996, Example 5 and Property 5.2) that there exists a (polynomially bounded)
o-minimal structure that contains the family of functions {t > 0 : tq, q ∈ R}
and restricted analytic functions. Functions F0 that correspond to the expo-
nential family losses introduced in Example 3 are also definable.

Our o-minimality assumptions requires the existence of an o-minimal struc-
ture O such that

the functionals F and J are definable in O. (CO)
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5.2 Degrees of Freedom and Unbiased Risk Estimation

We assume in this section that F takes the form (3) and that

∀ y ∈ R
n, F0(·, y) is strongly convex with modulus τ (Cτ )

and
∃L > 0, sup

(µ,y)∈Rn×Rn

||D2
12F0(µ, y)|| 6 L. (CL)

Obviously, assumption (Cτ ) implies (Cdp), and thus the claims of the pre-
vious section remain true. Moreover, this assumption holds for the squared
loss, but also for some losses of the exponential family (4), possibly adding a
small quadratic term in β. As far as assumption (CL) is concerned, it is easy to
check that it is fulfilled with L = 1 for any loss of the exponential family (4),
since D2

12F0(µ, y) = Id.

Non-linear Gaussian regression. Assume that the observation model (1)
specializes to Y ∼ N (h(Xβ0), σ

2Idn), where h is Lipschitz continuous.

Theorem 3 Suppose that conditions (CO), (Cτ ) and (CL) hold. Then,

(i) H is of Lebesgue measure zero;
(ii) h◦µ̂ is Lipschitz continuous, hence weakly differentiable, with an essentially

bounded gradient.
(iii) d̂f = tr(Dh(µ̂(Y ))∆(Y )) is an unbiased estimate of df = E(div(h ◦ µ̂(Y ))).
(iv) The SURE

SURE(h ◦ µ̂)(Y ) =||Y − h(µ̂(Y ))||2 + 2σ2d̂f − nσ2 (13)

is an unbiased estimator of the risk E
(
||h(µ̂(Y ))− h(µ0)||2

)
.

This theorem is proved in Section 6.4.

GLM with the continuous exponential family. Assume that the obser-
vation model (1) corresponds to the GLM with a distribution which belongs to
a continuous standard exponential family as parameterized in (2). We denote

∇ logB(y) =

(
∂ logBi(yi)

∂yi

)

i

.

Theorem 4 Suppose that conditions (CO), (Cτ ) and (CL) hold. Then,

(i) H is of Lebesgue measure zero;
(ii) µ̂ is Lipschitz continuous, hence weakly differentiable, with an essentially

bounded gradient.
(iii) d̂f = tr(∆(Y )) is an unbiased estimate of df = E(div(µ̂(Y ))).
(iv) The GSURE

GSURE(µ̂)(Y ) =||∇ logB(Y )− µ̂(Y )||2 + 2d̂f − (||∇ logB(Y )||2 − ||µ0||
2)
(14)

is an unbiased estimator of the risk E
(
||µ̂(Y )− µ0||2

)
.
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This theorem is proved in Section 6.4.

Though GSURE(µ̂)(Y ) depends on µ0, which is obviously unknown, it
is only through an additive constant, which makes it suitable for parameter
selection by risk minimization. Moreover, even if it is not stated here explicitly,
Theorem 4 can be extended to unbiasedly estimate other measures of the risk,
including the projection risk, or the estimation risk (in the full rank case)
through the Generalized Stein Unbiased Risk Estimator as proposed in (Eldar
2009, Section IV), see also (Vaiter et al 2012a) in the Gaussian case.

6 Proofs

This section details the proofs of our results.

6.1 Preparatory Lemmata

We first collect some results that are used in the sequel, and whose proof can
be found in Vaiter et al (2013).

Proposition 1 (Decomposability property) Let J be a finite-valued con-
vex function. Let β ∈ R

N \ {0}. Then any subgradient η ∈ ∂J(β) is such
that

ηTβ
= e(β) .

Moreover, the affine hull S̄β equivalently reads

S̄β =
{
η ∈ R

p : ηTβ
= e(β)

}
.

Separation theory in convex analysis and the subdifferential structure in
Proposition 1 yield the following useful equivalent characterization of the rel-
ative interior of the subdifferential.

Lemma 2 For the subdifferenial ∂J(β), there holds

η ∈ ri∂J(β) ⇐⇒ ∀u ∈ S \ {0}, ∃η′ ∈ ∂J(β) such that 〈u, η′ − η〉 > 0 .

Proof First, recall that the directional derivative J ′(β, u) of J at β in the
direction u is

J ′(β, u) = lim
t↓0

J(β + tu)− J(β)

t
.

Since J is proper, convex and continuous, the subdifferential ∂J(β) is a non-
empty compact convex set of Rp whose support function is J ′(β, ·) (Rockafellar
1996, Theorem 23.4), i.e.

J ′(β, u) = max
η∈∂J(β)

〈η, u〉 ,
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and the maximum is attained at some η′. From the charcaterization of the rela-
tive interior of a non-empty closed convex set (Lemaréchal and Hiriart-Urruty
1996, Theorem V.2.2.3) or (Rockafellar 1996, Theorem 13.1), and sublinearity
we deduce that

η ∈ ri∂J(β) ⇐⇒ J ′(β, u) > 〈u, η〉 ∀u such that J ′(β, u) + J ′(−β, u) > 0 .

Using Proposition 1 shows that

J ′(β, u) = 〈e(β), u〉+ max
η∈PS(∂J(β))

〈η, u〉 .

Sublinearity implies that (Lemaréchal and Hiriart-Urruty 1996, Corollary V.1.1.5)

J ′(β, u) + J ′(β,−u) > 0 .

Thus

J ′(β, u) + J ′(β,−u) = max
η∈PS(∂J(β))

〈η, u〉 − min
η∈PS(∂J(β))

〈η, u〉 ,

whence we obtain

J ′(β, u) + J ′(β,−u) > 0 ⇐⇒ u /∈ T .

Piecing everything together, we get

η ∈ ri∂J(β) ⇐⇒ ∀u /∈ T, J ′(β, u) > 〈u, η〉

⇐⇒ ∀u /∈ T, ∃η′ ∈ ∂J(β) such that 〈u, η′〉 > 〈u, η〉

⇐⇒ ∀u /∈ T, ∃η′ ∈ ∂J(β) such that 〈u, η′ − η〉 > 0

⇐⇒ ∀u /∈ T, ∃η′ ∈ ∂J(β) such that 〈u, η′S − ηS〉 > 0

⇐⇒ ∀u ∈ S \ {0}, ∃η′ ∈ ∂J(β) such that 〈u, η′ − η〉 > 0 .

⊓⊔

By standard arguments of convex analysis and using again the subdiffer-
ential structure of Proposition 1, the following lemma gives the first-order
sufficient and necessary optimality condition of a minimizer of (P(y)).

Lemma 3 A vector β⋆ ∈ R
p is a minimizer of (P(y)) if, and only if,

−∇1F (β⋆, y) ∈ ∂J(β⋆).

In particular, if β⋆ ∈ R
p is a minimizer of (P(y)), then

−∇1F (β⋆, y)T = e (β⋆) ,

where we have denoted Tβ⋆ = T .
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Proof The first monotone inclusion is just the first-oder necessary and suffi-
cient minimality condition for our convex program. Using the structure of the
subdifferential of Proposition 1 for J at β⋆, this is equivalent to

−∇1F (β⋆, y)T = e (β⋆) and −∇1F (β⋆, y)S ∈ (∂J(x))S .

⊓⊔

Lemma 4 Let β ∈ R
p, and T = Tβ. Assume that (Cβ,y) holds. Then the linear

operator D2
1FT (β, y) + D2JT (β) : T → T is invertible on T .

Proof Since F (·, y) and J are convex and in C2(T ) by assumptions (CF )
and (Csm), the (restricted) hessians D2

1FT (β, y) and D2JT (β) are symmet-
ric semidefinite positive on T . To ensure invertibility of their sum on T , it is
necessary and sufficient that their kernels have a trivial intersection, which is
exactly what assumption Cβ,y states. ⊓⊔

Lemma 5 Let β⋆
0 and β⋆

1 be two solutions of

min
β∈Rp

f(β) + g(β) (15)

where f is proper, convex and C2(Rp) function, and g is proper, convex and
lower semicontinuous with a non-necessarily full-domain. Then

∇f(β⋆
0 ) = ∇f(β⋆

1).

Recall that the subdifferential of a proper, lower semicontinous and convex
function g : β ∈ R

p 7→ R ∪ {+∞} is a maximal monotone (set-valued) opera-
tor (Lemaréchal and Hiriart-Urruty 1996), i.e. for every β1, β2 ∈ dom(f), and
η1 ∈ ∂f(β1) and η2 ∈ ∂g(β2), the following holds

〈β1 − β2, η1 − η2〉 > 0.

Moreover, if g is (Gâteaux) differentiable at β then ∇g(β) is its unique sub-
gradient, i.e. ∂g(β) = {∇g(β)}.

Proof Let β⋆
0 and β⋆

1 be two distinct solutions of (15), otherwise, there is
nothing to prove. We denote β⋆

t = β⋆
0 + th where h = β⋆

1 − β⋆
0 , t ∈ [0, 1].

By convexity, β⋆
t is also a minimizer of (15). Similarily to Lemma 3, we have

−∇f(β⋆
t ) ∈ ∂g(β⋆

t ). Convexity of g then yields

〈∇f(β⋆
t )−∇f(β⋆

0), th〉 6 0.

Similarly, convexity of f entails

〈∇f(β⋆
t )−∇f(β⋆

0), th〉 > 0.

Combining these inequalities yields, for any t ∈ [0, 1]

〈∇f(β⋆
t )−∇f(β⋆

0), h〉 = 0. (16)
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Since f is C2(Rp), Taylor expansion gives

∇f(β⋆
1)−∇f(β⋆

0) =

∫ 1

0

D2f(β⋆
t )hdt , (17)

which, after taking the inner product of both sides with h and using (16),
yields

〈∇f(β⋆
1 )−∇f(β⋆

0), h〉 =

∫ 1

0

〈D2f(β⋆
t )h, h〉dt = 0. (18)

By convexity, the Hessian ∂2f(β⋆
t ) is semidefinite positive, and (18) implies

that

∀t ∈ [0, 1], 〈D2f(β⋆
t )h, h〉 = 0,

or equivalently

||D2f(β⋆
t )

1/2h|| = 0 ⇔ h ∈ KerD2f(β⋆
t ) .

Inserting this again in (17) yields the desired claim. ⊓⊔

6.2 Proof of Theorem 1

Let y 6∈ H and β⋆ be a solution of (P(y)) such that (Cβ⋆,y) holds. We denote
Tβ⋆ = T = S⊥.

We define the following mapping

Γ : (βT , y) ∈ T × R
n 7→ ∇1F (βT , y)T + e (βT ) .

Observe that owing to Proposition 1, the first equation of Lemma 3 is equiv-
alent to Γ (β⋆

T , y) = 0.

Note that any βT ∈ T̃ such that Γ (βT , y) = 0 is a solution of the con-
strained problem

min
α∈T

F (α, y) + J(α) . (P(y)T )

It comes from the fact that Γ (βT , y) = 0 is the first-order minimality condition
over the subspace T .

We split the proof in three steps. We first show that there exists a mapping
ȳ 7→ β̃(ȳ) ∈ T and an open neighborhood V of y such that every element ȳ
of V satisfies Γ (β̃(ȳ)T , ȳ) = 0 and β̃(ȳ)S = 0. Then, we prove that β̃(ȳ) is a
solution of (P(ȳ)) for ȳ ∈ V . Finally, we obtain (10) from the implicit function
theorem.
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Step 1: construction of β̃(ȳ). The Jacobian of Γ with respect to the first
variable reads

D1Γ (β⋆
T , ȳ) = D2

1FT (β
⋆
T , ȳ)T +D1e (β

⋆
T ) ,

where D1 denotes the derivative with respect to the first variable. Moreover,
since β⋆ ∈ T̃ , Assumption (Csm) yields D1e (β

⋆
T ) = D2JT (β

⋆
T ). Thus, we get

D1Γ (β⋆
T , ȳ) = D2

1FT (β
⋆
T , ȳ) + D2JT (β

⋆
T ).

The linear operator mapping D1Γ (β⋆
T , y) is invertible on T according to

Lemma 4. Hence, using the implicit function theorem restricted to T , there
exists a neighborhood Ṽ of y such that we can define a mapping β̃T : Ṽ → T
which is C1(Ṽ), and satisfies for ȳ ∈ Ṽ

Γ (β̃T (ȳ), ȳ) = 0 and β̃T (y) = β⋆
T .

We then extend β̃(ȳ) on S as β̃S(ȳ) = 0. which defines a continuous mapping

β̃ : Ṽ → T ⊂ R
p.

Step 2: checking the first-order minimality condition on S. We now have to
check the first order conditions on S, i.e. to check that −∇1F (β̃(ȳ), ȳ) ∈
∂J(β̃(ȳ)). We distinguish two cases.

• Assume that −∇1F (β⋆, y) ∈ ri∂J(β⋆): we show that for a sufficiently small
neighbourhood of y, we also have −∇1F (β̃(ȳ), ȳ) ∈ ri ∂J(β̃(ȳ)). First, since

β̃ : Ṽ → T is continuous, for any ε > 0, there exists a neighborhood V̄ ⊂ Ṽ
of y such that

||β̃(ȳ)− β⋆|| 6 ε ∀ ȳ ∈ V̄ .

By virtue of Assumption (Csharp), one can then choose ε sufficiently small
to conclude that Sβ̃(ȳ) = S for any ȳ ∈ V̄.

Suppose that there is a sequence (yℓ)ℓ approaching y such that

−∇1F (β̃(yℓ), yℓ) /∈ ri∂J(β̃(yℓ))

for all ℓ. This can be equivalently written, owing to Lemma 2, as

∃uℓ ∈ Sβ̃(yℓ)
, ∀v ∈ ∂J(β̃(yℓ)) 〈uℓ, v +∇1F (β⋆, y)〉 6 0, ∀ℓ ,

or

∃uℓ ∈ Sβ̃(yℓ)
, sup 〈uℓ, ∂J(β̃(yℓ)) +∇1F (β̃(yℓ), yℓ)〉 6 0, ∀ℓ .

Recall that the sequence uℓ can be taken on the unit sphere, and therefore
has a non-zero cluster point, say u, which belongs to S as Sβ̃(yℓ)

converges
to S. We now claim that

sup 〈u, ∂J(β⋆) +∇1F (β⋆, y)〉 6 0 .
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Consider any η ∈ ∂J(β⋆). Since β̃(yℓ) converges to β⋆ in T , we have from
the argument above that Tβ̃(yℓ)

= T for ℓ sufficiently large. This together

with Assumption (Ccont), which means that ∂J(β) is continuous on T̃ ,
allow to deduce that ∂J(β̃(yℓ)) converges to ∂J(β⋆). Thus, there exists a
sequence ηℓ ∈ ∂J(β̃(yℓ)) converging to η. Now, continuity of the mapping

yℓ ∈ Ṽ 7→ ∇1F (β̃(yℓ), yℓ) ∈ R
p

(since β̃ and ∇1F are both continuous on T and R
p ×R

n) yields also that
∇1F (β̃(yℓ), yℓ) converges to ∇1F (β⋆, y). Since

〈uℓ, ηℓ +∇1F (β̃(yℓ), yℓ)〉 6 sup 〈uℓ, ∂J(β̃(yℓ)) +∇1F (β̃(yℓ), yℓ)〉 6 0 , ∀ℓ

we get that

〈u, η +∇1F (β⋆, y)〉 6 0 .

The latter inequality holds for any η ∈ ∂J(β⋆), which, in view of Lemma 2,
means that −∇1F (β⋆, y) /∈ ri ∂J(β⋆). But this contradicts our initial as-
sumption.

• We now turn to the case where −∇1F (β⋆, y) ∈ rbd ∂J(β⋆). Observe that
(y, β⋆) ∈ AT . In particular y ∈ Πn+p,n(AT ). Since by assumption y 6∈ H,
one has y 6∈ bd(Πn+p,n(AT )). Hence, there exists an open ball B(y, ε) for
some ε > 0 such that B(y, ε) ⊂ Πn+p,n(AT ). Thus for every ȳ ∈ B(y, ε),

there exists β̄ ∈ T̃ such that

−∇1F (β̄, ȳ) ∈ rbd ∂J(β̄).

Since ∂J(β̄) ⊂ S̄β̄ and β̄ ∈ T , β̄ is a solution of (P(ȳ)T ). Thus, applying
Lemma 5 with f = F (·, y) and g = J + ιT , where ιT is the indicator
function of T , we deduce that all solutions of (P(ȳ)T ) share the same
gradient, whence we get ∇1F (β̄, ȳ) = ∇1F (β̃(ȳ), ȳ). Since β̃(ȳ) ∈ T , for ȳ
sufficiently close to y, Assumption (Csharp) allows to deduce that

Tβ̃(ȳ) = T.

In view of Proposition 1 and by definition of the mapping β̃T , we deduce
that for all ȳ ∈ V ∩ V̄ , −∇1F (β̃(ȳ), ȳ)T = e(β̃(ȳ)) = ηT , for any η ∈
∂J(β̃(ȳ)). Combining this with convexity of J and the fact that β̄− β̃(ȳ) ∈
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T , implies that ∀α ∈ R
p

J(α) > J(β̄)− 〈∇1F (β̄, ȳ), α− β̄〉

= J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉

+ J(β̄)− J(β̃(ȳ)) + 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉 − 〈∇1F (β̄, ȳ), α− β̄〉

= J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉

+ J(β̄)− J(β̃(ȳ)) + 〈∇1F (β̃(ȳ), ȳ), β̄ − β̃(ȳ)〉

= J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉

+ J(β̄)− J(β̃(ȳ)) + 〈∇1F (β̃(ȳ)T , ȳ), β̄ − β̃(ȳ)〉

= J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉

+ J(β̄)− J(β̃(ȳ))− 〈e(β̃(ȳ)), β̄ − β̃(ȳ)〉

= J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉

+ J(β̄)− J(β̃(ȳ))− 〈η, β̄ − β̃(ȳ)〉 ∀η ∈ ∂J(β̃(ȳ))

> J(β̃(ȳ))− 〈∇1F (β̃(ȳ), ȳ), α− β̃(ȳ)〉 ,

which in turn is equivalent to −∇1F (β̃(ȳ), ȳ) ∈ ∂J(β̃(ȳ)).
We conclude that

∀ȳ ∈ B(y, ε), −∇1F (β̃(ȳ), ȳ) ∈ ∂J(β̃(ȳ)).

According to Lemma 3, the vector β̃(ȳ) is a solution of (P(ȳ)).

Step 3: computing the differential. By virtue of step 1., we are in position to
use the implicit function theorem, and we get the Jacobian of β̃T as

Dβ̃T (ȳ) = −
(
D1Γ (β̃T (ȳ), ȳ)

)−1(
D2Γ (β̃T (ȳ), ȳ)

)

where
D2Γ (βT , ȳ) = PT ◦D2

12F (βT , ȳ),

which leads us to (10). ⊓⊔

6.3 Proof of Theorem 2

We first show that all solutions of (P(y)) share the same image under the
action of X , which in turn implies that the prediction/response vector µ̂ is a
single-valued mapping of y.

Proof (of Lemma 1) The first part of the lemma comes from the following
equivalent statements:

z ∈ ker(D2
1FT (β, y)) ∩ T

⇐⇒ 〈zT , D
2
1FT (β, y)zT 〉 = 〈XT z, D

2
1F0(Xβ, y)XT z〉 = 0

⇐⇒ z ∈ ker(XT ) .
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Let β⋆
0 , β

⋆
1 be two solutions of (P(y)) such that Xβ⋆

0 6= Xβ⋆
1 . Take any convex

combination β⋆
t = (1 − t)β⋆

0 + tβ⋆
1 , t ∈]0, 1[. Strict convexity of µ 7→ F0(µ, y)

implies that the Jensen inequality is strict, i.e.

F0(Xβ⋆
t , y) < (1− t)F0(Xβ⋆

0 , y) + tF0(Xβ⋆
1 , y).

The convexity of the regularization implies

J(β⋆
t ) 6 (1− t)J(β⋆

0 ) + tJ(β⋆
1) .

Summing these two inequalities we arrive at

F0(Xβ⋆
t , y) + J(β⋆

t ) < F0(Xβ⋆
0 , y) + J(β⋆

0 )

a contradiction since β⋆
0 is a minimizer of (P(y)). ⊓⊔

Lemma 6 There always exists a solution β⋆ of (P(y)) such that (Cβ⋆,y) holds.

Proof Let β⋆ a solution of (P(y)) such that (Cβ⋆,y) does not hold. Consider the
associated subspace T = Tβ⋆ . Thus, for any h ∈

(
ker(X) ∩ T ∩ ker(D2JT (β

⋆))
)
\

{0}, we have XTh = 0 and D2JT (β
⋆)h = 0. Let vt = β⋆ + th, ∀ t > 0. Obvi-

ously, vt ∈ T since J is partly smooth at β⋆ relative to the linear manifold T .
Moreover, XT vt = XTβ

⋆, and thus F (XT vt, y) = F (XTβ
⋆, y).

Using convexity of J and h ∈ T , we have ∀ η ∈ ∂J(vt)

J(vt) 6 J(β⋆) + t〈η, h〉

= J(β⋆) + t〈ηT , h〉 .

Since J obeys Assumption (Csharp) and vt ∈ T , for t sufficiently small, we have
Tvt = T , whence we get

J(vt) 6 J(β⋆) + t〈e(vt), h〉 .

where we used Proposition 1. From Assumption (Csm), Taylor expansion gives

e(vt) = e(β⋆) + tD2JT (β
⋆)h+ tε(th)||h|| = e(β⋆) + tε(th)||h|| ,

with limt→0 ε(th) = 0. Altogether, we arrive at

J(vt) 6 J(β⋆) + t
(
〈e(β⋆), h〉+ t||ε(th)||||h||2

)
.

Suppose now that there exists no β⋆ such that (Cβ⋆,y) holds. Then, we can

always find a solution β⋆ such that5 e(β⋆) /∈
(
ker(X) ∩ T ∩ ker(D2JT (β

⋆))
)⊥

,

and therefore there is some h ∈
(
ker(X) ∩ T ∩ ker(D2JT (β

⋆))
)
\ {0} such that

〈e(β⋆), h〉 < 0

and thus
F (XT vt, y) + J(vt) < F (XTβ

⋆, y) + J(β⋆) ,

for t sufficiently small, leading to a contradiction. ⊓⊔

5 Recall that e(β⋆) is always different from the origin unless β⋆ = 0.
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We can now prove Theorem 2. At any y /∈ H, we consider β⋆ a solution
of (P(y)) such that (Cβ⋆,y) holds, which is always verified owing to Lemma 6.

According to Theorem 1, one can construct a mapping β̃(ȳ) which coincides
with β⋆ at y, and is C1 for ȳ in a neighborhood of y. Since µ̂(ȳ) = Xβ̃(ȳ) on this
neighborhood, this shows that y 7→ µ̂(y) is in turn C1 in a neighbourhood of y,
and its differential is equal to∆(y). Note that this shows that this computation
is independent of the particular choice of β⋆ provided that (Cβ⋆,y) holds.

6.4 Proof of Theorem 3

(i) We obtain this assertion by proving that all HT are of zero measure for all
T and that the union is over a finite set, because of (CT ).
• Since J is definable by (CO), ∇1F (β, y) is also definable by virtue of
Proposition 2.

• Given T ∈ T , T̃ is also definable. Indeed, T̃ can be equivalently written

T̃ = {β : ∀ξ ∈ T and 〈di, α〉 = 0 ∀i s.t. 〈di, β〉 = 0 ⇒ ξ = α} .

which involves algebraic (in fact linear) sets, whence definability fol-
lows after interpreting the logical notations (conjunction and universal
quantifiers) in the first-order formula in terms of set operations, and
using axioms 1-4 of definability in an o-minimal structure.

• Let D : Rp ⇉ R
p the set-valued mapping whose graph is

G(D) = {(β, η) : η ∈ ri ∂J(β)} .

From Lemma 10, G(D) is definable. Since the graph ∂J is closed (Lemaréchal
and Hiriart-Urruty 1996), and definable (Lemma 3), the set

{(β, η) : η ∈ rbd ∂J(β)} = G(∂J) \ G(D) ,

is also definable by axiom 1. This entails that AT is also a definable
subset of Rn × T̃ since

AT = (Rn × T̃ × R
n) ∩ {(y, β, η) : η = −∇1F (βT , y)}

∩ (Rn × {(β, η) : η ∈ rbd ∂J(β)}) .

• By axiom 4, the canonical projection Πn+p,n(AT ) is definable, and
its boundary HT = bd(Πn+p,n(AT )) is also definable by (Coste 1999,
Proposition 1.12) with a strictly smaller dimension than Πn+p,n(AT )
(Coste 1999, Theorem 3.22).

• We recall now from (Coste 1999, Theorem 2.10) that any definable
subset A ⊂ R

n in O can be decomposed (stratified) in a disjoint finite
union of q subsets Ci, definable in O, called cells. The dimension of A
is (Coste 1999, Proposition 3.17(4))

d = max
i∈{1,...,q}

di 6 n ,
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where di = dim(Ci). Altogether we get that

dimHT = dimbd(Πn+p,n(AT )) < dimΠn+p,n(AT ) = d 6 n

whence we deduce thatH is of zero measure with respect to the Lebesgue
measure on R

n since the union is taken over the finite set T by (CT ).
(ii) F0(·, y) is strongly convex with modulus τ if, and only if,

F0(µ, y) = G(µ, y) +
τ

2
||µ||2

where G(·, y) is convex and satisfies (CF ), and in particular its domain in
µ is full-dimensional. Thus, (P(y)) amounts to solving

min
β∈Rp

τ

2
||Xβ||2 +G(Xβ, y) + λJ(β).

It can be recasted as a constrained optimization problem

min
µ∈Rn,β∈Rp

τ

2
||µ||2 +G(µ, y) + λJ(β) s.t. µ = Xβ.

Introducing the image (XJ) of J under the linear mapping X , it is equiv-
alent to

min
µ∈Rn

τ

2
||µ||2 +G(µ, y) + λ(XJ)(µ) , (19)

where (XJ)(µ) = min
{β∈Rp : µ=Xβ}

λJ(β). This is a proper closed convex

function, which is finite on Im(X). The minimization problem amounts to
computing the proximal point at 0 of G(·, y) + λ(XJ), which is a proper
closed and convex function. Thus this point exists and is unique.
Furthermore, by assumption on F0, the difference function F0(·, y1) −
F0(·, y2) = G(·, y1) − G(·, y2) is Lipschitz continuous on R

p with Lips-
chitz constant L||y1−y2||. It then follows from (Bonnans and Shapiro 2000,
Proposition 4.32) that µ̂(·) is Lipschitz continuous with constant 2L/τ .
Moreover, h is Lipschitz continuous, and thus so is the composed mapping
h ◦ µ̂(·). From (Evans and Gariepy 1992, Theorem 5, Section 4.2.3), weak
differentiability follows.
Rademacher theorem asserts that a Lipschitz continuous function is dif-
feretiable Lebesgue a.e. and its derivative and weak derivative coincide
Lebesgue a.e., (Evans and Gariepy 1992, Theorem 2, Section 6.2). Its weak
derivative, whenever it exsist, is upper-bounded by the Lipschitz constant.
Thus

E

(∣∣∣∂(h ◦ µ̂)i
∂yi

(Y )
∣∣∣
)

< +∞ .

(iii) Now, by the chain rule (Evans and Gariepy 1992, Remark, Section 4.2.2),
the weak derivative of h ◦ µ̂(·) at y is precisely

D(h ◦ µ̂)(y)) = Dh (µ̂(y))∆(y) .
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This formula is valid everywhere except on the set H which is of Lebesgue
measure zero as shown in (i). We conclude by invoking (ii) and Stein’s

lemma (Stein 1981) to establish unbiasedness of the estimator d̂f of the
DOF.

(iv) Plugging the DOF expression (iii) into that of the SURE (Stein 1981,
Theorem 1), the statement follows.

⊓⊔

6.5 Proof of Theorem 4

For (i)-(iii), the proof is exactly the same as in Theorem 3. For (iv): combining
the DOF expression (iii) and (Eldar 2009, Theorem 1), and rearranging the
expression yields the stated result.

7 Conclusion

In this paper, we proposed a detailed sensitivity analysis of a class of esti-
mators obtained by minimizing a general convex optimization problem with a
regularizing penalty promoting some low complexity models. This allowed us
to derive an analytical expression of the local variations of these estimators
to perturbations of the observations, and also to prove that the set where the
estimator behaves non-smoothly as a function of the obervations is of zero
Lebesgue measure. Both results paved the way to derive unbiased estimators
of the prediction risk in two random scenarios, one of which covers the (contin-
uous) exponential family. This analysis covers a large set of convex variational
estimators routinely used in statistics and imaging (most notably group spar-
sity and multidimensional total variation penalty). It is also important to note
that our proof strategy carries over to more exotic regularizations that are not
just of block type, such as generic finite-valued polyhedral regularizers. The
key here is that the underlying solutions promoted by these regularizers live on
some low-dimensional subspace. An important research program is to extend
this analysis to regularizers that do not promote locally solutions belonging to
some subspace, but rather to a smooth manifold. This is for instance the case
of the nuclear norm (also known as the trace norm), which locally promotes
matrices having a fixed (hopefully low) rank.

Acknowledgements This work has been supported by the European Research Council
(ERC project SIGMA-Vision).

A Basic Properties of o-minimal Structures

In the following results, we collect some important stability properties of o-minimal struc-
tures. To be self-contained, we also provide proofs. To the best of our knowledge, these



28 Samuel Vaiter et al.

proofs, although simple, are not reported in the literature or some of them are left as exer-
cices in the authoritative references van den Dries (1998); Coste (1999). Moreover, in most
proofs, to show that a subset is definable, we could just write the appropriate first-order for-
mula (see (Coste 1999, Page 12)(van den Dries 1998, Section Ch1.1.2)), and conclude using
(Coste 1999, Theorem 1.13). Here, for the sake of clarity and avoid cryptic statements for
the non-specialist, we will translate the first order formula into operations on the involved
subsets, in particular projections, and invoke the above stability axioms of o-minimal struc-
tures. In the following, n denotes an arbitrary (finite) dimension which is not necessarily
the number of observations used previously the paper.

Lemma 7 (Addition and multiplication) Let f : Ω ⊂ R
n → R

p and g : Ω ⊂ R
n ⊂ R

p

be definable functions. Then their pointwise addition and multplication is also definable.

Proof Let h = f + g, and

B = (Ω × R×Ω × R×Ω × R) ∩ (Ω × R× G(f)× G(h)) ∩ S

where S = {(x, u, y, v, z, w) : x = y = z, u = v +w} is obviously an algebraic (in fact linear)
subset, hence definable by axiom 2. Axiom 1 and 2 then imply that B is also definable. Let
Π3n+3p,n+p : R3n+3p → R

n+p be the projection on the first n + p coordinates. We then
have

G(h) = Π3n+3p,n+p(B)

whence we deduce that h is definable by applying 3n+3p times axiom 4. Definability of the
pointwise mutplication follows the same proof taking u = v · w in S. ⊓⊔

Lemma 8 (Inequalities in definable sets) Let f : Ω ⊂ R
n → R be a definable function.

Then {x ∈ Ω : f(x) > 0}, is definable. The same holds when replacing > with <.

Clearly, inequalities involving definable functions are accepted when defining definable sets.
There are many possible proofs of this statement.

Proof (1) Let B = {(x, y) ∈ R× R : f(x) = y} ∩ (Ω × (0,+∞), which is definable thanks
to axioms 1 and 3, and that the level sets of a definable function are also definable. Thus

{x ∈ Ω : f(x) > 0} = {x ∈ Ω : ∃y, f(x) = y, y > 0} = Πn+1,n(B) ,

and we conclude using again axiom 4. ⊓⊔

Yet another (simpler) proof.

Proof (2) It is sufficient to remark that {x ∈ Ω : f(x) > 0} is the projection of the set
{

(x, t) ∈ Ω × R : t2f(x)− 1 = 0
}

, where the latter is definable owing to Lemma 7. ⊓⊔

Lemma 9 (Derivative) Let f : I → R be a definable differentiable function on an open
interval I of R. Then its devivative f ′ : I → R is also definable.

Proof Let g : (x, t) ∈ I ×R 7→ g(x, t) = f(x+ t)− f(x). Note that g is definable function on
I × R by Lemma 7. We now write the graph of f ′ as

G(f ′) = {(x, y) ∈ I × R : ∀ε > 0,∃δ > 0, ∀t ∈ R, |t| < δ, |g(x, t) − yt| < ε|t|} .

Let C =
{

(x, y, v, t, ε, δ) ∈ I × R
5 : ((x, t), v) ∈ G(g)

}

, which is definable since g is definable
and using axiom 3. Let

B =
{

(x, y, v, t, ε, δ) : t2 < δ2, (v − ty)2 < ε2t2
}

∩ C .

The first part in B is semi-algebraic, hence definable thanks to axiom 2. Thus B is also
definable using axiom 1. We can now write

G(f ′) = R
3 \

(

Π5,3

(

R
5 \Π6,5(B)

))

∩ (I × R) ,

where the projectors and completions translate the actions of the existential and universal
quantifiers. Using again axioms 4 and 1, we conclude. ⊓⊔
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With such a result at hand, this proposition follows immediately.

Proposition 2 (Differential and Jacobian) Let f = (f1, · · · , fp) : Ω → R
p be a dif-

ferentiable function on an open subset Ω of R
n. If f is definable, then so its differential

mapping and its Jacobian. In particular, for each i = 1, · · · , n and j = 1, · · · , p, the partial
derivative ∂fi/∂xj : Ω → R is definable.

We provide below some results concerning the subdifferential.

Proposition 3 (Subdifferential) Suppose that f is a finite-valued convex definable func-
tion. Then for any x ∈ R

n, the subdifferential ∂f(x) is definable.

Proof For every x ∈ R
n, the subdifferential ∂f(x) reads

∂f(x) =
{

η ∈ R
n : f(x′) > f(x) + 〈η, x′ − x〉 ∀x′ ∈ R

n
}

.

Let K = {(η, x′) ∈ R
n × R

n : f(x′) < f(x) + 〈η, x′ − x〉}. Hence, ∂f(x) = R
n \Π2n,n(K).

Since f is definable, the set K is also definable using Lemma 7 and 8, whence definability
of ∂f(x) follows using axiom 4. ⊓⊔

Lemma 10 (Graph of the relative interior) Suppose that f is a finite-valued convex
definable function. Then, the set

{(x, η) : η ∈ ri ∂f(x)}

is definable.

Proof Denote C = {(β, η) : η ∈ ri ∂f(β)}. Using the characterization of the relative interior
of a convex set (Rockafellar 1996, Theorem 6.4), we rewrite C in the more convenient form

C = {(x, η) :∀u ∈ R
n,∀z ∈ R

n, f(z)− f(x) > 〈u, z − x〉,

∃t > 1,∀x′ ∈ R
n, f(x′) − f(x) > 〈(1 − t)u + tη, x′ − x〉}.

Let D = R
n × R

n × R
n × R

n × (1,+∞)× R
n and K defined as

K =
{

(x, η, u, z, t, x′)∈D : f(z) − f(x) > 〈u, z − x〉), f(x′)− f(x) > 〈(1 − t)u+ tη, x′ − x〉
}

.

Thus,

C = R
2n \Π3n,2n

(

R
3n \Π4n,3n

(

Π4n+1,4n

(

R
4n × (1,+∞) \Π5n+1,4n+1(K)

)))

,

where the projectors and completions translate the actions of the existential and universal
quantifiers. Using again axioms 4 and 1, we conclude. ⊓⊔
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