Fixed points of endomorphisms and relations between metrics in preGarside monoids

Oussama Ajbal

To cite this version:

Oussama Ajbal. Fixed points of endomorphisms and relations between metrics in preGarside monoids. 2014. hal-00981397

HAL Id: hal-00981397
https://hal.science/hal-00981397
Preprint submitted on 22 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fixed points of endomorphisms and relations between metrics in preGarside monoids

Oussama A.JBAL

November, 2013

Abstract

In [10], it is proved that the fixed points submonoid and the periodic points submonoid of a trace monoid endomorphism are always finitely generated. We show that for finitely generated left preGarside monoids, that includs finitely generated preGarside monoids, Garside monoids and Artin monoids, the fixed and periodic points submonoids of any endomorphism are also finitely generated left preGarside monoids under some condition, and in the case of Artin monoids, these submonoids are always Artin monoids too. We also prove algebraically some inequalities, equivalences and non-equivalences between three metrics in finitely generated preGarside monoids, and especially in trace monoids and Garside monoids.

Introduction

Trace monoids, or equivalently partially commutative monoids, are monoids of a particular interest and have been widly studied. In particular, they are Artin Monoids. This explains why they are also called Right Angle Artin monoids (RAAM for short). In [10, 11], the authors consider endomorphisms of trace monoids. They study the submonoid of fixed points of such an endomorphism and prove that it is finitely generated. They also caracterise those endomorphisms that are contractions relatively to some natural distance on trace monoids. In [4], Crisp obtained similar results for Artin monoids. He proved that the submonoid of fixed points is even finitely presented, but only in the special case of an isomorphism. Here, we aim to unified and extend both results to all Artin monoids and, more generally, to the larger classes of preGarside monoids.

Given a monoid M, we denote by $\operatorname{End}(M)$ the endomorphism monoid of M. For $\varphi \in \operatorname{End}(M)$, we say that $x \in M$ is a fixed point of φ if $\varphi(x)=x$. If $\varphi^{n}(x)=x$ for some $n \geq 1$, we say that x is a periodic point of φ. Let $\operatorname{Fix}(\varphi)$ (respectively $\operatorname{Per}(\varphi)$) denote the submonoid of all fixed points (respectively periodic points) of φ. Clearly,

$$
\operatorname{Per}(\varphi)=\bigcup_{n \geq 1} \operatorname{Fix}\left(\varphi^{n}\right) .
$$

Our First result is the following:

Theorem 0.1.

(i) If M is a finitely generated left preGarside monoid, with an additive and homogeneous norm ν, and φ is in $\operatorname{End}(M)$ such that the morphism π is well-defined, then $\operatorname{Fix}(\varphi)$ and $\operatorname{Per}(\varphi)$ are also finitely generated left preGarside monoids.
(ii) if M is an Artin monoid, and φ is in $\operatorname{End}(M)$, then $\operatorname{Fix}(\varphi)$ and $\operatorname{Per}(\varphi)$ are also Artin monoids.

Similar result holds if one considers right preGarside monoids.
Two distances d_{2} and d_{3} on trace monoids have been introduced in [2] and [8]. They were proved to be uniformaly equivalent in [7]. In [10], the authors caracterise those endomorphisms that are contractions
relatively to d_{2}. We will prove that in the general context of Artin monoids, distance d_{2} and d_{3} are no more uniformaly equivalent in general. Indeed, distance d_{2} should be replace by an alternative one, that we denote by d_{1}. We prove that d_{1} is larger than the other two in the general case, and we will also prove that d_{1} and d_{3} are uniformly equivalent in the case of Artin monoids of spherical type.

Finally, replacing d_{2} by d_{1}, we extend [10, Theorem 4.1], to all Artin monoids in Theorem 4.2 (we refer to the next sections for notations).

Theorem 0.2. Let M be an Artin monoid and φ be in $\operatorname{End}(M)$.
(i) φ is a contraction with respect to d_{1};
(ii) for all $u, v \in M_{\mathrm{red}}, \quad \alpha(u v)=u \quad \Rightarrow \quad \alpha(\varphi(u v))=\alpha(\varphi(u))$.

1 Preliminaries

We start in this section by defining the monoids we will work with in this paper, namely left preGarside monoids and Artin monoids.

Consider a monoid M. It is said to be cancellative if, for all $a, b, c, d \in M$, the equality $c a d=c b d$ imposes $a=b$. An element b is called a factor of an element a if we can write $a=c b d$ in M. We denote by $\operatorname{Div}(a)$ the set of factors of a. We denote by \preceq left divisibility in M (that is, for $a, b \in M$, we have $a \preceq b$ when there exists $c \in M$ such that $b=a c$). Right divisibility (defined similarly : $b \succeq a$ when there exists $c \in M$ such that $b=c a$) will rarely be used in this paper, so divisibility in M will simply mean left divisibility. When a is a left divisor of b in M, we say that b is a right multiple of a. An element a is said to be balanced if its sets of right-divisors and of left-divisors are equal, which in this case have to be equal to $\operatorname{Div}(a)$.

We say that M is atomic if there exists a mapping $\nu: M \rightarrow \mathbb{N}$, called a norm, satisfying $\nu(a)>0$ for $a \neq 1$ and $\nu(a b) \geq \nu(a)+\nu(b)$ for all $a, b \in M$. Note that the existence of such a mapping implies that the relations \preceq and \succeq are partial orders on M. When $\nu(a b)=\nu(a)+\nu(b)$ for all $a, b \in M$, we say that ν is additive. An atom in a monoid is an element $a \in M$ satisfying: $a=b c \Rightarrow b=1$ or $c=1$ for all $b, c \in M$. We denote by $\mathcal{S}(M)$ the set of atoms of M. Note that in an atomic monoid M, the set $\mathcal{S}(M)$ has to be a generating set, and that any generating set of M contains $\mathcal{S}(M)$. In particular, M is finitely generated if and only if $\mathcal{S}(M)$ is finite. In an atomic monoid M, if $\nu(a)=\nu(b)$ for all $a, b \in \mathcal{S}(M)$, we say that ν is homogeneous.

A monoid M is said to be a left preGarside monoid if
$\left(a_{L}\right)$ it is atomic and left cancellative $(c a=c b \Rightarrow a=b)$;
(b_{L}) for all $a, b \in M$, if the set $\{c \in M \mid a \preceq c$ and $b \preceq c\}$ is nonempty, then it has a least element, denoted by $a \vee_{L} b$ or $a \vee b$.

It is said to be a right preGarside monoid if
$\left(a_{R}\right)$ it is atomic and right cancellative ($a c=b c \Rightarrow a=b$);
$\left(b_{R}\right)$ for all $a, b \in M$, if the set $\{c \in M \mid c \succeq a$ and $c \succeq b\}$ is nonempty, then it has a least element, denoted by $a \vee_{R} b$.

And it is said to be a preGarside monoid if it is both left preGarside and right preGarside monoid.

A Garside element of a preGarside monoid is a balanced element whose set of factors generates the whole monoid. When such an element exists, we say that the monoid is a Garside monoid.

Given a non empty finite set S, a Coxeter matrix is a symmetric matrix $\left(m_{a b}\right)_{a, b \in S}$ with entries in $\{1,2, \cdots, \infty\}$, such that $m_{a a}=1$ and $m_{a b} \geq 2$, for $a \neq b$. A Coxeter system associated to a Coxeter matrix $\left(m_{a b}\right)_{a, b \in S}$ is a pair (W, S), where W is the group with presentation

$$
W=\left\langle S \mid(a b)^{m_{a b}}=1 ; m_{a b} \neq \infty\right\rangle .
$$

The corresponding Artin monoid M is the monoid with presentation

$$
M=\left\langle S \mid[a, b\rangle^{m_{a b}}=[b, a\rangle^{m_{a b}} ; m_{a b} \neq \infty\right\rangle^{+} .
$$

where $[a, b\rangle^{m}$ denotes the alternating product $a b a \cdots$ containing m terms. Since the defined Artin relations are homogeneous, M has a natural length function ℓ_{S} compatible with the product. In [3], it is shown that every finite subset of M has a greatest common left divisor (gcd), and a greatest common right divisor (gcrd). It is also shown that a finite subset of S has a least common right multiple (lcm) if and only if it has a common right multiple, and that in that case, the least common right multiple and least common left multiple are equal. For a subset $T \subseteq S$, we denote its $l \mathrm{~cm}$ by $\Delta(T)$ when it exists.

2 The submonoids of fixed points and of periodic points

In general, a fixed points submonoid or any submonoid of a finitely generated monoid is not necessarily finitely generated.

Example 2.1. Consider the cancellative monoid $M=\langle a, e, b \mid a e=e a, e b e=b\rangle^{+}$and the endomorphism φ such that $\varphi(a)=a e, \varphi(e)=e$ and $\varphi(b)=b$. Clearly, $a^{n} b a^{n} \in \operatorname{Fix}(\varphi)$ for every $n \in \mathbb{N}$. And one can show that $a^{n} b a^{n}$ is not decomposable in $\operatorname{Fix}(\varphi)$, which means that $\operatorname{Fix}(\varphi)$ is not finitely generated.

In this section, we will show that for a finitely generated left preGarside monoid M, and an endomorphism $\varphi \in \operatorname{End}(M)$, the submonoids $\operatorname{Fix}(\varphi)$ and $\operatorname{Per}(\varphi)$ are also finitely generated left preGarside monoids under some condition (Theorems 2.3 and 2.13). And that, in the particular case of Artin monoids, Fix (φ) and $\operatorname{Per}(\varphi)$ are not only finitely generated, but even finitely presented (Proposition 2.15).

For a monoid M, finitely generated by S, and an endomorphism $\varphi \in \operatorname{End}(M)$, we define

$$
n_{\varphi}=\left\{\begin{array}{ll}
\max \left\{k \in \mathbb{N}^{*} \mid \exists s \in S \text { such that } \varphi^{k}(s)=1 \text { and } \varphi^{k-1}(s) \neq 1\right\} & \text { if } 1 \in \varphi(S) \\
1 & \text { if } 1 \notin \varphi(S)
\end{array} .\right.
$$

Given a non empty set X, we denote by X^{*} the set of all finite words $x_{1} \cdots x_{n}$ over the elements of X, that we call letters, and by ε the empty word in X^{*}. Assume M is a monoid generated by a set S, and let $T \subseteq S$. Let us denote by $\pi_{T}^{*}: S^{*} \rightarrow T^{*}$ the forgetting morphism of monoids defined by $\pi_{T}^{*}(t)=t$ for $t \in T$, and by $\pi_{T}^{*}(t)=\varepsilon$ for $t \in S \backslash T$. In the sequel, when it is well-defined, we denote by $\pi_{T}: M \rightarrow M$ the morphism of monoids induced by π_{T}^{*}.

Example 2.2. For $M=\langle s, t \mid s t s=t s t\rangle^{+}$, with $S=\{s, t\}$ and $T=\{t\}$, we have $\pi_{T}^{*}(s t s)=t$ and $\pi_{T}^{*}(t s t)=t t$. Or in M, one has $t \neq t^{2}$, then π_{T} is not well-defined. But for $M=\langle s, t \mid s t s t=t s t s\rangle^{+}$with similar S and T, the morphism π_{T} is well-defined, since $\pi_{T}(s t s t)=\pi_{T}(t s t s)=t^{2}$.

2.1 The submonoid of fixed points

For this subsection, let M be a finitely generated left preGarside monoid, equiped with an additive and homogeneous norm ν, and φ be in $\operatorname{End}(M)$. Set

$$
S=\mathcal{S}(M), \quad S_{0}=S \cap \operatorname{Per}(\varphi), \quad S_{1}=S \cap\left(\varphi^{n_{\varphi}}\right)^{-1}\{1\}, \quad S_{2}=S \backslash S_{1},
$$

$p=|S|!$, and $\pi:=\pi_{S_{2}}$ when it is well-defined, which is always the case when $1 \notin \varphi(S)$.

Theorem 2.3. Let M be a finitely generated left preGarside monoid, with an additive and homogeneous norm ν, φ be in $\operatorname{End}(M)$, and π as above. If the morphism π is well-defined, then $\operatorname{Fix}(\varphi)$ is a finitely generated left preGarside monoid.

The proof of this theorem is in the spirit of [10, Theorem 3.1], where the particular case of trace monoids was considered. We will start though by proving some lemmas. Note that in the proof of the next lemma, where $\left.\varphi\right|_{S}$ is a permutation (i.e. φ is an automorphism), we do not need the additivity or the homogeneity of the norm ν. In the case of preGarside monoids, this result is shown in [1, Proposition 2.26].

Lemma 2.4. If the restriction of φ to S is a permutation, then $\operatorname{Fix}(\varphi)$ is a finitely generated left preGarside monoid.

Proof. Since $\operatorname{Fix}(\varphi) \subseteq M$, it is clear that property $\left(a_{L}\right)$ holds for $\operatorname{Fix}(\varphi)$. Let $a, b \in \operatorname{Fix}(\varphi)$ be such that the set $\{c \in \operatorname{Fix}(\varphi) \mid a \preceq c$ and $b \preceq c\}$ is nonempty, and set $\delta=a \vee b$ their (left) lcm in M. We have $\varphi(a)=a \preceq \varphi(\delta)$ and $\varphi(b)=b \preceq \varphi(\delta)$, then $\delta \preceq \varphi(\delta)$. Thus $\delta \preceq \varphi(\delta) \preceq \cdots \preceq \varphi^{p}(\delta)$, and so $\nu(\delta) \leq \nu(\varphi(\delta)) \leq \cdots \leq \nu\left(\varphi^{p}(\delta)\right)$. Or $\left.\varphi\right|_{S}$ is a permutation, and $p=|S|!$, then $\varphi^{p}=\operatorname{Id}_{M}$. Therefore $\nu(\delta)=\nu(\varphi(\delta))$, with $\delta \preceq \varphi(\delta)$. Thus, we have $\delta=\varphi(\delta)$, and so $\delta \in \operatorname{Fix}(\varphi)$. Let $c \in \operatorname{Fix}(\varphi)$ such that $a \preceq c$ and $b \preceq c$. Write $c=\delta \delta^{\prime}$ with $\delta^{\prime} \in M$. We have $c, \delta \in \operatorname{Fix}(\varphi)$, then, by cancellativity, $\delta^{\prime} \in \operatorname{Fix}(\varphi)$. Hence property $\left(b_{L}\right)$ holds, and so $\operatorname{Fix}(\varphi)$ is a left preGarside monoid.

Let Σ be the set of all φ-orbits B in S that have a right common multiple (and therefore a least right common multiple $\Delta(B)([6$, Lemma 2.1])). We claim that

$$
\begin{equation*}
\operatorname{Fix}(\varphi)=\langle\Delta(B), B \in \Sigma\rangle^{+} \tag{1}
\end{equation*}
$$

Let $B \in \Sigma$, and $b \in B$. Since B is a φ-orbit, then there exists $a \in B$ such that $b=\varphi(a)$. But $a \preceq \Delta(B)$, so $b=\varphi(a) \preceq \varphi(\Delta(B))$. Thus $b \preceq \varphi(\Delta(B))$ for every $b \in B$, and then $\Delta(B) \preceq \varphi(\Delta(B))$. Therefore, as above, we have $\Delta(B)=\varphi(\Delta(B))$. Hence $\langle\Delta(B), B \in \Sigma\rangle^{+} \subseteq \operatorname{Fix}(\varphi)$.
Conversely, let $u \in \operatorname{Fix}(\varphi)$ such that $u \neq 1$, and let $s \in S$ such that $s \preceq u$; then u is left divisible by all the elements in the φ-orbit B_{1} of s, so is left divisible by their $\operatorname{lcm} u_{1}:=\Delta\left(B_{1}\right)$ (which exists). Let $v \in M$ such that $u=u_{1} v$. Since $u, u_{1} \in \operatorname{Fix}(\varphi)$, we have by cancellativity, $v \in \operatorname{Fix}(\varphi)$. By induction on $\nu(u)$, we get that $v \in\langle\Delta(B) \mid B \in \Sigma\rangle^{+}$. Thus $u \in\langle\Delta(B) \mid B \in \Sigma\rangle^{+}$and so (1) holds. The set S is finite, then so is Σ. Therefore $\operatorname{Fix}(\varphi)$ is finitely generated.

Example 2.5.

i. Let $M=\langle s, t, u| s t=t s$, sus $=u s u$, tut $=u t u\rangle^{+}$, and $\varphi \in \operatorname{End}(M)$ such that $\varphi(u)=u, \varphi(t)=s$ and $\varphi(s)=t$. The monoid M is an Artin monoid, so it satisfies all properties of preGarside monoids by [3]. Then we have $\Sigma=\{\{u\},\{s, t\}\}$, and $\operatorname{Fix}(\varphi)=\langle u, s t\rangle^{+}$.
ii. Let $M=\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right| a_{1} b_{1} a_{1}=b_{1}^{2}, a_{2} b_{2} a_{2}=b_{2}^{2}, a_{1} a_{2}=a_{2} a_{1}, b_{1} b_{2}=b_{2} b_{1}, a_{1} b_{2}=b_{2} a_{1}, b_{1} a_{2}=$ $\left.a_{2} b_{1}\right\rangle^{+}$, and $\varphi \in \operatorname{End}(M)$ such that $\varphi\left(a_{1}\right)=a_{2}, \varphi\left(a_{2}\right)=a_{1}, \varphi\left(b_{1}\right)=b_{2}$ and $\varphi\left(b_{2}\right)=b_{1}$. The monoid M is a preGarside monoid, as a direct product $M=\left\langle a_{1}, b_{1} \mid a_{1} b_{1} a_{1}=b_{1}^{2}\right\rangle^{+} \times\left\langle a_{2}, b_{2} \mid a_{2} b_{2} a_{2}=b_{2}^{2}\right\rangle^{+}$of two preGarside monoids (see [5]). Then we have $\Sigma=\left\{\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\}\right\}$, and $\operatorname{Fix}(\varphi)=\left\langle a_{1} a_{2}, b_{1} b_{2}\right\rangle^{+}$.

Lemma 2.6. If $1 \notin \varphi(S)$, then

$$
\begin{equation*}
S_{0}=S \cap \operatorname{Fix}\left(\varphi^{p}\right)=S \cap \varphi^{p}(S), \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(S_{0}\right)=S_{0} . \tag{3}
\end{equation*}
$$

Proof. Recall that $S_{0}=S \cap \operatorname{Per}(\varphi)$. Let $a \in S_{0}$ and $m=\min \left\{k \in \mathbb{N}^{*} / \varphi^{k}(a)=a\right\}$. Since $1 \notin \varphi(S)$ and ν is additive and homogeneous, we have $\nu(\varphi(u)) \geq \nu(u)$ for every $u \in M$. Hence $\varphi^{n}(a) \in S$ for every $n \in \mathbb{N}$. Assume that there exist $0<i<j \leq m$ such that $\varphi^{i}(a)=\varphi^{j}(a)$. So $\varphi^{m-j} \circ \varphi^{i}(a)=$ $\varphi^{m}(a)$. Then $\varphi^{m-(j-i)}(a)=a$ and $m-(j-i)<m$, which contradicts the definition of m. Thus $m=\#\left\{a, \varphi(a), \cdots, \varphi^{m-1}(a)\right\} \leq|S|$, and then m divides p. Hence $\varphi^{p}(a)=a$. So $S_{0} \subseteq S \cap \operatorname{Fix}\left(\varphi^{p}\right)$, and we clearly have $S \cap \operatorname{Fix}\left(\varphi^{p}\right) \subseteq S \cap \varphi^{p}(S)$.

Let $a \in S \cap \varphi^{p}(S)$ and $b \in S$ such that $\varphi^{p}(b)=a$. Since $1 \notin \varphi(S)$, using that ν is additive and homogeneous, and $\varphi^{p}(b)=a$, we get $\left\{b, \varphi(b), \cdots, \varphi^{p}(b)\right\} \subseteq S$. The inequality $|S|<p+1$ yields $\varphi^{i}(b)=\varphi^{j}(b)$ for some $0 \leq i<j \leq p$. By composing with φ^{p-i}, we get $a=\varphi^{j-i}(a)$. Then $a \in \operatorname{Per}(\varphi) \cap S=S_{0}$, and therefore (2) holds.

Let $a \in S_{0}$. As before, we have $\left\{a, \varphi(a), \ldots, \varphi^{p-1}(a)\right\} \subseteq S_{0}=S \cap \operatorname{Fix}\left(\varphi^{p}\right)$. On the one hand, we have $\varphi(a) \in S_{0}$, then $\varphi\left(S_{0}\right) \subseteq S_{0}$. On the other hand, we have $a=\varphi\left(\varphi^{p-1}(a)\right)$ and $\varphi^{p-1}(a) \in S_{0}$, then $\varphi\left(S_{0}\right) \supseteq S_{0}$, and so (3) holds.

Let M_{0}, M_{1} and M_{2}, be the submonoids of M generated by S_{0}, S_{1} and S_{2} respectively. By definition of S_{1} and atomicity of M, note that $\varphi^{n_{\varphi}}\left(M_{1}\right)=\{1\}$ and $\varphi\left(M_{1}\right) \subseteq M_{1}$, which we will be using more than once.

Lemma 2.7. If $1 \notin \varphi(S)$, then $M_{0}=\operatorname{Fix}\left(\varphi^{p}\right)$, it is a finitely generated left preGarside monoid, and the restriction of ν to M_{0} is additive and homogeneous.

Proof. The order of every periodic point of S divides $p=|S|!$, then $M_{0} \subseteq \operatorname{Fix}\left(\varphi^{p}\right)$. Let $s_{1}, \ldots, s_{n} \in S$ such that $\varphi^{p}\left(s_{1} \cdots s_{n}\right)=s_{1} \cdots s_{n}$. In view of the homogeneity and additivity of ν, and the fact that $1 \notin \varphi(S)$, we have $\varphi\left(s_{i}\right) \in S$ for all i. By (2), $S_{0}=S \cap \varphi^{p}(S)$. Then $\varphi\left(s_{1} \cdots s_{n}\right) \in\left\langle S_{0}\right\rangle^{+}$, which means that $s_{1} \cdots s_{n} \in M_{0}$. Thus we have the equality $M_{0}=\operatorname{Fix}\left(\varphi^{p}\right)$.
The submonoid M_{0} is finitely generated by definition, and it is atomic and left cancellative because $M_{0} \subseteq$ M. The restriction $\left.\nu\right|_{M_{0}}$ of ν is additive, and since $\mathcal{S}\left(M_{0}\right)=S_{0}$, it is also homogeneous.
Let a, b lie in M_{0} such that the set $\Gamma_{0}=\left\{c \in M_{0} \mid a \preceq c\right.$ and $\left.b \preceq c\right\}$ is nonempty, and set $\delta=a \vee b$ their lcm in M. Set $\psi=\varphi^{p}$. Since $S_{0}=S \cap \operatorname{Fix}(\psi)$, we have $\left.\psi\right|_{M_{0}}=\operatorname{Id}_{M_{0}}$. Let c lie in Γ_{0} and $a^{\prime}, a^{\prime \prime}$ belong to M such that $c=a a^{\prime}$ and $\delta=a a^{\prime \prime}$. One has $a, c \in \operatorname{Fix}(\psi)$, then $a^{\prime}=\psi\left(a^{\prime}\right)$ by cancellativity. We have $\delta \preceq c$, then $a^{\prime \prime} \preceq a^{\prime}$, and so $\psi^{n}\left(a^{\prime \prime}\right) \preceq a^{\prime}$ for all $n \in \mathbb{N}$. The sequence of integers $\left(\nu\left(\psi^{n}\left(a^{\prime \prime}\right)\right)\right)_{n \in \mathbb{N}}$ is increasing because of the additivity and homogeneity of ν and the fact that $1 \notin \varphi(S)$. On the other hand, it is bounded by $\nu\left(a^{\prime}\right)$ because $\psi^{n}\left(a^{\prime \prime}\right) \preceq a^{\prime}$ for all n. Thus $\left(\nu\left(\psi^{n}\left(a^{\prime \prime}\right)\right)\right)_{n \in \mathbb{N}}$ is stationary from some rank $m_{a} \in \mathbb{N}^{*}$. Write $\psi^{m_{a}}\left(a^{\prime \prime}\right)=s_{1} \cdots s_{r}$ with $s_{1}, \ldots, s_{r} \in S$. Since $\nu\left(\psi^{m_{a}}\left(a^{\prime \prime}\right)\right)=\nu\left(\psi^{m_{a}+1}\left(a^{\prime \prime}\right)\right)$, then $\psi\left(s_{i}\right) \in S$ for all i. So $\left\{s_{i}, \varphi\left(s_{i}\right), \ldots, \varphi^{p}\left(s_{i}\right)\right\} \subseteq S$, and therefore $\psi\left(s_{i}\right) \in S_{0}$ for all i. Thus $\psi^{m_{a}+1}\left(a^{\prime \prime}\right) \in M_{0}$. Similarly, for $b^{\prime}, b^{\prime \prime} \in M$ such that $c=b b^{\prime}$ and $\delta=b b^{\prime \prime}$, we have some rank $m_{b} \in \mathbb{N}^{*}$ such that $\psi^{m_{b}+1}\left(b^{\prime \prime}\right)$ is in M_{0}. The inclusion $M_{0} \subseteq \operatorname{Fix}(\psi)$ yields $\psi^{m_{a}+1}\left(a^{\prime \prime}\right)=\psi^{m_{a}+m_{b}}\left(a^{\prime \prime}\right)$ and $\psi^{m_{b}+1}\left(b^{\prime \prime}\right)=\psi^{m_{b}+m_{a}}\left(b^{\prime \prime}\right)$. We have $\psi^{m_{a}+m_{b}}(\delta)=a \psi^{m_{a}+1}\left(a^{\prime \prime}\right)=b \psi^{m_{b}+1}\left(b^{\prime \prime}\right)$, then $\psi^{m_{a}+m_{b}}(\delta) \in \Gamma_{0}$. If $c \in \Gamma_{0}$, then $\delta \preceq c$, and so $\psi^{m_{a}+m_{b}}(\delta) \preceq \psi^{m_{a}+m_{b}}(c)=c$. Write $c=\psi^{m_{a}+m_{b}}(\delta) c^{\prime}$ with $c^{\prime} \in M$. Both c and $\psi^{m_{a}+m_{b}}(\delta)$ are in $\operatorname{Fix}(\psi)$, then by cancellativity, $\psi\left(c^{\prime}\right)=c^{\prime}$. Thus, $c^{\prime} \in M_{0}$ and $\psi^{m_{a}+m_{b}}(\delta)$ is the least element of Γ_{0}. Whence property $\left(b_{L}\right)$ holds, so M_{0} is a left preGarside monoid.

Lemma 2.8. If π is well-defined, then M_{2} is a finitely generated left preGarside monoid, and the restriction of ν to M_{2} is additive and homogeneous.

Proof. As in the previous proof, the submonoid M_{2} is atomic, left cancellative and finitely generated, and the restriction $\left.\nu\right|_{M_{2}}$ is additive and homogeneous.
Let a, b lie in M_{2} such that the set $\Gamma_{2}=\left\{c \in M_{2} \mid a \preceq c\right.$ and $\left.b \preceq c\right\}$ is nonempty, and set $\delta=a \vee b$ their lcm in M. Let $c \in \Gamma_{2}$ and $a^{\prime}, a^{\prime \prime} \in M$ such that $c=a a^{\prime}$ and $\delta=a a^{\prime \prime}$. We have $\delta \preceq c$, then $a^{\prime \prime} \preceq a^{\prime}$. So write $a^{\prime}=a^{\prime \prime} \hat{a}$ with $\hat{a} \in M$. By the homogeneity and additivity of ν, for all $u \in M$ we have $\nu(\pi(u)) \leq \nu(u)$, and $\nu(\pi(u))=\nu(u) \Leftrightarrow \pi(u)=u \Leftrightarrow u \in M_{2}$. We have $\nu(c)=\nu(a)+\nu\left(a^{\prime \prime}\right)+\nu(\hat{a})$ and $\nu(\pi(c))=\nu(\pi(a))+\nu\left(\pi\left(a^{\prime \prime}\right)\right)+\nu(\pi(\hat{a}))$. But a and c belong to M_{2}, then $\nu\left(a^{\prime \prime}\right)+\nu(\hat{a})=\nu\left(\pi\left(a^{\prime \prime}\right)\right)+\nu(\pi(\hat{a}))$. So $\nu\left(\pi\left(a^{\prime \prime}\right)\right)=\nu\left(a^{\prime \prime}\right)$ because $\nu(\pi(u)) \leq \nu(u)$ for all $u \in M$. Then $a^{\prime \prime} \in M_{2}$. Similarly, there is $b^{\prime \prime}$ in M_{2} such that $\delta=b b^{\prime \prime}$. Thus δ is the least element of Γ_{2}, whence property $\left(b_{L}\right)$. Therefore M_{2} is a left preGarside monoid.

Lemma 2.9. Let N_{1} be a left preGarside monoid, and N_{2} a monoid. Assume there exists a morphism $f: N_{1} \rightarrow N_{2}$ that is a retraction. Then N_{2} is left preGarside.

Proof. The morphism f is a retraction, then we have a section $g: N_{2} \rightarrow N_{1}$ such that $f \circ g=\operatorname{Id}_{N_{2}}$. Thus N_{2} embeds in N_{1}. So N_{2} is atomic and left cancellative. Let $a, b \in N_{2}$ such that the set $\Lambda=\left\{c \in N_{2} \mid\right.$ $a \preceq c$ and $b \preceq c\}$ is nonempty. Set $\delta=g(a) \vee g(b)$ the least common right multiple of $g(a)$ and $g(b)$ in N_{1}, and write $\delta=g(a) a^{\prime}=g(b) b^{\prime}$ with $a^{\prime}, b^{\prime} \in N_{1}$. Thus $f(\delta)=a f\left(a^{\prime}\right)=b f\left(b^{\prime}\right)$. Let $c \in \Lambda$ and $c^{\prime} \in N_{1}$ such that $g(c)=\delta c^{\prime}$. Then $c=f(\delta) f\left(c^{\prime}\right)$, and so $f(\delta)$ divides c in N_{2}. Hence, $f(\delta)$ is the least element of Λ, and therefore N_{2} is left preGarside.

Lemma 2.10. For every $d \in \mathbb{N}^{*}$, we have

$$
(\pi \circ \varphi)^{d}=\pi \circ \varphi^{d} .
$$

Proof. If $1 \notin \varphi(S)$, then $S_{1}=\emptyset$ and $\pi=\operatorname{Id}_{M}$. Assume $1 \in \varphi(S)$. We show the result by induction on d. The case $d=1$ being trivial, assume $d>1$ and the result holds for smaller integers. It suffices to check the equality on the generators. By definition of S_{1}, if $a \in S_{1}$, then $\varphi^{d}(a) \in M_{1}=\left\langle S_{1}\right\rangle^{+}$because $\varphi\left(M_{1}\right) \subseteq M_{1}$. Thus, $(\pi \circ \varphi)^{d}(a)=\pi \circ \varphi^{d}(a)=1$. If $a \in S_{2}$, write $\varphi(a)=u_{0} a_{1} u_{1} \cdots a_{k} u_{k}$, with $a_{1}, \ldots, a_{k} \in S_{2}$ and $u_{0}, \ldots, u_{k} \in M_{1}$. On the one hand, we have

$$
\pi \circ \varphi^{d}(a)=\pi \circ \varphi^{d-1}\left(u_{0} a_{1} u_{1} \cdots a_{k} u_{k}\right)=\pi \circ \varphi^{d-1}\left(a_{1} \cdots a_{k}\right)
$$

in view of $\varphi^{d-1}\left(u_{i}\right) \in M_{1}$ for every i. On the other hand, and by the induction hypothesis,

$$
(\pi \circ \varphi)^{d}(a)=(\pi \circ \varphi)^{d-1} \circ \pi \circ \varphi(a)=\pi \circ \varphi^{d-1} \circ \pi\left(u_{0} a_{1} u_{1} \cdots a_{k} u_{k}\right)=\pi \circ \varphi^{d-1}\left(a_{1} \cdots a_{k}\right) .
$$

Thus $(\pi \circ \varphi)^{d}(a)=\pi \circ \varphi^{d}(a)$ for every $d \in \mathbb{N}^{*}$.

In view of the previous lemmas, we may now prove Theorem 2.3 in two parts, depending on whether 1 lies in $\varphi(S)$ or not.

Proof of Theorem 2.3. Case I: $1 \notin \varphi(S)$. By the equality (3) in Lemma 2.6, the morphism φ restricts to an endomorphism φ_{0} of $M_{0}=\left\langle S_{0}\right\rangle^{+}$. We show that

$$
\begin{equation*}
\operatorname{Fix}(\varphi)=\operatorname{Fix}\left(\varphi_{0}\right) . \tag{4}
\end{equation*}
$$

It is immediate that $\operatorname{Fix}\left(\varphi_{0}\right)=\operatorname{Fix}(\varphi) \cap M_{0}$, so it suffices to show that $\operatorname{Fix}(\varphi) \subseteq M_{0}$. Let $u=a_{1} \cdots a_{k}$ belong to $\operatorname{Fix}(\varphi)$, with $a_{1}, \ldots, a_{k} \in S$. Then $a_{1} \cdots a_{k}=u=\varphi^{p}(u)=\varphi^{p}\left(a_{1}\right) \cdots \varphi^{p}\left(a_{k}\right)$. Since $1 \notin \varphi(S)$, and ν is additive and homogeneous, we have $\nu\left(\varphi^{p}\left(a_{i}\right)\right)=\nu\left(a_{i}\right)$ and so $\varphi^{p}\left(a_{i}\right) \in S$ for all i. By Lemma
2.6, we have $S_{0}=S \cap \varphi^{p}(S)$, so $\varphi^{p}\left(a_{i}\right) \in S_{0}$ for all i, and then $u=\varphi^{p}\left(a_{1}\right) \cdots \varphi^{p}\left(a_{k}\right) \in M_{0}$. Therefore, $\operatorname{Fix}(\varphi) \subseteq M_{0}$, and so $\operatorname{Fix}(\varphi)=\operatorname{Fix}\left(\varphi_{0}\right)$.

Now $\left.\varphi_{0}\right|_{S_{0}}$ is a permutation, and by Lemma 2.7, M_{0} is a finitely generated left preGarside monoid. Then by Lemma 2.4 (where in the case of a permutation, the norm of M_{0} does not have to be additive or homogeneous), $\operatorname{Fix}\left(\varphi_{0}\right)$, and therefore $\operatorname{Fix}(\varphi)$, is a finitely generated left preGarside monoid.

Case II: $1 \in \varphi(S)$. Denote $n=n_{\varphi}$, and recall that $\pi=\pi_{S_{2}}$. Consider the morphism $\varphi_{2}=\left.(\pi \circ \varphi)\right|_{M_{2}}$ that is clearly in $\operatorname{End}\left(M_{2}\right)$. We have $1 \notin \varphi_{2}\left(S_{2}\right)$. Indeed, if $\varphi_{2}(s)=\pi(\varphi(s))=1$ for some $s \in S_{2}$, then $\varphi(s) \in M_{1}$, which means that $\varphi^{n}(\varphi(s))=\varphi^{n+1}(s)=1$. But since $n=\max \left\{k \in \mathbb{N}^{*} \mid \exists s \in\right.$ S such that $\varphi^{k}(s)=1$ and $\left.\varphi^{k-1}(s) \neq 1\right\}$, then $\varphi^{n}(s)=1$, which contradicts the fact that $s \in S_{2}$. Thus, by Lemma 2.8 and Case I, $\operatorname{Fix}\left(\varphi_{2}\right)$ is a finitely generated left preGarside monoid.

We claim that

$$
\begin{equation*}
\operatorname{Fix}(\varphi)=\varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right) . \tag{5}
\end{equation*}
$$

As seen before, we have $\varphi^{n}\left(M_{1}\right)=\{1\}$ and $\varphi\left(M_{1}\right) \subseteq M_{1}$. Let $u \in \operatorname{Fix}(\varphi)$. We may factor $u=$ $u_{0} a_{1} u_{1} \cdots a_{k} u_{k}$, with $a_{1}, \ldots, a_{k} \in S_{2}$ and $u_{0}, \ldots, u_{k} \in M_{1}$. It follows that $u=\varphi^{n}(u)=\varphi^{n}\left(a_{1} a_{2} \cdots a_{k}\right)$. For every i, we have $\pi \circ \varphi\left(u_{i}\right)=1$, in view of $\varphi\left(M_{1}\right) \subseteq M_{1}$. Now $a_{1} a_{2} \cdots a_{k} \in M_{2}$, and

$$
\varphi_{2}\left(a_{1} a_{2} \cdots a_{k}\right)=\pi \circ \varphi\left(a_{1} a_{2} \cdots a_{k}\right)=\pi \circ \varphi\left(u_{0} a_{1} u_{1} \cdots a_{k} u_{k}\right)=\pi(u)=a_{1} a_{2} \cdots a_{k}
$$

Hence $a_{1} a_{2} \cdots a_{k} \in \operatorname{Fix}\left(\varphi_{2}\right)$, and so $u=\varphi^{n}\left(a_{1} a_{2} \cdots a_{k}\right) \in \varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right)$. Thus $\operatorname{Fix}(\varphi) \subseteq \varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right)$.
Conversely, let $v=a_{1} a_{2} \cdots a_{k} \in \operatorname{Fix}\left(\varphi_{2}\right)$, with $a_{1}, \ldots, a_{k} \in S_{2}$. Clearly,

$$
\begin{equation*}
\varphi^{n} \circ \pi=\varphi^{n} . \tag{6}
\end{equation*}
$$

Hence $v=\varphi_{2}(v)=\pi \circ \varphi(v)$ yields $\varphi\left(\varphi^{n}(v)\right)=\varphi^{n} \circ \varphi(v)=\varphi^{n} \circ \pi \circ \varphi(v)=\varphi^{n}(\pi \circ \varphi(v))=\varphi^{n}(v)$ and so $\varphi^{n}(v) \in \operatorname{Fix}(\varphi)$. Thus $\varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right) \subseteq \operatorname{Fix}(\varphi)$ and so $\operatorname{Fix}(\varphi)=\varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right)$.

In view of (5), we have a morphism $f:=\left.\varphi^{n}\right|_{\operatorname{Fix}\left(\varphi_{2}\right)}: \operatorname{Fix}\left(\varphi_{2}\right) \rightarrow \operatorname{Fix}(\varphi)$. Let $u \in \operatorname{Fix}(\varphi)$. By Lemma 2.10, we get $\varphi_{2}(\pi(u))=\pi \circ \varphi \circ \pi(u)=\pi \circ \varphi \circ \pi \circ \varphi(u)=\pi \circ \varphi^{2}(u)=\pi(u)$. Then $\pi(\operatorname{Fix}(\varphi)) \subseteq \operatorname{Fix}\left(\varphi_{2}\right)$, and so we have another morphism $g:=\left.\pi\right|_{\operatorname{Fix}(\varphi)}: \operatorname{Fix}(\varphi) \rightarrow \operatorname{Fix}\left(\varphi_{2}\right)$. In view of (6), one has $\varphi^{n} \circ \pi(u)=\varphi^{n}(u)=u$ for every $u \in \operatorname{Fix}(\varphi)$, and then $f \circ g=\left.\operatorname{Id}\right|_{\operatorname{Fix}(\varphi)}$. So the morphism f is a retraction with section g. We established that $\operatorname{Fix}\left(\varphi_{2}\right)$ is a left preGarside monoid. So by Lemma 2.9, $\operatorname{Fix}(\varphi)$ is also a left preGarside monoid. The submonoid $\operatorname{Fix}\left(\varphi_{2}\right)$ is finitely generated, then so is $\operatorname{Fix}(\varphi)$, in view of (5).

We will see in the proof of Proposition 2.15 that the equality (5) induces an isomorphism between $\operatorname{Fix}(\varphi)$ and $\operatorname{Fix}\left(\varphi_{2}\right)$.

Example 2.11. Let $M=\langle a, b, c \mid a b a b=b a b a, a c=c a\rangle^{+}$, and $\varphi \in \operatorname{End}(M)$ such that $\varphi(a)=b, \varphi(b)=a$ and $\varphi(c)=1$, with ν additive and $\nu(a)=\nu(b)=\nu(c)=1$. By using the notations above, we have $n=1$, $S_{1}=\{c\}, S_{2}=\{a, b\}, M_{2}=\langle a, b \mid a b a b=b a b a\rangle^{+}$and $\varphi_{2} \in \operatorname{End}\left(M_{2}\right)$, such that $\varphi_{2}(a)=b$ and $\varphi_{2}(b)=a$. Then one has $\operatorname{Fix}\left(\varphi_{2}\right)=\langle a b a b\rangle^{+}$, and $\operatorname{Fix}(\varphi)=\varphi\left(\operatorname{Fix}\left(\varphi_{2}\right)\right)=\operatorname{Fix}\left(\varphi_{2}\right)=\langle a b a b\rangle^{+}$.

2.2 The submonoid of periodic points

As in the previous subsection, we consider a finitely generated left preGarside monoid M, equiped with an additive and homogeneous norm ν, and we fix $\varphi \in \operatorname{End}(M)$. We also set $n=n_{\varphi}, S=\mathcal{S}(M)$, $S_{0}=S \cap \operatorname{Per}(\varphi), S_{1}=S \cap\left(\varphi^{n}\right)^{-1}\{1\}, S_{2}=S \backslash S_{1}, p=|S|!$, and $\pi:=\pi_{S_{2}}$ when it is well-defined.

Proposition 2.12. If the morphism π is well-defined, then we have

$$
\operatorname{Per}(\varphi)=\operatorname{Fix}\left(\varphi^{p n}\right) .
$$

The proof of this proposition is also in the spirit of [10, Theorem 3.2], where the particular case of trace monoids was considered.

Proof. Case I: $1 \notin \varphi(S)$. By definition, $n=1$ in this case. We will use induction on $|S|$. The case $|S|=0$ being trivial, assume that $|S|>0$ and the result holds for smaller sets.

We may assume $S_{0} \subsetneq S$, otherwise $\left.\varphi\right|_{S}$ would be a permutation, and since the order of $\left.\varphi\right|_{S}$ must divide the order of the symmetric group on S, which is p, we would get $\left(\left.\varphi\right|_{S}\right)^{p}=\operatorname{Id}_{S}$ and therefore $\varphi^{p}=\operatorname{Id}_{M}$, yielding $\operatorname{Fix}\left(\varphi^{p}\right)=M=\operatorname{Per}(\varphi)$.

For every $r \in \mathbb{N}^{*}$, if we replace φ by φ^{r}, then S_{0} remains the same in view of $\operatorname{Per}(\varphi)=\operatorname{Per}\left(\varphi^{r}\right)$, and so does M_{0}. On the other hand, by (3), we restrict φ to $\varphi_{0}=\left.\varphi\right|_{M_{0}}$, and we have $\left.\varphi^{r}\right|_{M_{0}}=\left(\left.\varphi\right|_{M_{0}}\right)^{r}=\varphi_{0}^{r}$. Hence

$$
\begin{equation*}
\operatorname{Fix}\left(\varphi^{r}\right)=\operatorname{Fix}\left(\varphi_{0}^{r}\right) \tag{7}
\end{equation*}
$$

by applying (4) to φ^{r}. By the induction hypothesis and Lemma 2.7, we have $\operatorname{Per}\left(\varphi_{0}\right)=\operatorname{Fix}\left(\varphi_{0}^{\left|S_{0}\right|!}\right)$. Since $\left|S_{0}\right|!$ divides p, we get $\operatorname{Per}\left(\varphi_{0}\right)=\operatorname{Fix}\left(\varphi_{0}^{\left|S_{0}\right|!}\right) \subseteq \operatorname{Fix}\left(\varphi_{0}^{p}\right) \subseteq \operatorname{Per}\left(\varphi_{0}\right)$ and so $\operatorname{Per}\left(\varphi_{0}\right)=\operatorname{Fix}\left(\varphi_{0}^{p}\right)$. Together with (7), this yields

$$
\operatorname{Per}(\varphi)=\cup_{r \geq 1} \operatorname{Fix}\left(\varphi^{r}\right)=\cup_{r \geq 1} \operatorname{Fix}\left(\varphi_{0}^{r}\right)=\operatorname{Per}\left(\varphi_{0}\right)=\operatorname{Fix}\left(\varphi_{0}^{p}\right)=\operatorname{Fix}\left(\varphi^{p}\right)
$$

as required.
Case II: $1 \in \varphi(S)$. By definition, we have $\operatorname{Per}(\varphi) \supseteq \operatorname{Fix}\left(\varphi^{p n}\right)$. Conversely, let $u \in \operatorname{Per}(\varphi)$, say $u \in \operatorname{Fix}\left(\varphi^{r}\right)$. We may factor $u=u_{0} a_{1} u_{1} \cdots a_{k} u_{k}$, with $a_{1}, \ldots, a_{k} \in S_{2}$ and $u_{0}, \ldots, u_{k} \in M_{1}$. It follows that $u=\varphi^{r n}(u)=\varphi^{r n}\left(a_{1} a_{2} \cdots a_{k}\right)$. Now $a_{1} a_{2} \cdots a_{k} \in M_{2}$, and Lemma 2.10 yields $a_{1} a_{2} \cdots a_{k}=\pi \circ$ $\varphi^{r n}\left(a_{1} a_{2} \cdots a_{k}\right)=(\pi \circ \varphi)^{r n}\left(a_{1} a_{2} \cdots a_{k}\right)$. Consequently $a_{1} a_{2} \cdots a_{k}$ belongs to $\operatorname{Fix}\left(\varphi_{2}^{r n}\right) \subseteq \operatorname{Per}\left(\varphi_{2}\right)$. As in the proof of Theorem 2.3, we have $1 \notin \varphi_{2}\left(S_{2}\right)$. Thus, by Lemma 2.8 and Case I, we have $\operatorname{Per}\left(\varphi_{2}\right)=\operatorname{Fix}\left(\varphi_{2}^{\left|S_{2}\right|!}\right)$. We get $a_{1} a_{2} \cdots a_{k} \in \operatorname{Fix}\left(\varphi_{2}^{\left|S_{2}\right|!}\right) \subseteq \operatorname{Fix}\left(\varphi_{2}^{p n}\right)$, and so $a_{1} a_{2} \cdots a_{k}=\pi \circ \varphi^{p n}\left(a_{1} a_{2} \cdots a_{k}\right)$ in view of Lemma 2.10. Hence $\varphi^{p n}(u)=\varphi^{p n}\left(a_{1} a_{2} \cdots a_{k}\right)=v_{0} a_{1} v_{1} \cdots a_{k} v_{k}$ for some $v_{0}, v_{1}, \ldots, v_{k}$ in M_{1}. Thus

$$
\varphi^{2 p n}(u)=\varphi^{p n} \circ \pi \circ \varphi^{p n}(u)=\varphi^{p n} \circ \pi\left(v_{0} a_{1} v_{1} \cdots a_{k} v_{k}\right)=\varphi^{p n} \circ \pi\left(u_{0} a_{1} u_{1} \cdots a_{k} u_{k}\right)=\varphi^{p n}(u) .
$$

Since $\varphi^{r}(u)=u$, this yields to $u=\varphi^{r}(u)=\varphi^{2 r}(u)=\cdots=\varphi^{p n r}(u)=\varphi^{p n(r-1)}(u)=\cdots=\varphi^{p n}(u)$. Therefore $\operatorname{Per}(\varphi)=\operatorname{Fix}\left(\varphi^{p n}\right)$.

Theorem 2.13. If the morphism π is well-defined, then $\operatorname{Per}(\varphi)$ is also a finitely generated left preGarside monoid.

Proof. In Proposition 2.12, we showed that $\operatorname{Per}(\varphi)=\operatorname{Fix}(\psi)$, where $\psi=\varphi^{p n}$. Denote $S_{1}(\varphi)=S_{1}$, $S_{1}(\psi)=S \cap\left(\psi^{n_{\psi}}\right)^{-1}\{1\}, S_{2}(\varphi)=S_{2}, S_{2}(\psi)=S \backslash S_{1}(\psi), \pi(\varphi)=\pi$ and $\pi(\psi)=\pi_{S_{2}(\psi)}$. We have $S_{1}(\varphi)=\left\{s \in S \mid \exists k \in \mathbb{N}\right.$ such that $\left.\varphi^{k}(s)=1\right\}=\left\{s \in S \mid \exists k \in \mathbb{N}\right.$ such that $\left.\psi^{k}(s)=1\right\}=S_{1}(\psi)$. Then $S_{2}(\psi)=S_{2}(\varphi)$, and so $\pi(\psi)=\pi(\varphi)=\pi$. Thus we can apply Theorem 2.3 to ψ, which means that Fix (ψ), and therefore $\operatorname{Per}(\varphi)$, is a finitely generated left preGarside monoid.

2.3 The case of Artin monoids

A symmetry of an Artin group A generated by S, is an endomorphism φ of A such that $\varphi_{\mid S}$ is a permutation. In [4, Lemma 10] and [9, Corollary 4.4], it is shown that, given a group G of symmetries of an Artin group A, the submonoid of elements fixed by G, is isomorphic to another Artin monoid. In particular, given an Artin monoid M generated by S, and $\varphi \in \operatorname{End}(M)$ such that $\varphi_{\mid S}$ is a permutation (i.e. $\varphi \in \operatorname{Aut}(M)$), the submonoid $\operatorname{Fix}(\varphi)$ is also an Artin monoid. Below, we will show that this is also
the case for $\operatorname{Per}(\varphi)$, and for every $\varphi \in \operatorname{End}(M)$.
Let $M=\left\langle S \mid[a, b\rangle^{m_{a b}}=[b, a\rangle^{m_{a b}} ; m_{a b} \neq \infty\right\rangle^{+}$be an Artin monoid, and φ be in $\operatorname{End}(M)$. By [3], Artin monoids satisfy all properties of preGarside monoids. The set of atoms $\mathcal{S}(M)$ of M is S, and the length ℓ_{S} is an additive and homogeneous norm over M. Thus, we can apply the results from the previous subsections.
As before, set $n=n_{\varphi}, S_{0}=S \cap \operatorname{Per}(\varphi), S_{1}=S \cap\left(\varphi^{n}\right)^{-1}\{1\}, S_{2}=S \backslash S_{1}, p=|S|!$, and $\pi:=\pi_{S_{2}}$ when it is well-defined. It is known that the submonoids $M_{0}=\left\langle S_{0}\right\rangle^{+}, M_{1}=\left\langle S_{1}\right\rangle^{+}$and $M_{2}=\left\langle S_{2}\right\rangle^{+}$are Artin monoids too.

Lemma 2.14. The morphism π is well-defined.
Proof. If $1 \notin \varphi(S)$, then $S_{2}=S$ and $\pi=\operatorname{Id}_{M}$. Suppose $1 \in \varphi(S)$. It suffices to verify that $\pi\left([a, b\rangle^{m_{a b}}\right)=$ $\pi\left([b, a\rangle^{m_{a b}}\right)$ for all $m_{a b} \neq \infty$. Let $a, b \in S$ such that $m_{a b} \neq \infty$. If $m_{a b}$ is even, or if a and b are both in S_{1} or in S_{2}, the equality holds trivially. Suppose we have $m_{a b}=2 k+1$ for some $a \in S_{1}, b \in S$, and $k>0$. Then $\varphi^{n}\left([a, b\rangle^{m_{a b}}\right)=\left(\varphi^{n}(b)\right)^{k}$ and $\varphi^{n}\left([b, a\rangle^{m_{a b}}\right)=\left(\varphi^{n}(b)\right)^{k+1}$. Thus, by cancellativity, $\varphi^{n}(b)=1$, so $b \in S_{1}$ and we are done as remarked above.

Proposition 2.15. Let M be an Artin monoid, and φ be in $\operatorname{End}(M)$. Then the submonoids $\operatorname{Fix}(\varphi)$ and $\operatorname{Per}(\varphi)$ are also Artin monoids.

Proof. Assume first $1 \notin \varphi(S)$. In the proof of Theorem 2.3, we showed that $\operatorname{Fix}(\varphi)=\operatorname{Fix}\left(\varphi_{0}\right)$, with $\varphi_{0} \in \operatorname{End}\left(M_{0}\right)$ and $\left.\varphi\right|_{S_{0}}$ is a permutation. Then by [4, Lemma 10], $\operatorname{Fix}\left(\varphi_{0}\right)$, and therefore $\operatorname{Fix}(\varphi)$, is an Artin monoid.
In this case, $n=1$, and by Proposition 2.12, we have $\operatorname{Per}(\varphi)=\operatorname{Fix}\left(\varphi^{p}\right)$. Since $1 \notin \varphi(S)$, then $\ell_{S}(\varphi(u)) \geq$ $\ell_{S}(u)$ for all $u \in M$, and so $1 \notin \varphi^{p}(S)$. Thus, $\operatorname{Fix}\left(\varphi^{p}\right)$, and therefore $\operatorname{Per}(\varphi)$, is again an Artin monoid.

Assume now $1 \in \varphi(S)$. In the proof of Theorem 2.3, we showed that $\operatorname{Fix}(\varphi)=\varphi^{n}\left(\operatorname{Fix}\left(\varphi_{2}\right)\right)$, with $\varphi_{2} \in \operatorname{End}\left(M_{2}\right)$ and $1 \notin \varphi_{2}\left(S_{2}\right)$. Let $u, v \in \operatorname{Fix}\left(\varphi_{2}\right)$ such that $\varphi^{n}(u)=\varphi^{n}(v)$. Then $\pi \circ \varphi^{n}(u)=\pi \circ \varphi^{n}(v)$, and so, by Lemma 2.10, $(\pi \circ \varphi)^{n}(u)=(\pi \circ \varphi)^{n}(v)$. Thus $u=\varphi_{2}^{n}(u)=\varphi_{2}^{n}(v)=v$. Hence, the morphism $\left.\varphi^{n}\right|_{\operatorname{Fix}\left(\varphi_{2}\right)}: \operatorname{Fix}\left(\varphi_{2}\right) \rightarrow \operatorname{Fix}(\varphi)$ is not only surjective, but also injective. Therefore, $\operatorname{Fix}(\varphi)$ is isomorphic to $\operatorname{Fix}\left(\varphi_{2}\right)$. By Case I, $\operatorname{Fix}\left(\varphi_{2}\right)$ is an Artin monoid, then so is $\operatorname{Fix}(\varphi)$.
By Proposition 2.12, we have $\operatorname{Per}(\varphi)=\operatorname{Fix}\left(\varphi^{p n}\right)$. Since $1 \in \varphi(S)$, one has $1 \in \varphi^{p n}(S)$. Thus $\operatorname{Fix}\left(\varphi^{p n}\right)$, and so $\operatorname{Per}(\varphi)$, is an Artin monoid.

3 Inequalities and some equivalences between metrics

The purpose of this section is to define three metrics d_{1}, d_{2} and d_{3} in finitely generated preGarside monoids, to compare them in general, and in the particular cases of trace monoids and Garside monoids.

3.1 Metrics and normal forms

In order to define our three metrics, we start by introducing the following general framework. Recall that given a non empty set X, we denote by X^{*} the set of all finite words over X. Henceforth, these words will be denoted as tuples, to avoid any confusion with the monoids elements. Let M be a monoid, X be a non empty set, and $\iota: M \hookrightarrow X^{*}$ be an injective map. For $u, v \in M$ with $\iota(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota(v)=\left(v_{1}, \ldots, v_{m}\right)$, we define

$$
r(u, v)=\left\{\begin{array}{ll}
\max \left\{k \geq 0 \mid u_{1}=v_{1}, \ldots, u_{k}=v_{k}\right\} & \text { if } u \neq v \\
\infty & \text { if } u=v
\end{array} .\right.
$$

The metric d over M, associated to ι, is defined, for all $u, v \in M$, by

$$
d(u, v)=2^{-r(u, v)} .
$$

When $\iota(u)=\left(u_{1}, \ldots, u_{n}\right)$ for some $u \in M$, then for all $k \leq n$, we denote $\iota^{[k]}(u)=\left(u_{1}, \ldots, u_{k}\right) \in X^{*}$.
Let M be a finitely generated preGarside monoid. For each metric d_{i} over M, we will define X_{i}, ι_{i} and r_{i} as above. The set X_{1} for the first distance d_{1} is defined in [1], where it is denoted by P; the subset of M with a preGarside structure. It contains the finite set of atoms $S=\mathcal{S}(M)$, and whenever it contains an element, it also contains all its left and right divisors ([1, Proposition 2.4]). We will denote it by M_{red}, since in the case of an Artin monoid, it is just the set of reduced elements, that we will recall bellow. The properties of $M_{\text {red }}$ shown in [9] for Artin monoids, hold in finitely generated preGarside monoids with the same proofs, as stated in [1]. Namely ([1, Proposition 2.12]), there is a unique function $\alpha: M \rightarrow M_{\mathrm{red}}$ which induces the identity on $M_{\text {red }}$, and satisfies

$$
\begin{equation*}
\alpha(u v)=\alpha(u \alpha(v)), \tag{8}
\end{equation*}
$$

for all $u, v \in M$. Further, $\alpha(u)$ is the unique maximal element (for \preceq) in the set $\left\{v \in M_{\mathrm{red}} \mid v \preceq u\right\}$.
Let $M=\left\langle S \mid[a, b\rangle^{m_{a b}}=[b, a\rangle^{m_{a b}} ; m_{a b} \neq \infty\right\rangle^{+}$be an Artin monoid, whose natural length function is denoted, as in the preliminaries, by ℓ_{S}. And let $W=\left\langle S \mid(a b)^{m_{a b}}=1 ; m_{a b} \neq \infty\right\rangle$ be the corresponding Coxeter group. There is also a length function on W (see [9]), which we denote also by ℓ_{S}. It is known that two minimal expressions of an element of W are equivalent by using Artin relations only. The length of an element is defined by the length of any of its minimal expressions as products of elements of S. This implies that the induced quotient map from M to W has a canonical section (as a map of sets), whose image $M_{\text {red }}$ consists of those elements of M which have the same length as their image in W.

Let M be a finitely generated preGarside monoid. To every element of M, can be associated a (left) normal form (n.f), that is called the (left) greedy normal form, and defined as follows. To 1_{M}, we associate the empty sequence. And for $u \in M \backslash\{1\}$ and $u_{1}, \ldots, u_{n} \in M_{\text {red }}$, we say that $u=u_{1} \cdots u_{n}$ is in normal form (n.f), if and only if no u_{i} is equal to 1 and for any i we have $u_{i}=\alpha\left(u_{i} \cdots u_{n}\right)$. In view of (8), the normality of a form can be seen locally ([1, Proposition 2.21]): $u_{1} \cdots u_{k}$ is a normal form if and only if $u_{i} u_{i+1}$ is for all i. This implies that any segment $u_{i} \cdots u_{j}$ of a normal form is normal. For $u=u_{1} \cdots u_{n}$ (n.f), we define $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$, and denote $n=|u|_{1}$. Let $u, v \in M$ with $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{1}(v)=\left(v_{1}, \ldots, v_{m}\right)$. We define $r_{1}(u, v)$ exactly as $r(u, v)$ above. Using the convention $2^{-\infty}=0$, the metric d_{1} is defined by

$$
d_{1}(u, v)=2^{-r_{1}(u, v)} .
$$

Another important normal form ι_{2} over M, that we call the Foata normal form, is defined as follows. Let $X_{2}=\{u \in M \mid \exists T \subseteq S, u=\Delta(T)\}$, where $S=\mathcal{S}(M)$ and $\Delta(T)$ is the least right common multiple of the elements of T, which exists if and only if there is a right common multiple ($[6$, Lemma 2.1]). For $u \in M \backslash\{1\}$, there exists a unique $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right) \in X_{2}^{*}$ such that $u=u_{1} \cdots u_{n}$ and $u_{i}=\Delta\left(\left\{s \in S \mid s \preceq u_{i} \cdots u_{n}\right\}\right)$. When $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right)$, we denote $n=|u|_{2}$. And similarly, the metric d_{2} associated to ι_{2}, is known as the FNF metric, and defined in [2], for all $u, v \in M$, by

$$
d_{2}(u, v)=2^{-r_{2}(u, v)} .
$$

When the monoid M is equiped with an additive and homogeneous norm ν, we can assume that $\nu(s)=1$ for all s in S, call this norm the length over S, and denote it by ℓ_{S}. In this case, and in addition to d_{1} and d_{2}, there is a third and useful metric, decribed in [10] for the particular case of trace monoids, that we will denote by d_{3}. Given $u, v \in M$, we say that v is a prefix of u, when v left-divides u. For every $n \in \mathbb{N}$, denote by $\operatorname{Pref}_{n}(u)$ the set of all prefixes of u of length n. Let $X_{3}=\mathcal{P}(M)$ be the set of all parts of M. For $u \in M \backslash\{1\}$, set $\iota_{3}(u)=\left(u_{1}, \ldots, u_{n}\right)$ with $n=\ell_{S}(u)$ and $u_{i}=\operatorname{Pref}_{i}(u)$ for all i. And set $\iota_{3}(1)=(\{1\})$. Then the metric d_{3}, known as the prefix metric, is defined in [8] as above, for all $u, v \in M$, by

$$
d_{3}(u, v)=2^{-r_{3}(u, v)} .
$$

Note that in this case, for $u, v \in M$, we have $r_{3}(u, v)=\max \left\{n \in \mathbb{N} \mid \operatorname{Pref}_{n}(u)=\operatorname{Pref}_{n}(v)\right\}$, because for $1 \leq n \leq \ell_{S}(u)$,

$$
\operatorname{Pref}_{n}(u)=\operatorname{Pref}_{n}(v) \Leftrightarrow \operatorname{Pref}_{k}(u)=\operatorname{Pref}_{k}(v), \forall 1 \leq k \leq n
$$

3.2 Relations between d_{1}, d_{2} and d_{3}

In this subsection, we will compare the first distance d_{1} with the other two for a finitely generated preGarside monoid M, equiped with a length ℓ_{S}. We start with d_{1} and d_{3}.

Lemma 3.1. Let u lie in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$. Then, for $1 \leq k \leq n$, we have

$$
\operatorname{Pref}_{k}(u)=\operatorname{Pref}_{k}\left(u_{1} \cdots u_{k}\right) .
$$

Proof. It suffices to show that if $v \preceq u$ with $\ell_{S}(v)=k$, then $v \preceq u_{1} \cdots u_{k}$, which we do by induction on k. Assume first $k=1$. If $\ell_{S}(v)=1$, then $v \in S \subseteq M_{\text {red }}$. So, by definition of the greedy normal form, $v \preceq \alpha(u)=u_{1}$. Assume now $k>1$ plus the induction hypothesis. Consider v in M such that $v \preceq u$ and $\ell_{S}(v)=k$. Write $v=v^{\prime} s$ and $u=v w$ with s in S and w in M. By the induction hypothesis, v^{\prime} left divides $u_{1} \cdots u_{k-1}$. Write $u_{1} \cdots u_{k-1}=v^{\prime} v^{\prime \prime}$ with $v^{\prime \prime} \in M$. Since $v^{\prime} s w=u_{1} \cdots u_{n}=v^{\prime} v^{\prime \prime} u_{k} \cdots u_{n}$, we have $s \preceq v^{\prime \prime} u_{k} \cdots u_{n}$. But $s \in M_{\text {red }}$, therefore, $s \preceq \alpha\left(v^{\prime \prime} u_{k} \cdots u_{n}\right)$. By (8), $\alpha\left(v^{\prime \prime} u_{k} \cdots u_{n}\right)=\alpha\left(v^{\prime \prime} \alpha\left(u_{k} \cdots u_{n}\right)\right)=$ $\alpha\left(v^{\prime \prime} u_{k}\right)$, so $s \preceq v^{\prime \prime} u_{k}$. Hence, $v=v^{\prime} s \preceq v^{\prime} v^{\prime \prime} u_{k}=u_{1} \cdots u_{k}$.

Proposition 3.2. Let M be a finitely generated preGarside monoid, equiped with a length ℓ_{S}. Then we have

$$
d_{3} \leq d_{1}
$$

Proof. Consider u and v distinct in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{1}(v)=\left(v_{1}, \ldots, v_{m}\right)$. If $r_{1}(u, v)=0$, then $r_{3}(u, v) \geq r_{1}(u, v)$, so $d_{3}(u, v) \leq d_{1}(u, v)$. Otherwise, for $1 \leq k \leq r_{1}(u, v)$, by Lemma 3.1 we have

$$
\operatorname{Pref}_{k}(u)=\operatorname{Pref}_{k}\left(u_{1} \cdots u_{k}\right)=\operatorname{Pref}_{k}\left(v_{1} \cdots v_{k}\right)=\operatorname{Pref}_{k}(v) .
$$

Thus, $r_{3}(u, v) \geq r_{1}(u, v)$ and so $d_{3}(u, v) \leq d_{1}(u, v)$.

We turn now to d_{1} and d_{2}. Note that the existence of a length ℓ_{S} is only necessary for d_{3}, and we do not need it to compare d_{1} and d_{2}. The inclusion $X_{2} \subseteq M_{\text {red }}$, deduced from [1, Proposition 2.19], will be useful for us.

Lemma 3.3. Let u be in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{2}(u)=\left(u_{1}^{\prime}, \ldots, u_{m}^{\prime}\right)$. Then
i. $n \leq m$, and for all $i \leq n$, we have $u_{1}^{\prime} \cdots u_{i}^{\prime} \preceq u_{1} \cdots u_{i}$.
ii. For $i \leq n$ and $j \leq m$, if $u_{1}^{\prime} \cdots u_{j}^{\prime} \preceq u_{1} \cdots u_{i}$, then $\iota_{2}^{[j]}\left(u_{1} \cdots u_{i}\right)=\left(u_{1}^{\prime}, \ldots, u_{j}^{\prime}\right)$.

Proof. i. The fact that $n \leq m$ is a consequence of [9, Proposition 4.8], also true for preGarside monoids, as stated in [1]. On the other hand, by using $X_{2} \subseteq M_{\mathrm{red}}$ and the same proof as [9, Proposition 4.10], we get $u_{1}^{\prime} \cdots u_{i}^{\prime} \preceq u_{1} \cdots u_{i}$ for all $i \leq n$.
ii. Set $i \leq n$. Assume $u_{1}^{\prime} \cdots u_{j}^{\prime} \preceq u_{1} \cdots u_{i}$. We prove that $\iota_{2}^{[j]}\left(u_{1} \cdots u_{i}\right)=\left(u_{1}^{\prime}, \ldots, u_{j}^{\prime}\right)$ by induction on j. Since $\iota_{2}^{[1]}(u)=\left(u_{1}^{\prime}\right)$ and $u_{1}^{\prime} \preceq u_{1} \cdots u_{i} \preceq u$, we have $\iota_{2}^{[1]}\left(u_{1} \cdots u_{i}\right)=\left(u_{1}^{\prime}\right)$. Hence, the property is true for $j=1$. Assume $j \geq 2$ plus the induction hypothesis. Write $u_{1} \cdots u_{i}=u_{1}^{\prime} \cdots u_{j}^{\prime} v$ with $v \in M$. By the induction hypothesis, we have $\iota_{2}^{[j]}\left(u_{1} \cdots u_{i}\right)=\left(u_{1}^{\prime}, \ldots, u_{j-1}^{\prime}, \iota_{2}^{[1]}\left(u_{j}^{\prime} v\right)\right)$. On the other hand, $\iota_{2}^{[1]}\left(u_{j}^{\prime} \cdots u_{m}^{\prime}\right)=\left(u_{j}^{\prime}\right)$ and $u_{j}^{\prime} \cdots u_{m}^{\prime}=u_{j}^{\prime} x u_{i+1} \cdots u_{n}$. This imposes $\iota_{2}^{[1]}\left(u_{j}^{\prime} x\right)=\left(u_{j}^{\prime}\right)$. Therefore ${ }_{L_{2}}^{[j]}\left(u_{1} \cdots u_{i}\right)=\left(u_{1}^{\prime}, \ldots, u_{j}^{\prime}\right)$.

Proposition 3.4. Let M be a finitely generated preGarside monoid. Then we have

$$
d_{2} \leq d_{1}
$$

Proof. Let u, v be in M and distinct. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right), \iota_{1}(v)=\left(v_{1}, \ldots, v_{n^{\prime}}\right), \iota_{2}(u)=\left(u_{1}^{\prime}, \ldots, u_{m}^{\prime}\right)$ and $\iota_{2}(v)=\left(v_{1}^{\prime}, \ldots, v_{m^{\prime}}^{\prime}\right)$. By Lemma 3.3, $n \leq m$ and $n^{\prime} \leq m^{\prime}$. If $m=r_{2}(u, v)$ or $m^{\prime}=r_{2}(u, v)$, then $r_{1}(u, v) \leq \min \left(n, n^{\prime}\right) \leq \min \left(m, m^{\prime}\right)=r_{2}(u, v)$. Therefore $d_{2}(u, v) \leq d_{1}(u, v)$. So assume $m<r_{2}(u, v)$ and $m^{\prime}<r_{2}(u, v)$ and set $k=r_{2}(u, v)$. By assumption $u_{k+1}^{\prime} \neq v_{k+1}^{\prime}$. We can therefore assume without restriction that u_{k+1}^{\prime} does not left divide v_{k+1}^{\prime}. By Lemma $3.3 i$. and $i i ., \iota_{2}^{[k+1]}\left(v_{1} \cdots v_{k+1}\right)=\left(v_{1}^{\prime}, \ldots, v_{k+1}^{\prime}\right)$. Since $\iota_{2}^{[k+1]}\left(u_{1}^{\prime} \cdots u_{k+1}^{\prime}\right)=\left(u_{1}^{\prime}, \ldots, u_{k+1}^{\prime}\right)$ and u_{k+1}^{\prime} does not left divide v_{k+1}^{\prime}, it follows from Lemma 3.3 that $u_{1}^{\prime} \cdots u_{k+1}^{\prime}$ does not left divide $v_{1} \cdots v_{k+1}$. But on the other hand, $u_{1}^{\prime} \cdots u_{k+1}^{\prime}$ left divides $u_{1} \cdots u_{k+1}$ by Lemma $3.3 i$.. Thus, $v_{1} \cdots v_{k+1} \neq u_{1} \cdots u_{k+1}$ and $r_{1}(u, v) \leq k$. Hence $r_{1}(u, v) \leq r_{2}(u, v)$ and $d_{2}(u, v) \leq$ $d_{1}(u, v)$.

Definition 3.5. A mapping $\varphi:(X, d) \rightarrow\left(X^{\prime}, d^{\prime}\right)$ between metric spaces is uniformly continuous if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x, y \in X_{1}: \quad\left(d(x, y)<\delta \Rightarrow d^{\prime}(\varphi(x), \varphi(y))<\varepsilon\right)
$$

If the identity mappings between (X, d) and $\left(X, d^{\prime}\right)$ are uniformly continuous, we say that the metrics d and d^{\prime} are uniformly equivalent. It is immediate that two equivalent metrics are consequently uniformly equivalent

Below, we will show that in Garside monoids, d_{1} is uniformly equivalent to d_{3}, and in trace monoids, d_{2} and d_{3} are uniformly equivalent. However, these metrics are not equivalent, nor uniformly equivalent in general. Here are some examples to illustrate that.

Example 3.6.

i. In an Artin monoid M with $m_{a b}=\infty$ for some $a, b \in S$, the metric d_{1} is not uniformly equivalent (and so not equivalent) to d_{2}, nor to d_{3}. Indeed, write $u_{n}=(a b)^{n}$ and $v_{n}=(a b)^{n+1}$. By definition of the metrics, we have $r_{2}\left(u_{n}, v_{n}\right)=r_{3}\left(u_{n}, v_{n}\right)=2 n$, and since $u_{n}, v_{n} \in M_{\text {red }}$, then $r_{1}\left(u_{n}, v_{n}\right)=0$. Thus we have $d_{1}\left(u_{n}, v_{n}\right)=1$ for all n, and $\lim _{n \rightarrow \infty} d_{2}\left(u_{n}, v_{n}\right)=\lim _{n \rightarrow \infty} d_{3}\left(u_{n}, v_{n}\right)=\lim _{n \rightarrow \infty} 2^{-2 n}=0$. So d_{1} cannot be uniformly equivalent to d_{2} or d_{3}.
ii. The metrics d_{2} and d_{3} are not equivalent in general. Indeed, Let M be an Artin monoid, with $a, b, c \in S$ such that $m_{a b}=2$ and $m_{a c}, m_{b c} \geq 3$. Consider $u_{n}=(a b)^{n}$ and $v_{n}=(a b)^{n} c$. Then $r_{2}\left(u_{n}, v_{n}\right)=n$ and $r_{3}\left(u_{n}, v_{n}\right)=2 n$. We have

$$
\exists C>0, d_{2} \leq C d_{3} \Leftrightarrow \exists C>0,-r_{2} \leq \log _{2}(C)-r_{3} \quad \Leftrightarrow \quad \exists C^{\prime} \in \mathbb{R}, r_{3} \leq r_{2}+C^{\prime}
$$

But in our example, $r_{3}=2 n$ and $r_{2}=n$, so there is no C^{\prime} in \mathbb{R} such that $r_{3} \leq r_{2}+C^{\prime}$. Therefore, d_{2} and d_{3} cannot be equivalent.
iii. In a non-abelian Artin monoid M, the metric d_{1} is not equivalent to d_{2}, nor to d_{3}. Indeed, let $a, b \in S$ such that $m_{a b} \geq 3$. Consider $u_{n}=(a b b a)^{n}$ and $v_{n}=(a b b a)^{n+1}$. Then $r_{1}\left(u_{n}, v_{n}\right)=2 n$ and $r_{2}\left(u_{n}, v_{n}\right)=r_{3}\left(u_{n}, v_{n}\right)=4 n$. Or, as in ii., the existence of some $C>0$ such that $d_{1} \leq C d_{2}$ and $d_{1} \leq C d_{3}$, means there is a C^{\prime} in \mathbb{R} such that $r_{3} \leq r_{1}+C^{\prime}$ and $r_{2} \leq r_{1}+C^{\prime}$, which is impossible for our example.

3.3 The case of trace monoids

In this subsection, we focus on right angled Artin monoids (RAAM). A RAAM, or a trace monoid, is an Artin monoid $M=\left\langle S \mid[a, b\rangle^{m_{a b}}=[b, a\rangle^{m_{a b}} ; m_{a b} \neq \infty\right\rangle^{+}$, where $m_{a b} \in\{2, \infty\}$ for all $a, b \in S$. Our objective is to obtain a complete comparison of d_{1}, d_{2} and d_{3} for trace monoids. Here we prove :

Proposition 3.7. Assume M is a trace monoid. Then
i. d_{2} and d_{3} are uniformly equivalent.
ii. if M is not free abelian, d_{1} is not uniformly equivalent to d_{2}, nor to d_{3}.
iii. if M is the free abelian monoid, $d_{1}=d_{2}=d_{3}$.

Indeed, point i. was already proved in [7] by a topological argument. We provide an algebraic one. Let us start with the following remark :

Remark 3.8. If $M \simeq \mathrm{~F}_{p}^{+}$is the free monoid, i.e. $m_{a b}=\infty$ for all $a, b \in S$, then $d_{2}=d_{3}$.
Proof. Let u, v lie in M. Set $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{2}(v)=\left(v_{1}, \ldots, v_{m}\right)$. For all $a, b \in S, m_{a b}=\infty$. Then $\left\{s \in S \mid s \preceq u_{i} \cdots u_{n}\right\}=\left\{u_{i}\right\},\left\{s \in S \mid s \preceq v_{i} \cdots v_{m}\right\}=\left\{v_{i}\right\}, \operatorname{Pref}_{i}(u)=\left\{u_{1} \cdots u_{i}\right\}$ and $\operatorname{Pref}_{i}(v)=$ $\left\{v_{1} \cdots v_{i}\right\}$ for every $i \leq \min \{n, m\}$. Hence, $r_{2}(u, v)=r_{3}(u, v)$ and therefore $d_{2}(u, v)=d_{3}(u, v)$.

For the remaining of the section, we fix a trace monoid $M=\left\langle S \mid a b=b a ; m_{a b} \neq \infty\right\rangle^{+}$, and set $p=|S|$. For every $u \in M$, let $\xi(u)$ denote the support of u, i.e. the set of atoms (elements of S) occurring in any expression of u.

Lemma 3.9. Let $u, v \in M$ such that $v \preceq u$. Set $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{2}(v)=\left(v_{1}, \ldots, v_{k}\right)$. Then $k \leq n$, and for all $i \leq k$, we have

$$
v_{1} \cdots v_{i} \preceq u_{1} \cdots u_{i} .
$$

Proof. Let w be in M and s be in S. Assume $\iota_{2}(w)=\left(w_{1}, \ldots, w_{l}\right)$, and set $\iota_{2}(w s)=\left(w_{1}^{\prime}, \ldots, w_{l^{\prime}}^{\prime}\right)$. By [12], $\iota_{2}(w s)$ can be obtained in the following way. If $s \notin \xi(w)$ and $s w=w s$, then $\iota_{2}(w s)=\left(w_{1} s, \ldots, w_{l}\right)$ and $|w s|_{2}=l$. If $s \in \xi\left(w_{l}\right)$ or $s w_{l} \neq w_{l} s$, then $\iota_{2}(w s)=\left(w_{1}, \ldots, w_{l}, s\right)$ and $|w s|_{2}=l+1$. Otherwise, set $j_{0}=\min \left\{j \in\{1, \ldots, l\} ; s \notin \xi\left(w_{j} \cdots w_{l}\right)\right.$ and $\left.s w_{j} \cdots w_{l}=w_{j} \cdots w_{l} s\right\}$. We have $j_{0}<l, \iota_{2}(w s)=$ $\left(w_{1}, \ldots, w_{j_{0}} s, \ldots, w_{l}\right)$ and $|w s|_{2}=l$. In all cases, $l^{\prime} \geq l$ and $w_{1} \cdots w_{i} \preceq w_{1}^{\prime} \cdots w_{i}^{\prime}$ for all $i \leq l$.
Now we can write $u=v s_{1} \cdots s_{m}$ with s_{1}, \ldots, s_{m} in S, and apply the above argument to all the pairs $\left(v s_{1} \cdots s_{i-1}, v s_{1} \cdots s_{i}\right)$ to conclude.

Lemma 3.10. We have

$$
d_{3} \leq d_{2}
$$

Proof. Let u, v be distinct in M. Set $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{2}(v)=\left(v_{1}, \ldots, v_{m}\right)$. If $r_{2}(u, v)=0$, then $r_{3}(u, v) \geq r_{2}(u, v)$ and so $d_{3}(u, v) \leq d_{2}(u, v)$. Otherwise, let w be in M such that $\ell_{S}(w)=k=r_{2}(u, v)$. By Lemma 3.9, we have $w \preceq u \Leftrightarrow w \preceq u_{1} \cdots u_{k} \Leftrightarrow w \preceq v_{1} \cdots v_{k} \Leftrightarrow w \preceq v$, $\operatorname{so~}_{\operatorname{Pref}}^{k}(u)=\operatorname{Pref}_{k}(v)$. Thus, $r_{3}(u, v) \geq r_{2}(u, v)$ and so $d_{3}(u, v) \leq d_{2}(u, v)$.

Lemma 3.11. We have

$$
d_{2}^{p} \leq 2^{p} d_{3}
$$

Proof. Let u, v be in M. Set $\iota_{2}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{2}(v)=\left(v_{1}, \ldots, v_{m}\right)$, and denote $k=r_{2}(u, v)$. Since we have $m_{s t} \in\{2, \infty\}$ for all $s, t \in S$, then $u_{i}=\Delta\left\{s \in S \mid s \preceq u_{i} \cdots u_{n}\right\}=\prod\{s \in S \mid s \preceq$ $\left.u_{i} \cdots u_{n}\right\}$ and $\ell_{S}\left(u_{i}\right) \leq p$ for all i. Assuming that $u \neq v$ and $n>k$, we have $u_{1} \cdots u_{k+1} \nprec v$. So $r_{3}(u, v) \leq \ell_{S}\left(u_{1} \cdots u_{k+1}\right) \leq p(k+1)=p r_{2}(u, v)+p$. Thus, $-p r_{2}(u, v) \leq p-r_{3}(u, v)$. And therefore, $\left(d_{2}(u, v)\right)^{p} \leq 2^{p} d_{3}(u, v)$.

We may now prove our proposition.

Proof of Proposition 3.7.

i. Gathering Lemmas 3.10 and 3.11 , we get immediately that d_{2} and d_{3} are uniformly equivalent.
ii. Example 3.6 i.
iii. Assume $M \simeq \mathbb{N}^{p}$ is the free abelian monoid, i.e. $m_{a b}=2$ for all $a, b \in S$. Let u, v be in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{1}(v)=\left(v_{1}, \ldots, v_{m}\right)$. Since $a b=b a$ for all $a, b \in S$, we have $M_{\mathrm{red}}=\{\Delta(T) \mid$ $T \subseteq S\}=X_{2}$. So, for every $w \in M, \iota_{1}(w)=\iota_{2}(w)$. Thus $r_{1}(u, v)=r_{2}(u, v)$ and $d_{1}(u, v)=d_{2}(u, v)$. If $\xi(u) \neq \xi(v)$, then $r_{1}(u, v)=r_{2}(u, v)=r_{3}(u, v)=0$, and so $d_{1}(u, v)=d_{2}(u, v)=d_{3}(u, v)$. If $\xi(u)=\xi(v)=\left\{s_{1}, \ldots, s_{k}\right\}$ and $u \neq v$, write

$$
u=s_{1}^{f_{1}} \cdots s_{k}^{f_{k}} \quad \text { and } \quad v=s_{1}^{g_{1}} \cdots s_{k}^{g_{k}} .
$$

The set $\mathrm{T}=\left\{f_{i}, g_{i} \mid f_{i} \neq g_{i}\right\}$ is non empty because $u \neq v$. Let $q=\min (\mathrm{T})$. We may suppose $q=f_{j}$ for some $1 \leq j \leq k$. Thus, for all $i \leq q$, we have $u_{i}=v_{i}, s_{j} \nprec u_{q+1}$ and $s_{j} \preceq v_{q+1}$. Therefore $r_{1}(u, v)=r_{2}(u, v)=q$. On the one hand, $s_{j}^{q+1} \preceq v$ and $s_{j}^{q+1} \nprec u$, therefore $\operatorname{Pref}_{q+1}(u) \neq \operatorname{Pref}_{q+1}(v)$. On the other hand, let $w \in M$ such that $w \preceq u$ and $\ell_{S}(w)=q$. Then we can write $w=s_{1}^{h_{1}} \cdots s_{k}^{h_{k}}$ with $h_{1}+\cdots+h_{k}=q$. Since $w \preceq u$, for $1 \leq i \leq k$, we have $h_{i} \leq f_{i}$. If $f_{i}=g_{i}$, then $h_{i} \leq g_{i}$. And if $f_{i} \neq g_{i}$, since $q=\min (\mathrm{T})$ and $h_{i} \leq q$, one has $h_{i} \leq g_{i}$. So for all $1 \leq i \leq k$, we have $h_{i} \leq g_{i}$, which means that $w \preceq v$. Similarly, if $w \preceq v$ with $\ell_{S}(w)=q$, then $w \preceq u$ as well. Hence, $\operatorname{Pref}_{q}(u)=\operatorname{Pref}_{q}(v)$, and therefore $r_{3}(u, v)=q$. Thus, $d_{1}(u, v)=d_{2}(u, v)=d_{3}(u, v)$.

3.4 The case of Garside monoids

In this subsection, we show that in a finitely generated Garside monoid, equiped with a length ℓ_{S}, the metrics d_{1} and d_{3} are uniformly equivalent. Recall that a Garside monoid is a preGarside monoid containing a Garside element, i.e. a balanced element whose set of divisors generates the whole monoid. let M be a Garside monoid with a Garside element Δ. One of the Garside element important properties is that for all $u \in M, \alpha(u)$ is the greatest common (left) divisor of u and Δ, denoted by $u \wedge \Delta$. In other words, we have $u \in M_{\text {red }} \Leftrightarrow u \preceq \Delta$.
Proposition 3.12. Let M be a finitely generated Garside monoid, equiped with a length ℓ_{S}. Set $\ell=\ell_{S}(\Delta)$. We have

$$
d_{1}^{\ell} \leq 2^{\ell} d_{3}
$$

Proof. Let u, v be distinct in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right), \iota_{1}(v)=\left(v_{1}, \ldots, v_{m}\right), r_{1}=r_{1}(u, v)$, and $r_{3}=r_{3}(u, v)$. If $u=1$ or $v=1$, then $r_{1}=r_{3}=0$, so $\left(d_{1}(u, v)\right)^{\ell} \leq 2^{\ell} d_{3}(u, v)$. If $r_{1}=n$ or $r_{1}=m$, then $u \preceq v$ or $v \preceq u$, and so $r_{3} \leq r_{1} \ell$ because $\ell_{S}(w) \leq \ell$ for all $w \in M_{\text {red }}$. Thus $\left(d_{1}(u, v)\right)^{\ell} \leq d_{3}(u, v) \leq$ $2^{\ell} d_{3}(u, v)$. Otherwise, suppose $u_{1} \cdots u_{r_{1}+1} \preceq v$ and $v_{1} \cdots v_{r_{1}+1} \preceq u$. Then $u_{r_{1}+1} \preceq v_{r_{1}+1} \cdots v_{m}$ and $v_{r_{1}+1} \preceq u_{r_{1}+1} \cdots u_{n}$. Thus, by definition of the greedy normal form, $u_{r_{1}+1} \preceq v_{r_{1}+1}$ and $v_{r_{1}+1} \preceq u_{r_{1}+1}$. So $u_{r_{1}+1}=v_{r_{1}+1}$, which contradicts the definition of $r_{1}(u, v)$. Therefore, one has either $u_{1} \cdots u_{r_{1}+1} \nprec v$ or $v_{1} \cdots v_{r_{1}+1} \nprec u$. Either way, we have $r_{3} \leq \max \left\{\ell_{S}\left(u_{1} \cdots u_{r_{1}+1}\right), \ell_{S}\left(v_{1} \cdots v_{r_{1}+1}\right)\right\} \leq\left(r_{1}+1\right) \ell$. Hence, $\left(d_{1}(u, v)\right)^{\ell} \leq 2^{\ell} d_{3}(u, v)$.

Gathering propositions 3.2 and 3.12, we get:
Theorem 3.13. In a finitely generated Garside monoid, equiped with a length ℓ_{S}, the metrics d_{1} and d_{3} are uniformly equivalent.

Question : Are d_{1} and d_{2} uniformly equivalent in Garside monoids?

4 Contractability of endomorphisms of Artin monoids

The aim of this section is to extend [10, Theorem 4.1] to all Artin monoids. However, it is easy to verify that the assertions stated in [10, Theorem 4.1] can be not equivalent in an Artin monoids (see Example 4.3 below). So [10, Theorem 4.1] can not be directly extended. Actually, in the general case, the metric d_{1} appears as more natural than d_{2}, mainly because of Property (8). Moreover, one can verify that Property (iii) of Lemma 4.1 is the exact translation of Property (14) in [10, Theorem 4.1(iii)] when replacing d_{2} by d_{1}. So Theorem 4.2 provided a convenient generalisation of [10, Theorem 4.1] to the context of Artin monoids.

Let $M=\left\langle S \mid[a, b\rangle^{m_{a b}}=[b, a\rangle^{m_{a b}} ; m_{a b} \neq \infty\right\rangle^{+}$be an Artin monoid, and φ be in $\operatorname{End}(M)$. As shown in [10], the metric space $\left(M, d_{1}\right)$ admits a completion $\left(\widehat{M}, d_{1}\right)$ defined as follows. Let ∂M consist of all infinite sequences of the form $u_{1} u_{2} \cdots$, such that $u_{i} \in M_{\text {red }}$ for all i, and $u_{1} \cdots u_{n}$ is a (greedy) normal form for all $n \in \mathbb{N}$. We have $\widehat{M}=M \cup \partial M$.

The metric d_{1} extends to \widehat{M} in the obvious way, and it is easy to check that (\widehat{M}, d_{1}) is complete: given a Cauchy sequence $\left(U_{n}\right)_{n}$ with $U_{n}=u_{n 1} u_{n 2} \cdots$, it follows easily that each sequence $\left(u_{n k}\right)_{k}$ is stationary with limit, say, u_{k}, and we get $u_{1} u_{2} \cdots=\lim _{n \rightarrow \infty} U_{n}$. Since $u_{1} \cdots u_{n} \in M$ and it is in a normal form for all n, and $u_{1} u_{2} \cdots=\lim _{n \rightarrow \infty} u_{1} \cdots u_{n}$, then $\left(\bar{M}, d_{1}\right)$ is indeed the completion of $\left(M, d_{1}\right)$. We may refer to ∂M as the boundary of M.

Assume that φ is uniformly continuous with respect to d_{1}. Since (\widehat{M}, d_{1}) is the completion of $\left(M, d_{1}\right)$, φ admits a unique continuous extension Φ to $\left(\widehat{M}, d_{1}\right)$. By continuity, we must have $\Phi(X)=\lim _{n \rightarrow \infty} \varphi\left(u_{n}\right)$ whenever $X \in \partial M$ and $\left(u_{n}\right)_{n}$ is a sequence on M satisfying $X=\lim _{n \rightarrow \infty} u_{n}$.

Lemma 4.1. The following properties are equivalent:
(i)

$$
\text { for all } u, v \in M, \quad \alpha(u v)=\alpha(u)
$$

$$
\Rightarrow \quad \alpha(\varphi(u v))=\alpha(\varphi(u)) ;
$$

(ii) for all $u, v \in M$,
$\alpha(u v)=u$
$\Rightarrow \quad \alpha(\varphi(u v))=\alpha(\varphi(u)) ;$
(iii) for all $u, v \in M_{\text {red }}$,
$\alpha(u v)=u$
$\Rightarrow \quad \alpha(\varphi(u v))=\alpha(\varphi(u)) ;$
(iv) for all $u \in M, \quad \alpha(\varphi(u))=\alpha(\varphi(\alpha(u)))$.

Proof. We prove that $(i i) \Rightarrow(i v) \Rightarrow(i) \Rightarrow(i i i) \Rightarrow(i i)$. Let u, v be in M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ the greedy normal form of u. Assume (ii) holds. Then $\alpha\left(u_{1}\left(u_{2} \cdots u_{n}\right)\right)=u_{1}$ and, by $(i i), \alpha\left(\varphi\left(u_{1} \cdots u_{n}\right)\right)=$ $\alpha\left(\varphi\left(u_{1}\right)\right)=\alpha(\varphi(\alpha(u)))$. Thus (iv) holds.
Assume (iv) holds and $\alpha(u v)=\alpha(u)$. Then by (iv), $\alpha(\varphi(u v))=\alpha(\varphi(\alpha(u v)))=\alpha(\varphi(\alpha(u)))=\alpha(\varphi(u))$ and (i) holds.
Assume now (i). If $u \in M_{\text {red }}$ then $\alpha(u)=u$, so $\alpha(u v)=u$ implies $\alpha(u v)=\alpha(u)$, which in turn implies $\alpha(\varphi(u v))=\alpha(\varphi(u))$ by (i). So (iii) holds.
Assume finally (iii) and assume $\alpha(u v)=u$. In particular $u \in M_{\text {red }}$. We prove that $\alpha(\varphi(u v))=\alpha(\varphi(u))$ by induction on $|v|_{1}=k$. If $|v|_{1}=1$, then $v \in M_{\text {red }}$ and the result holds by (iii). Assume $|v|_{1}>1$ plus the induction hypothesis. Set $k=|v|_{1}$ and let $\iota_{1}(v)=\left(v_{1}, \ldots, v_{m}\right)$ be the greedy normal form of v. In view of (8), we have $\alpha(\varphi(u v))=\alpha(\varphi(u) \alpha(\varphi(v)))$. Now, we have $\alpha(v)=\alpha\left(v_{1} \cdots v_{k}\right)=v_{1}$. Since $\left|v_{2} \cdots v_{k}\right|_{1}=k-1<k$, then by the induction hypothesis, $\alpha\left(\varphi\left(v_{1} \cdots v_{k}\right)\right)=\alpha\left(\varphi\left(v_{1}\right)\right)$. Hence $\alpha(\varphi(u v))=\alpha\left(\varphi(u) \alpha\left(\varphi\left(v_{1}\right)\right)\right)=\alpha\left(\varphi(u) \varphi\left(v_{1}\right)\right)=\alpha\left(\varphi\left(u v_{1}\right)\right)$. We also have $\alpha\left(u v_{1}\right)=\alpha(u \alpha(v))=\alpha(u v)=u$ and $\left|v_{1}\right|_{1}=1<k$. Then, by the case $k=1$, we get $\alpha\left(\varphi\left(u v_{1}\right)\right)=\alpha(\varphi(u))$. Thus $\alpha(\varphi(u v))=\alpha(\varphi(u))$ and (ii) holds.

Recall that a mapping $\varphi:(X, d) \rightarrow(X, d)$ on a metric space is called a contraction with respect to d, if $d(\varphi(u), \varphi(v)) \leq d(u, v)$ for all $u, v \in X$.

Theorem 4.2. The following properties are equivalent:
(i) φ is uniformly continuous, and Φ is a contraction with respect to d_{1};
(ii) φ is a contraction with respect to d_{1};
(iii) for all $u, v \in M_{\mathrm{red}}, \quad \alpha(u v)=u \quad \Rightarrow \quad \alpha(\varphi(u v))=\alpha(\varphi(u))$;
(iv) for all $u \in M, \quad \alpha(\varphi(u))=\alpha(\varphi(\alpha(u)))$.

Furthermore, in these cases, if $u=u_{1} u_{2} \cdots \in \widehat{M}$ and $\Phi(u)=U_{1} U_{2} \cdots$, then for all $m \in \mathbb{N}^{*}$ with $m \leq|u|_{1}$, one has $\iota_{1}\left(\varphi\left(u_{1} \cdots u_{m}\right)\right)=\left(U_{1}, \ldots, U_{m}, \ldots\right)$.

Proof. The equivalence $(i) \Leftrightarrow(i i)$ is clear, and $(i i i) \Leftrightarrow(i v)$ follows from Lemma 4.1.
Assume (ii). Let u, v be in $M_{\text {red }}$ such that $\alpha(u v)=u$. Then $d_{1}(u v, u)=\frac{1}{2}$, and by $(i i), d_{1}(\varphi(u v), \varphi(u)) \leq \frac{1}{2}$. Thus $\alpha(\varphi(u v))=\alpha(\varphi(u))$. So (iii) holds.
Conversely, assume (iii). Let u belong to M. Set $\iota_{1}(u)=\left(u_{1}, \ldots, u_{n}\right)$ and $\iota_{1}(\varphi(u))=\left(U_{1}, \ldots, U_{N}\right)$. We prove by induction on k that for $k \in\{1, \ldots, n\}$, one has $\iota_{1}\left(\varphi\left(u_{1} \cdots u_{k}\right)\right)=\left(U_{1}, \ldots, U_{k}, \ldots\right)$. In particular $n \leq N$. For $k=1$, the result holds by (iv). So assume $k \geq 2$ plus the induction hypothesis. By the induction hypothesis, we can write $\varphi\left(u_{1} \cdots u_{k-1}\right)=U_{1} \cdots U_{k-1} Z$, with $Z \in M$. Since $\varphi\left(u_{1} \cdots u_{n}\right)=$ $U_{1} \cdots U_{N}$, it follows by cancellativity that $Z \varphi\left(u_{k} \cdots u_{n}\right)=U_{k} \cdots U_{N}$. Therefore, $\alpha\left(Z \varphi\left(u_{k} \cdots u_{n}\right)\right)=$ U_{k}. But, using (8) and (iv), we have $\alpha\left(Z \varphi\left(u_{k} \cdots u_{n}\right)\right)=\alpha\left(Z \alpha\left(\varphi\left(u_{k} \cdots u_{n}\right)\right)\right)=\alpha\left(Z \alpha\left(\varphi\left(u_{k}\right)\right)\right)$. In particular, U_{k} left divides $Z \alpha\left(\varphi\left(u_{k}\right)\right)$. Hence, $U_{1} \cdots U_{k}$ left divides $\varphi\left(u_{1} \cdots u_{k}\right)$. This imposes by definition of the greedy normal form that $\iota_{1}\left(\varphi\left(u_{1} \cdots u_{k}\right)\right)=\left(U_{1}, \ldots, U_{k}, \ldots\right)$, which proves the induction step. Now let v belong to M. Set $\iota_{1}(v)=\left(v_{1}, \ldots, v_{p}\right)$ and $\iota_{1}(\varphi(v))=\left(V_{1}, \ldots, V_{P}\right)$. Assume $d_{1}(u, v)=2^{-k}$. Then $u_{1}=v_{1}, \ldots, u_{k}=v_{k}$. It follows from the above result that $\iota_{1}\left(\varphi\left(u_{1} \cdots u_{k}\right)\right)=\left(U_{1}, \ldots, U_{k}, \ldots\right)=$ $\left(V_{1}, \ldots, V_{k}, \ldots\right)$. Thus $U_{1}=V_{1}, \ldots, U_{k}=V_{k}$ and $d_{1}(\varphi(u), \varphi(v)) \leq 2^{-k}$. So φ is a contraction. Hence, (ii) holds.
Finally, assume (i). Let u lie in \widehat{M}. Say $u=u_{1} u_{2} \cdots$. Set $\Phi(u)=U_{1} U_{2} \cdots \in \widehat{M}$. Let m be in \mathbb{N}^{*}. Then $d_{1}\left(u_{1} \cdots u_{m}, u\right)=2^{-m}$. So by (i), we have $d_{1}\left(\Phi\left(u_{1} \cdots u_{m}\right), \Phi(u)\right) \leq 2^{-m}$. Hence, $\iota_{1}\left(\varphi\left(u_{1} \cdots u_{m}\right)\right)=$ $\iota_{1}\left(\Phi\left(u_{1} \cdots u_{m}\right)\right)=\left(U_{1}, \ldots, U_{m}, \ldots\right)$.

The following example illustrates that the equivalence between (ii) and (iii) in [10, Theorem 4.1] is not true for all Artin monoïds with respect to d_{2}, which is why we used d_{1} to extend [10, Theorem 4.1] into our Theorem 4.2.

Example 4.3. Let $M=\langle s, t|$ ststststs $=$ tstststst \rangle^{+}, and $\varphi \in \operatorname{End}(M)$ such that $\varphi(s)=$ sts and $\varphi(t)=$ tst. Set $\Delta=$ ststststs, and define $\alpha_{2}(u)$ by $\iota_{2}^{[1]}(u)=\left(\alpha_{2}(u)\right)$ for u in M. We have $X_{2}=\{s, t, \Delta\}$, and $\left\{(u, v) \in X_{2}^{2} \mid \alpha_{2}(u v)=u\right\}=\{(s, t),(t, s),(s, s),(t, t),(\Delta, s),(\Delta, t),(\Delta, \Delta)\}$. Then, for all $u, v \in X_{2}$, we have $\alpha_{2}(u v)=u \Rightarrow \alpha_{2}(\varphi(u v))=\alpha_{2}(\varphi(u))$. However, the morphism φ is not a contraction with respect to d_{2}, since $d_{2}(\varphi(s), \varphi(s t s))>d_{2}(s, s t s)$.

References

[1] Bessis, D., Digne, F., And Michel, J. Springer theory in braids groups and the Birman-Ko-Lee monoid. Pacific J. Math. 205 (2002), 287-309.
[2] Bonizzoni, P., Mauri, G. and Pighizzini, G. About infinite traces, in: V. Diekert (ed.), Proceding of the ASMICS Worshops on Partially Commutative Monoids. Tech. Rep. TUM-I 9002 (1990), 1-10.
[3] Brieskorn, E., and Saito, K. Artin Gruppen und Coxeter Gruppen. Invent. Math. 17 (1972), 245-271.
[4] Crisp, J. Symmetrical subgroups of Artin groups. Adv. in Math. 152 (2000), 159-177.
[5] Dehornoy, P., and Paris, L. Gaussian groups and Garside groups, two generalisations of Artin groups. Proc. London Math Soc. 79, 3 (1999), 569-604.
[6] Godelle, E., and Paris, L. Pregarside monoids and groups, parabolicity, amalgamation, and FC property. I.J.A.C 23 (2013), 1431-1467.
[7] Kummetz, R., and Kuske, D. The topology of mazurkiewicz traces. Theoret. Comp. Sci. 305 (2003), 237-258.
[8] Kwiatkowska, M., Z. A metric for traces. Information processing Letters 35 (1990), 129-135.
[9] Michel, J. A note on braid monoids. J. of Algebra 215 (1999), 366-377.
[10] Rodaro, E., and Silva, P. V. Fixed points of endomorphisms of trace monoids. arXiv:1211.451\%v1.
[11] Rodaro, E., and Silva, P. V. Fixed points of endomorphisms of trace monoids. Semigroup Forum November (2013), DOI 10.1007/s00233-013-9553-0.
[12] Van Wyk, L. Graph groups are biautomatic. J. Pure Appl. Algebra 94 (1994), 341-352.

