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Fixed points of endomorphisms and relations between metrics in preGarside monoids

, it is proved that the fixed points submonoid and the periodic points submonoid of a trace monoid endomorphism are always finitely generated. We show that for finitely generated left preGarside monoids, that includs finitely generated preGarside monoids, Garside monoids and Artin monoids, the fixed and periodic points submonoids of any endomorphism are also finitely generated left preGarside monoids under some condition, and in the case of Artin monoids, these submonoids are always Artin monoids too. We also prove algebraically some inequalities, equivalences and non-equivalences between three metrics in finitely generated preGarside monoids, and especially in trace monoids and Garside monoids.

Introduction

Trace monoids, or equivalently partially commutative monoids, are monoids of a particular interest and have been widly studied. In particular, they are Artin Monoids. This explains why they are also called Right Angle Artin monoids (RAAM for short). In [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF][START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF], the authors consider endomorphisms of trace monoids. They study the submonoid of fixed points of such an endomorphism and prove that it is finitely generated. They also caracterise those endomorphisms that are contractions relatively to some natural distance on trace monoids. In [START_REF] Crisp | Symmetrical subgroups of Artin groups[END_REF], Crisp obtained similar results for Artin monoids. He proved that the submonoid of fixed points is even finitely presented, but only in the special case of an isomorphism. Here, we aim to unified and extend both results to all Artin monoids and, more generally, to the larger classes of preGarside monoids.

Given a monoid M , we denote by End(M ) the endomorphism monoid of M . For ϕ ∈ End(M ), we say that x ∈ M is a fixed point of ϕ if ϕ(x) = x. If ϕ n (x) = x for some n ≥ 1, we say that x is a periodic point of ϕ. Let Fix(ϕ) (respectively Per(ϕ)) denote the submonoid of all fixed points (respectively periodic points) of ϕ. Clearly,

Per(ϕ) = n≥1 Fix(ϕ n ).
Our First result is the following:

Theorem 0.1.

(i) If M is a finitely generated left preGarside monoid, with an additive and homogeneous norm ν, and ϕ is in End(M ) such that the morphism π is well-defined, then Fix(ϕ) and Per(ϕ) are also finitely generated left preGarside monoids.

(ii) if M is an Artin monoid, and ϕ is in End(M ), then Fix(ϕ) and Per(ϕ) are also Artin monoids.

Similar result holds if one considers right preGarside monoids.

Two distances d 2 and d 3 on trace monoids have been introduced in [START_REF] Bonizzoni | About infinite traces[END_REF] and [START_REF] Kwiatkowska | A metric for traces[END_REF]. They were proved to be uniformaly equivalent in [START_REF] Kummetz | The topology of mazurkiewicz traces[END_REF]. In [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF], the authors caracterise those endomorphisms that are contractions relatively to d 2 . We will prove that in the general context of Artin monoids, distance d 2 and d 3 are no more uniformaly equivalent in general. Indeed, distance d 2 should be replace by an alternative one, that we denote by d 1 . We prove that d 1 is larger than the other two in the general case, and we will also prove that d 1 and d 3 are uniformly equivalent in the case of Artin monoids of spherical type.

Finally, replacing d 2 by d 1 , we extend [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1], to all Artin monoids in Theorem 4.2 (we refer to the next sections for notations).

Theorem 0.2. Let M be an Artin monoid and ϕ be in End(M ).

(i) ϕ is a contraction with respect to d 1 ;

(ii) for all u, v ∈ M red , α(uv) = u ⇒ α(ϕ(uv)) = α(ϕ(u)).

Preliminaries

We start in this section by defining the monoids we will work with in this paper, namely left preGarside monoids and Artin monoids.

Consider a monoid M . It is said to be cancellative if, for all a, b, c, d ∈ M , the equality cad = cbd imposes a = b. An element b is called a factor of an element a if we can write a = cbd in M . We denote by Div(a) the set of factors of a. We denote by left divisibility in M (that is, for a, b ∈ M , we have a b when there exists c ∈ M such that b = ac). Right divisibility (defined similarly : b a when there exists c ∈ M such that b = ca) will rarely be used in this paper, so divisibility in M will simply mean left divisibility. When a is a left divisor of b in M , we say that b is a right multiple of a. An element a is said to be balanced if its sets of right-divisors and of left-divisors are equal, which in this case have to be equal to Div(a).

We say that M is atomic if there exists a mapping ν : M → N, called a norm, satisfying ν(a) > 0 for a = 1 and ν(ab) ≥ ν(a) + ν(b) for all a, b ∈ M . Note that the existence of such a mapping implies that the relations and are partial orders on M . When ν(ab) = ν(a) + ν(b) for all a, b ∈ M , we say that ν is additive. An atom in a monoid is an element a ∈ M satisfying: a = bc ⇒ b = 1 or c = 1 for all b, c ∈ M . We denote by S(M ) the set of atoms of M . Note that in an atomic monoid M , the set S(M ) has to be a generating set, and that any generating set of M contains S(M ). In particular, M is finitely generated if and only if S(M ) is finite. In an atomic monoid M , if ν(a) = ν(b) for all a, b ∈ S(M ), we say that ν is homogeneous. And it is said to be a preGarside monoid if it is both left preGarside and right preGarside monoid.

A monoid M is said to be a left preGarside monoid if (a L ) it is atomic and left cancellative (ca = cb ⇒ a = b); (b L ) for all a, b ∈ M , if the set {c ∈ M | a c
A Garside element of a preGarside monoid is a balanced element whose set of factors generates the whole monoid. When such an element exists, we say that the monoid is a Garside monoid.

Given a non empty finite set S, a Coxeter matrix is a symmetric matrix (m ab ) a,b∈S with entries in {1, 2, • • • , ∞}, such that m aa = 1 and m ab ≥ 2, for a = b. A Coxeter system associated to a Coxeter matrix (m ab ) a,b∈S is a pair (W, S), where W is the group with presentation

W = S | (ab) m ab = 1; m ab = ∞ .
The corresponding Artin monoid M is the monoid with presentation

M = S | [a, b m ab = [b, a m ab ; m ab = ∞ + .
where [a, b m denotes the alternating product aba • • • containing m terms. Since the defined Artin relations are homogeneous, M has a natural length function ℓ S compatible with the product. In [START_REF] Brieskorn | [END_REF], it is shown that every finite subset of M has a greatest common left divisor (gcd), and a greatest common right divisor (gcrd). It is also shown that a finite subset of S has a least common right multiple (lcm) if and only if it has a common right multiple, and that in that case, the least common right multiple and least common left multiple are equal. For a subset T ⊆ S, we denote its lcm by ∆(T ) when it exists.

The submonoids of fixed points and of periodic points

In general, a fixed points submonoid or any submonoid of a finitely generated monoid is not necessarily finitely generated. Clearly, a n ba n ∈ Fix(ϕ) for every n ∈ N. And one can show that a n ba n is not decomposable in Fix(ϕ), which means that Fix(ϕ) is not finitely generated.

In this section, we will show that for a finitely generated left preGarside monoid M , and an endomorphism ϕ ∈ End(M ), the submonoids Fix(ϕ) and Per(ϕ) are also finitely generated left preGarside monoids under some condition (Theorems 2.3 and 2.13). And that, in the particular case of Artin monoids, Fix(ϕ) and Per(ϕ) are not only finitely generated, but even finitely presented (Proposition 2.15).

For a monoid M , finitely generated by S, and an endomorphism ϕ ∈ End(M ), we define

n ϕ = max{k ∈ N * | ∃s ∈ S such that ϕ k (s) = 1 and ϕ k-1 (s) = 1} if 1 ∈ ϕ(S) 1 if 1 / ∈ ϕ(S) .
Given a non empty set X, we denote by X * the set of all finite words x 1 • • • x n over the elements of X, that we call letters, and by ε the empty word in X * . Assume M is a monoid generated by a set S, and let T ⊆ S. Let us denote by π * T : S * → T * the forgetting morphism of monoids defined by π * T (t) = t for t ∈ T , and by π * T (t) = ε for t ∈ S \ T . In the sequel, when it is well-defined, we denote by π T : M → M the morphism of monoids induced by π * T .

Example 2.2. For M = s, t | sts = tst + , with S = {s, t} and T = {t}, we have π * T (sts) = t and π * T (tst) = tt. Or in M , one has t = t 2 , then π T is not well-defined. But for M = s, t | stst = tsts + with similar S and T , the morphism π T is well-defined, since π T (stst) = π T (tsts) = t 2 .

The submonoid of fixed points

For this subsection, let M be a finitely generated left preGarside monoid, equiped with an additive and homogeneous norm ν, and ϕ be in End(M ). Set S = S(M ), S 0 = S ∩ Per(ϕ), S 1 = S ∩ (ϕ nϕ ) -1 {1}, S 2 = S \ S 1 , p = |S|!, and π := π S 2 when it is well-defined, which is always the case when 1 / ∈ ϕ(S).

Theorem 2.3. Let M be a finitely generated left preGarside monoid, with an additive and homogeneous norm ν, ϕ be in End(M ), and π as above. If the morphism π is well-defined, then Fix(ϕ) is a finitely generated left preGarside monoid.

The proof of this theorem is in the spirit of [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 3.1], where the particular case of trace monoids was considered. We will start though by proving some lemmas. Note that in the proof of the next lemma, where ϕ| S is a permutation (i.e. ϕ is an automorphism), we do not need the additivity or the homogeneity of the norm ν. In the case of preGarside monoids, this result is shown in [START_REF] Bessis | Springer theory in braids groups and the Birman-Ko-Lee monoid[END_REF]Proposition 2.26].

Lemma 2.4. If the restriction of ϕ to S is a permutation, then Fix(ϕ) is a finitely generated left preGarside monoid.

Proof. Since Fix(ϕ) ⊆ M , it is clear that property (a L ) holds for Fix(ϕ). Let a, b ∈ Fix(ϕ) be such that the set {c ∈ Fix(ϕ) | a c and b c} is nonempty, and set δ = a ∨ b their (left) lcm in M . We have ϕ(a) = a ϕ(δ) and ϕ(b) = b ϕ(δ), then δ ϕ(δ). Thus δ ϕ(δ) • • • ϕ p (δ), and so ν(δ) ≤ ν(ϕ(δ)) ≤ • • • ≤ ν(ϕ p (δ)).
Or ϕ| S is a permutation, and p = |S|!, then ϕ p = Id M . Therefore ν(δ) = ν(ϕ(δ)), with δ ϕ(δ). Thus, we have δ = ϕ(δ), and so δ ∈ Fix(ϕ). Let c ∈ Fix(ϕ) such that a c and b c. Write c = δδ ′ with δ ′ ∈ M . We have c, δ ∈ Fix(ϕ), then, by cancellativity, δ ′ ∈ Fix(ϕ). Hence property (b L ) holds, and so Fix(ϕ) is a left preGarside monoid.

Let Σ be the set of all ϕ-orbits B in S that have a right common multiple (and therefore a least right common multiple ∆(B) ([6, Lemma 2.1])). We claim that

Fix(ϕ) = ∆(B), B ∈ Σ + . (1) 
Let B ∈ Σ, and b ∈ B. Since B is a ϕ-orbit, then there exists a ∈ B such that b = ϕ(a). But a ∆(B), so b = ϕ(a) ϕ(∆(B)). Thus b ϕ(∆(B)) for every b ∈ B, and then ∆(B) ϕ(∆(B)). Therefore, as above, we have

∆(B) = ϕ(∆(B)). Hence ∆(B), B ∈ Σ + ⊆ Fix(ϕ).
Conversely, let u ∈ Fix(ϕ) such that u = 1, and let s ∈ S such that s u; then u is left divisible by all the elements in the ϕ-orbit B 1 of s, so is left divisible by their lcm

u 1 := ∆(B 1 ) (which exists). Let v ∈ M such that u = u 1 v. Since u, u 1 ∈ Fix(ϕ), we have by cancellativity, v ∈ Fix(ϕ). By induction on ν(u), we get that v ∈ ∆(B) | B ∈ Σ + . Thus u ∈ ∆(B) | B ∈ Σ + and so (1) holds. The set S is finite, then so is Σ. Therefore Fix(ϕ) is finitely generated. Example 2.5. i. Let M = s, t, u | st = ts, sus = usu, tut = utu + , and ϕ ∈ End(M ) such that ϕ(u) = u, ϕ(t) = s and ϕ(s) = t.
The monoid M is an Artin monoid, so it satisfies all properties of preGarside monoids by [START_REF] Brieskorn | [END_REF]. Then we have Σ = {{u}, {s, t}}, and

Fix(ϕ) = u, st + . ii. Let M = a 1 , b 1 , a 2 , b 2 | a 1 b 1 a 1 = b 2 1 , a 2 b 2 a 2 = b 2 2 , a 1 a 2 = a 2 a 1 , b 1 b 2 = b 2 b 1 , a 1 b 2 = b 2 a 1 , b 1 a 2 = a 2 b 1 + , and ϕ ∈ End(M ) such that ϕ(a 1 ) = a 2 , ϕ(a 2 ) = a 1 , ϕ(b 1 ) = b 2 and ϕ(b 2 ) = b 1 . The monoid M is a preGarside monoid, as a direct product M = a 1 , b 1 | a 1 b 1 a 1 = b 2 1 + × a 2 , b 2 | a 2 b 2 a 2 = b 2 2
+ of two preGarside monoids (see [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF]). Then we have

Σ = {{a 1 , a 2 }, {b 1 , b 2 }}, and Fix(ϕ) = a 1 a 2 , b 1 b 2 + . Lemma 2.6. If 1 / ∈ ϕ(S), then S 0 = S ∩ Fix(ϕ p ) = S ∩ ϕ p (S), (2) 
and ϕ(S 0 ) = S 0 .

(3)

Proof. Recall that S 0 = S ∩ Per(ϕ). Let a ∈ S 0 and m = min{k ∈ N * /ϕ k (a) = a}. Since 1 / ∈ ϕ(S) and ν is additive and homogeneous, we have ν(ϕ(u)) ≥ ν(u) for every u ∈ M . Hence ϕ n (a) ∈ S for every n ∈ N. Assume that there exist Let a ∈ S ∩ ϕ p (S) and b ∈ S such that ϕ p (b) = a. Since 1 / ∈ ϕ(S), using that ν is additive and homogeneous, and

0 < i < j ≤ m such that ϕ i (a) = ϕ j (a). So ϕ m-j • ϕ i (a) = ϕ m (a). Then ϕ m-(j-i) (a) = a and m -(j -i) < m, which contradicts the definition of m. Thus m = #{a, ϕ(a), • • • , ϕ m-1 (a)} ≤ |S|,
ϕ p (b) = a, we get {b, ϕ(b), • • • , ϕ p (b)} ⊆ S. The inequality |S| < p + 1 yields ϕ i (b) = ϕ j (b)
for some 0 ≤ i < j ≤ p. By composing with ϕ p-i , we get a = ϕ j-i (a). Then a ∈ Per(ϕ) ∩ S = S 0 , and therefore (2) holds.

Let a ∈ S 0 . As before, we have {a, ϕ(a), . . . , ϕ p-1 (a)} ⊆ S 0 = S ∩ Fix(ϕ p ). On the one hand, we have ϕ(a) ∈ S 0 , then ϕ(S 0 ) ⊆ S 0 . On the other hand, we have a = ϕ(ϕ p-1 (a)) and ϕ p-1 (a) ∈ S 0 , then ϕ(S 0 ) ⊇ S 0 , and so (3) holds.

Let M 0 , M 1 and M 2 , be the submonoids of M generated by S 0 , S 1 and S 2 respectively. By definition of S 1 and atomicity of M , note that ϕ nϕ (M 1 ) = {1} and ϕ(M 1 ) ⊆ M 1 , which we will be using more than once.

Lemma 2.7. If 1 / ∈ ϕ(S), then M 0 = Fix(ϕ p )
, it is a finitely generated left preGarside monoid, and the restriction of ν to M 0 is additive and homogeneous.

Proof. The order of every periodic point of S divides p = |S|!, then M 0 ⊆ Fix(ϕ p ). Let s 1 , . . . , s n ∈ S such that ϕ p (s

1 • • • s n ) = s 1 • • • s n .
In view of the homogeneity and additivity of ν, and the fact that 1 / ∈ ϕ(S), we have ϕ(s i ) ∈ S for all i. By (2), S 0 = S ∩ ϕ p (S). Then ϕ(s

1 • • • s n ) ∈ S 0 + , which means that s 1 • • • s n ∈ M 0 . Thus we have the equality M 0 = Fix(ϕ p ).
The submonoid M 0 is finitely generated by definition, and it is atomic and left cancellative because M 0 ⊆ M . The restriction ν| M 0 of ν is additive, and since S(M 0 ) = S 0 , it is also homogeneous. Let a, b lie in M 0 such that the set Γ 0 = {c ∈ M 0 | a c and b c} is nonempty, and set δ = a ∨ b their lcm in M . Set ψ = ϕ p . Since S 0 = S ∩ Fix(ψ), we have ψ| M 0 = Id M 0 . Let c lie in Γ 0 and a ′ , a ′′ belong to M such that c = aa ′ and δ = aa ′′ . One has a, c ∈ Fix(ψ), then a ′ = ψ(a ′ ) by cancellativity. We have δ c, then a ′′ a ′ , and so ψ n (a ′′ ) a ′ for all n ∈ N. The sequence of integers (ν(ψ n (a ′′ ))) n∈N is increasing because of the additivity and homogeneity of ν and the fact that 1 / ∈ ϕ(S). On the other hand, it is bounded by ν(a ′ ) because ψ n (a ′′ ) a ′ for all n.

Thus (ν(ψ n (a ′′ ))) n∈N is stationary from some rank m a ∈ N * . Write ψ ma (a ′′ ) = s 1 • • • s r with s 1 , . . . , s r ∈ S. Since ν(ψ ma (a ′′ )) = ν(ψ ma+1 (a ′′ )), then ψ(s i ) ∈ S for all i. So {s i , ϕ(s i ), . . . , ϕ p (s i )} ⊆ S, and therefore ψ(s i ) ∈ S 0 for all i. Thus ψ ma+1 (a ′′ ) ∈ M 0 . Similarly, for b ′ , b ′′ ∈ M such that c = bb ′ and δ = bb ′′ , we have some rank m b ∈ N * such that ψ m b +1 (b ′′ ) is in M 0 . The inclusion M 0 ⊆ Fix(ψ) yields ψ ma+1 (a ′′ ) = ψ ma+m b (a ′′ ) and ψ m b +1 (b ′′ ) = ψ m b +ma (b ′′ ). We have ψ ma+m b (δ) = aψ ma+1 (a ′′ ) = bψ m b +1 (b ′′ ), then ψ ma+m b (δ) ∈ Γ 0 . If c ∈ Γ 0 , then δ c, and so ψ ma+m b (δ) ψ ma+m b (c) = c. Write c = ψ ma+m b (δ)c ′ with c ′ ∈ M . Both c and ψ ma+m b (δ) are in Fix(ψ), then by cancellativity, ψ(c ′ ) = c ′ . Thus, c ′ ∈ M 0 and ψ ma+m b (δ) is the least element of Γ 0 . Whence property (b L ) holds, so M 0 is a left preGarside monoid.
Lemma 2.8. If π is well-defined, then M 2 is a finitely generated left preGarside monoid, and the restriction of ν to M 2 is additive and homogeneous.

Proof. As in the previous proof, the submonoid M 2 is atomic, left cancellative and finitely generated, and the restriction ν| M 2 is additive and homogeneous. Let a, b lie in M 2 such that the set Γ 2 = {c ∈ M 2 | a c and b c} is nonempty, and set δ = a ∨ b their lcm in M . Let c ∈ Γ 2 and a ′ , a ′′ ∈ M such that c = aa ′ and δ = aa ′′ . We have δ c, then a ′′ a ′ . So write a ′ = a ′′ â with â ∈ M . By the homogeneity and additivity of ν, for all u ∈ M we have ν(π(u)) ≤ ν(u), and ν(π

(u)) = ν(u) ⇔ π(u) = u ⇔ u ∈ M 2 . We have ν(c) = ν(a) + ν(a ′′ ) + ν(â) and ν(π(c)) = ν(π(a)) + ν(π(a ′′ )) + ν(π(â)). But a and c belong to M 2 , then ν(a ′′ ) + ν(â) = ν(π(a ′′ )) + ν(π(â)). So ν(π(a ′′ )) = ν(a ′′ ) because ν(π(u)) ≤ ν(u) for all u ∈ M . Then a ′′ ∈ M 2 .
Similarly, there is b ′′ in M 2 such that δ = bb ′′ . Thus δ is the least element of Γ 2 , whence property (b L ). Therefore M 2 is a left preGarside monoid. Lemma 2.9. Let N 1 be a left preGarside monoid, and N 2 a monoid. Assume there exists a morphism f :

N 1 → N 2 that is a retraction. Then N 2 is left preGarside.
Proof. The morphism f is a retraction, then we have a section g : 

N 2 → N 1 such that f • g = Id N 2 . Thus N 2 embeds in N 1 . So N 2 is
δ = g(a)a ′ = g(b)b ′ with a ′ , b ′ ∈ N 1 . Thus f (δ) = af (a ′ ) = bf (b ′ ). Let c ∈ Λ and c ′ ∈ N 1 such that g(c) = δc ′ . Then c = f (δ)f (c ′ )
, and so f (δ) divides c in N 2 . Hence, f (δ) is the least element of Λ, and therefore N 2 is left preGarside.

Lemma 2.10. For every d ∈ N * , we have 

(π • ϕ) d = π • ϕ d . Proof. If 1 / ∈ ϕ(S)
∈ S 1 , then ϕ d (a) ∈ M 1 = S 1 + because ϕ(M 1 ) ⊆ M 1 . Thus, (π • ϕ) d (a) = π • ϕ d (a) = 1. If a ∈ S 2 , write ϕ(a) = u 0 a 1 u 1 • • • a k u k ,
with a 1 , . . . , a k ∈ S 2 and u 0 , . . . , u k ∈ M 1 . On the one hand, we have

π • ϕ d (a) = π • ϕ d-1 (u 0 a 1 u 1 • • • a k u k ) = π • ϕ d-1 (a 1 • • • a k )
in view of ϕ d-1 (u i ) ∈ M 1 for every i. On the other hand, and by the induction hypothesis,

(π • ϕ) d (a) = (π • ϕ) d-1 • π • ϕ(a) = π • ϕ d-1 • π(u 0 a 1 u 1 • • • a k u k ) = π • ϕ d-1 (a 1 • • • a k ). Thus (π • ϕ) d (a) = π • ϕ d (a) for every d ∈ N * .
In view of the previous lemmas, we may now prove Theorem 2.3 in two parts, depending on whether 1 lies in ϕ(S) or not.

Proof of Theorem 2.3. Case I: 1 / ∈ ϕ(S). By the equality (3) in Lemma 2.6, the morphism ϕ restricts to an endomorphism ϕ 0 of M 0 = S 0 + . We show that

Fix(ϕ) = Fix(ϕ 0 ). (4) 
It is immediate that Fix(ϕ 0 ) = Fix(ϕ) ∩ M 0 , so it suffices to show that Fix(ϕ)

⊆ M 0 . Let u = a 1 • • • a k belong to Fix(ϕ), with a 1 , . . . , a k ∈ S. Then a 1 • • • a k = u = ϕ p (u) = ϕ p (a 1 ) • • • ϕ p (a k ). Since 1 / ∈ ϕ(S)
, and ν is additive and homogeneous, we have ν(ϕ p (a i )) = ν(a i ) and so ϕ p (a i ) ∈ S for all i. By Lemma 2.6, we have S 0 = S ∩ ϕ p (S), so ϕ p (a i ) ∈ S 0 for all i, and then u = ϕ p (a 1 ) • • • ϕ p (a k ) ∈ M 0 . Therefore, Fix(ϕ) ⊆ M 0 , and so Fix(ϕ) = Fix(ϕ 0 ). Now ϕ 0 | S 0 is a permutation, and by Lemma 2.7, M 0 is a finitely generated left preGarside monoid. Then by Lemma 2.4 (where in the case of a permutation, the norm of M 0 does not have to be additive or homogeneous), Fix(ϕ 0 ), and therefore Fix(ϕ), is a finitely generated left preGarside monoid.

Case II: 1 ∈ ϕ(S). Denote n = n ϕ , and recall that π = π S 2 . Consider the morphism ϕ 2 = (π • ϕ)| M 2 that is clearly in End(M 2 ). We have 1 / ∈ ϕ 2 (S 2 ). Indeed, if ϕ 2 (s) = π(ϕ(s)) = 1 for some s ∈ S 2 , then ϕ(s) ∈ M 1 , which means that ϕ n (ϕ(s)) = ϕ n+1 (s) = 1. But since n = max{k ∈ N * | ∃s ∈ S such that ϕ k (s) = 1 and ϕ k-1 (s) = 1}, then ϕ n (s) = 1, which contradicts the fact that s ∈ S 2 . Thus, by Lemma 2.8 and Case I, Fix(ϕ 2 ) is a finitely generated left preGarside monoid.

We claim that Fix(ϕ) = ϕ n (Fix(ϕ 2 )).

(

) 5 
As seen before, we have ϕ n (M 1 ) = {1} and ϕ(M 1 ) ⊆ M 1 . Let u ∈ Fix(ϕ). We may factor u =

u 0 a 1 u 1 • • • a k u k , with a 1 , . . . , a k ∈ S 2 and u 0 , . . . , u k ∈ M 1 . It follows that u = ϕ n (u) = ϕ n (a 1 a 2 • • • a k ).
For every i, we have π

• ϕ(u i ) = 1, in view of ϕ(M 1 ) ⊆ M 1 . Now a 1 a 2 • • • a k ∈ M 2 ,
and

ϕ 2 (a 1 a 2 • • • a k ) = π • ϕ(a 1 a 2 • • • a k ) = π • ϕ(u 0 a 1 u 1 • • • a k u k ) = π(u) = a 1 a 2 • • • a k . Hence a 1 a 2 • • • a k ∈ Fix(ϕ 2 ), and so u = ϕ n (a 1 a 2 • • • a k ) ∈ ϕ n (Fix(ϕ 2 )). Thus Fix(ϕ) ⊆ ϕ n (Fix(ϕ 2 )). Conversely, let v = a 1 a 2 • • • a k ∈ Fix(ϕ 2 )
, with a 1 , . . . , a k ∈ S 2 . Clearly,

ϕ n • π = ϕ n . (6) 
Hence v = ϕ 2 (v) = π • ϕ(v) yields ϕ(ϕ n (v)) = ϕ n • ϕ(v) = ϕ n • π • ϕ(v) = ϕ n (π • ϕ(v)) = ϕ n (v) and so ϕ n (v) ∈ Fix(ϕ). Thus ϕ n (Fix(ϕ 2 )) ⊆ Fix(ϕ) and so Fix(ϕ) = ϕ n (Fix(ϕ 2 )).
In view of (5), we have a morphism f := ϕ n | Fix(ϕ 2 ) : Fix(ϕ 2 ) → Fix(ϕ). Let u ∈ Fix(ϕ). By Lemma 2.10, we get

ϕ 2 (π(u)) = π •ϕ•π(u) = π •ϕ•π •ϕ(u) = π •ϕ 2 (u) = π(u). Then π(Fix(ϕ)) ⊆ Fix(ϕ 2 )
, and so we have another morphism g := π| Fix(ϕ) : Fix(ϕ) → Fix(ϕ 2 ). In view of ( 6), one has ϕ n • π(u) = ϕ n (u) = u for every u ∈ Fix(ϕ), and then f • g = Id| Fix(ϕ) . So the morphism f is a retraction with section g. We established that Fix(ϕ 2 ) is a left preGarside monoid. So by Lemma 2.9, Fix(ϕ) is also a left preGarside monoid. The submonoid Fix(ϕ 2 ) is finitely generated, then so is Fix(ϕ), in view of (5).

We will see in the proof of Proposition 2.15 that the equality (5) induces an isomorphism between Fix(ϕ) and Fix(ϕ 2 ). 

The submonoid of periodic points

As in the previous subsection, we consider a finitely generated left preGarside monoid M , equiped with an additive and homogeneous norm ν, and we fix ϕ ∈ End(M ). We also set n = n ϕ , S = S(M ), S 0 = S ∩ Per(ϕ), S 1 = S ∩ (ϕ n ) -1 {1}, S 2 = S \ S 1 , p = |S|!, and π := π S 2 when it is well-defined. Proposition 2.12. If the morphism π is well-defined, then we have

Per(ϕ) = Fix(ϕ pn ).
The proof of this proposition is also in the spirit of [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 3.2], where the particular case of trace monoids was considered.

Proof. Case I: 1 / ∈ ϕ(S). By definition, n = 1 in this case. We will use induction on |S|. The case |S| = 0 being trivial, assume that |S| > 0 and the result holds for smaller sets.

We may assume S 0 S, otherwise ϕ| S would be a permutation, and since the order of ϕ| S must divide the order of the symmetric group on S, which is p, we would get (ϕ| S ) p = Id S and therefore ϕ p = Id M , yielding Fix(ϕ p ) = M = Per(ϕ).

For every r ∈ N * , if we replace ϕ by ϕ r , then S 0 remains the same in view of Per(ϕ) = Per(ϕ r ), and so does M 0 . On the other hand, by (3), we restrict ϕ to ϕ 0 = ϕ| M 0 , and we have ϕ

r | M 0 = (ϕ| M 0 ) r = ϕ r 0 . Hence Fix(ϕ r ) = Fix(ϕ r 0 ) (7) 
by applying (4) to ϕ r . By the induction hypothesis and Lemma 2.7, we have Per(ϕ 0 ) = Fix(ϕ

|S 0 |! 0 ). Since |S 0 |! divides p, we get Per(ϕ 0 ) = Fix(ϕ |S 0 |! 0 ) ⊆ Fix(ϕ p 0 ) ⊆ Per(ϕ 0
) and so Per(ϕ 0 ) = Fix(ϕ p 0 ). Together with [START_REF] Kummetz | The topology of mazurkiewicz traces[END_REF], this yields

Per(ϕ) = ∪ r≥1 Fix(ϕ r ) = ∪ r≥1 Fix(ϕ r 0 ) = Per(ϕ 0 ) = Fix(ϕ p 0 ) = Fix(ϕ p )
as required.

Case II: 1 ∈ ϕ(S). By definition, we have Per(ϕ) ⊇ Fix(ϕ pn ). Conversely, let u ∈ Per(ϕ), say u ∈ Fix(ϕ r ). We may factor u

= u 0 a 1 u 1 • • • a k u k , with a 1 , . . . , a k ∈ S 2 and u 0 , . . . , u k ∈ M 1 . It follows that u = ϕ rn (u) = ϕ rn (a 1 a 2 • • • a k ). Now a 1 a 2 • • • a k ∈ M 2 , and Lemma 2.10 yields a 1 a 2 • • • a k = π • ϕ rn (a 1 a 2 • • • a k ) = (π•ϕ) rn (a 1 a 2 • • • a k ). Consequently a 1 a 2 • • • a k belongs to Fix(ϕ rn 2 ) ⊆ Per(ϕ 2 ).
As in the proof of Theorem 2.3, we have 1 / ∈ ϕ 2 (S 2 ). Thus, by Lemma 2.8 and Case I, we have Per(ϕ 2 ) = Fix(ϕ

|S 2 |! 2 ). We get a 1 a 2 • • • a k ∈ Fix(ϕ |S 2 |! 2 ) ⊆ Fix(ϕ pn
2 ), and so

a 1 a 2 • • • a k = π • ϕ pn (a 1 a 2 • • • a k ) in view of Lemma 2.10. Hence ϕ pn (u) = ϕ pn (a 1 a 2 • • • a k ) = v 0 a 1 v 1 • • • a k v k for some v 0 , v 1 , . . . , v k in M 1 . Thus ϕ 2pn (u) = ϕ pn • π • ϕ pn (u) = ϕ pn • π(v 0 a 1 v 1 • • • a k v k ) = ϕ pn • π(u 0 a 1 u 1 • • • a k u k ) = ϕ pn (u). Since ϕ r (u) = u, this yields to u = ϕ r (u) = ϕ 2r (u) = • • • = ϕ pnr (u) = ϕ pn(r-1) (u) = • • • = ϕ pn (u).
Therefore Per(ϕ) = Fix(ϕ pn ). Theorem 2.13. If the morphism π is well-defined, then Per(ϕ) is also a finitely generated left preGarside monoid.

Proof. In Proposition 2.12, we showed that Per(ϕ) = Fix(ψ), where ψ = ϕ pn . Denote

S 1 (ϕ) = S 1 , S 1 (ψ) = S ∩ (ψ n ψ ) -1 {1}, S 2 (ϕ) = S 2 , S 2 (ψ) = S \ S 1 (ψ), π(ϕ) = π and π(ψ) = π S 2 (ψ) . We have S 1 (ϕ) = {s ∈ S | ∃k ∈ N such that ϕ k (s) = 1} = {s ∈ S | ∃k ∈ N such that ψ k (s) = 1} = S 1 (ψ). Then S 2 (ψ) = S 2 (ϕ)
, and so π(ψ) = π(ϕ) = π. Thus we can apply Theorem 2.3 to ψ, which means that Fix(ψ), and therefore Per(ϕ), is a finitely generated left preGarside monoid.

The case of Artin monoids

A symmetry of an Artin group A generated by S, is an endomorphism ϕ of A such that ϕ |S is a permutation. In [4, Lemma 10] and [START_REF] Michel | A note on braid monoids[END_REF]Corollary 4.4], it is shown that, given a group G of symmetries of an Artin group A, the submonoid of elements fixed by G, is isomorphic to another Artin monoid. In particular, given an Artin monoid M generated by S, and ϕ ∈ End(M ) such that ϕ |S is a permutation (i.e. ϕ ∈ Aut(M )), the submonoid Fix(ϕ) is also an Artin monoid. Below, we will show that this is also the case for Per(ϕ), and for every ϕ ∈ End(M ).

Let M = S | [a, b m ab = [
b, a m ab ; m ab = ∞ + be an Artin monoid, and ϕ be in End(M ). By [START_REF] Brieskorn | [END_REF], Artin monoids satisfy all properties of preGarside monoids. The set of atoms S(M ) of M is S, and the length ℓ S is an additive and homogeneous norm over M . Thus, we can apply the results from the previous subsections. As before, set n = n ϕ , S 0 = S ∩ Per(ϕ), S 1 = S ∩ (ϕ n ) -1 {1}, S 2 = S \ S 1 , p = |S|!, and π := π S 2 when it is well-defined. It is known that the submonoids M 0 = S 0 + , M 1 = S 1 + and M 2 = S 2 + are Artin monoids too. Proposition 2.15. Let M be an Artin monoid, and ϕ be in End(M ). Then the submonoids Fix(ϕ) and Per(ϕ) are also Artin monoids.

Proof. Assume first 1 / ∈ ϕ(S). In the proof of Theorem 2.3, we showed that Fix(ϕ) = Fix(ϕ 0 ), with ϕ 0 ∈ End(M 0 ) and ϕ| S 0 is a permutation. Then by [4, Lemma 10], Fix(ϕ 0 ), and therefore Fix(ϕ), is an Artin monoid. In this case, n = 1, and by Proposition 2.12, we have Per(ϕ) = Fix(ϕ p ). Since 1 / ∈ ϕ(S), then ℓ S (ϕ(u)) ≥ ℓ S (u) for all u ∈ M , and so 1 / ∈ ϕ p (S). Thus, Fix(ϕ p ), and therefore Per(ϕ), is again an Artin monoid. Assume now 1 ∈ ϕ(S). In the proof of Theorem 2.3, we showed that Fix(ϕ) = ϕ n (Fix(ϕ 2 )), with ϕ 2 ∈ End(M 2 ) and 1 / ∈ ϕ 2 (S 2 ). Let u, v ∈ Fix(ϕ 2 ) such that ϕ n (u) = ϕ n (v). Then π • ϕ n (u) = π • ϕ n (v), and so, by Lemma 2.10,

(π • ϕ) n (u) = (π • ϕ) n (v). Thus u = ϕ n 2 (u) = ϕ n 2 (v) = v.
Hence, the morphism ϕ n | Fix(ϕ 2 ) : Fix(ϕ 2 ) → Fix(ϕ) is not only surjective, but also injective. Therefore, Fix(ϕ) is isomorphic to Fix(ϕ 2 ). By Case I, Fix(ϕ 2 ) is an Artin monoid, then so is Fix(ϕ). By Proposition 2.12, we have Per(ϕ) = Fix(ϕ pn ). Since 1 ∈ ϕ(S), one has 1 ∈ ϕ pn (S). Thus Fix(ϕ pn ), and so Per(ϕ), is an Artin monoid.

Inequalities and some equivalences between metrics

The purpose of this section is to define three metrics d 1 , d 2 and d 3 in finitely generated preGarside monoids, to compare them in general, and in the particular cases of trace monoids and Garside monoids.

Metrics and normal forms

In order to define our three metrics, we start by introducing the following general framework. Recall that given a non empty set X, we denote by X * the set of all finite words over X. Henceforth, these words will be denoted as tuples, to avoid any confusion with the monoids elements. Let M be a monoid, X be a non empty set, and ι : M ֒→ X * be an injective map. For u, v ∈ M with ι(u) = (u 1 , . . . , u n ) and ι(v) = (v 1 , . . . , v m ), we define

r(u, v) = max{k ≥ 0 | u 1 = v 1 , . . . , u k = v k } if u = v ∞ if u = v .
The metric d over M , associated to ι, is defined, for all u, v ∈ M , by v) .

d(u, v) = 2 -r(u,
When ι(u) = (u 1 , . . . , u n ) for some u ∈ M , then for all k ≤ n, we denote ι [k] (u) = (u 1 , . . . , u k ) ∈ X * .

Let M be a finitely generated preGarside monoid. For each metric d i over M , we will define X i , ι i and r i as above. The set X 1 for the first distance d 1 is defined in [START_REF] Bessis | Springer theory in braids groups and the Birman-Ko-Lee monoid[END_REF], where it is denoted by P ; the subset of M with a preGarside structure. It contains the finite set of atoms S = S(M ), and whenever it contains an element, it also contains all its left and right divisors ([1, Proposition 2.4]). We will denote it by M red , since in the case of an Artin monoid, it is just the set of reduced elements, that we will recall bellow. The properties of M red shown in [START_REF] Michel | A note on braid monoids[END_REF] for Artin monoids, hold in finitely generated preGarside monoids with the same proofs, as stated in [START_REF] Bessis | Springer theory in braids groups and the Birman-Ko-Lee monoid[END_REF]. Namely ([1, Proposition 2.12]), there is a unique function α : M → M red which induces the identity on M red , and satisfies There is also a length function on W (see [START_REF] Michel | A note on braid monoids[END_REF]), which we denote also by ℓ S . It is known that two minimal expressions of an element of W are equivalent by using Artin relations only. The length of an element is defined by the length of any of its minimal expressions as products of elements of S. This implies that the induced quotient map from M to W has a canonical section (as a map of sets), whose image M red consists of those elements of M which have the same length as their image in W .

α(uv) = α(uα(v)), (8) 
Let M be a finitely generated preGarside monoid. To every element of M , can be associated a (left) normal form (n.f ), that is called the (left) greedy normal form, and defined as follows. To 1 M , we associate the empty sequence. And for u ∈ M \ {1} and u 1 , . . . , u n ∈ M red , we say that u = u 1 • • • u n is in normal form (n.f), if and only if no u i is equal to 1 and for any i we have u i = α(u i • • • u n ). In view of (8), the normality of a form can be seen locally ([1, Proposition 2.21]): u 1 • • • u k is a normal form if and only if u i u i+1 is for all i. This implies that any segment u i • • • u j of a normal form is normal. For u = u 1 • • • u n (n.f), we define ι 1 (u) = (u 1 , . . . , u n ), and denote n = |u| 1 . Let u, v ∈ M with ι 1 (u) = (u 1 , . . . , u n ) and ι 1 (v) = (v 1 , . . . , v m ). We define r 1 (u, v) exactly as r(u, v) above. Using the convention 2 -∞ = 0, the metric d 1 is defined by

d 1 (u, v) = 2 -r 1 (u,v) .
Another important normal form ι 2 over M , that we call the Foata normal form, is defined as follows. Let X 2 = {u ∈ M | ∃T ⊆ S, u = ∆(T )}, where S = S(M ) and ∆(T ) is the least right common multiple of the elements of T , which exists if and only if there is a right common multiple ([6, Lemma 2.1]). For u ∈ M \ {1}, there exists a unique ι

2 (u) = (u 1 , . . . , u n ) ∈ X * 2 such that u = u 1 • • • u n and u i = ∆({s ∈ S | s u i • • • u n }). When ι 2 (u) = (u 1 , . . . , u n ), we denote n = |u| 2 .
And similarly, the metric d 2 associated to ι 2 , is known as the FNF metric, and defined in [START_REF] Bonizzoni | About infinite traces[END_REF], for all u, v ∈ M , by

d 2 (u, v) = 2 -r 2 (u,v) .
When the monoid M is equiped with an additive and homogeneous norm ν, we can assume that ν(s) = 1 for all s in S, call this norm the length over S, and denote it by ℓ S . In this case, and in addition to d 1 and d 2 , there is a third and useful metric, decribed in [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF] for the particular case of trace monoids, that we will denote by d 3 . Given u, v ∈ M , we say that v is a prefix of u, when v left-divides u. For every n ∈ N, denote by Pref n (u) the set of all prefixes of u of length n. Let X 3 = P(M ) be the set of all parts of M . For u ∈ M \ {1}, set ι 3 (u) = (u 1 , . . . , u n ) with n = ℓ S (u) and u i = Pref i (u) for all i. And set ι 3 (1) = ({1}). Then the metric d 3 , known as the prefix metric, is defined in [START_REF] Kwiatkowska | A metric for traces[END_REF] as above, for all u, v ∈ M , by

d 3 (u, v) = 2 -r 3 (u,v) .
Proposition 3.4. Let M be a finitely generated preGarside monoid. Then we have

d 2 ≤ d 1 . Proof. Let u, v be in M and distinct. Set ι 1 (u) = (u 1 , . . . , u n ), ι 1 (v) = (v 1 , . . . , v n ′ ), ι 2 (u) = (u ′ 1 , . . . , u ′ m ) and ι 2 (v) = (v ′ 1 , . . . , v ′ m ′ )
. By Lemma 3.3, n ≤ m and n ′ ≤ m ′ . If m = r 2 (u, v) or m ′ = r 2 (u, v), then r 1 (u, v) ≤ min(n, n ′ ) ≤ min(m, m ′ ) = r 2 (u, v). Therefore d 2 (u, v) ≤ d 1 (u, v). So assume m < r 2 (u, v) and m ′ < r 2 (u, v) and set k = r 2 (u, v). By assumption u ′ k+1 = v ′ k+1 . We can therefore assume without restriction that u ′ k+1 does not left divide v ′ k+1 . By Lemma 3.3 i. and ii., ι If the identity mappings between (X, d) and (X, d ′ ) are uniformly continuous, we say that the metrics d and d ′ are uniformly equivalent. It is immediate that two equivalent metrics are consequently uniformly equivalent Below, we will show that in Garside monoids, d 1 is uniformly equivalent to d 3 , and in trace monoids, d 2 and d 3 are uniformly equivalent. However, these metrics are not equivalent, nor uniformly equivalent in general. Here are some examples to illustrate that. But in our example, r 3 = 2n and r 2 = n, so there is no C ′ in R such that r 3 ≤ r 2 + C ′ . Therefore, d 2 and d 3 cannot be equivalent.

iii. In a non-abelian Artin monoid M , the metric d 1 is not equivalent to d 2 , nor to d 3 . Indeed, let a, b ∈ S such that m ab ≥ 3. Consider u n = (abba) n and v n = (abba) n+1 . Then r 1 (u n , v n ) = 2n and r 2 (u n , v n ) = r 3 (u n , v n ) = 4n. Or, as in ii., the existence of some C > 0 such that d 1 ≤ Cd 2 and d 1 ≤ Cd 3 , means there is a C ′ in R such that r 3 ≤ r 1 + C ′ and r 2 ≤ r 1 + C ′ , which is impossible for our example.

  and b c} is nonempty, then it has a least element, denoted by a ∨ L b or a ∨ b. It is said to be a right preGarside monoid if (a R ) it is atomic and right cancellative (ac = bc ⇒ a = b); (b R ) for all a, b ∈ M , if the set {c ∈ M | c a and c b} is nonempty, then it has a least element, denoted by a ∨ R b.

Example 2 . 1 .

 21 Consider the cancellative monoid M = a, e, b | ae = ea, ebe = b + and the endomorphism ϕ such that ϕ(a) = ae, ϕ(e) = e and ϕ(b) = b.

  and then m divides p. Hence ϕ p (a) = a. So S 0 ⊆ S ∩ Fix(ϕ p ), and we clearly have S ∩ Fix(ϕ p ) ⊆ S ∩ ϕ p (S).

  atomic and left cancellative. Let a, b ∈ N 2 such that the set Λ = {c ∈ N 2 | a c and b c} is nonempty. Set δ = g(a) ∨ g(b) the least common right multiple of g(a) and g(b) in N 1 , and write

, then S 1 =

 1 ∅ and π = Id M . Assume 1 ∈ ϕ(S). We show the result by induction on d. The case d = 1 being trivial, assume d > 1 and the result holds for smaller integers. It suffices to check the equality on the generators. By definition of S 1 , if a

Example 2 . 11 .

 211 Let M = a, b, c | abab = baba, ac = ca + , and ϕ ∈ End(M ) such that ϕ(a) = b, ϕ(b) = a and ϕ(c) = 1, with ν additive and ν(a) = ν(b) = ν(c) = 1. By using the notations above, we have n = 1, S 1 = {c}, S 2 = {a, b}, M 2 = a, b | abab = baba + and ϕ 2 ∈ End(M 2 ), such that ϕ 2 (a) = b and ϕ 2 (b) = a. Then one has Fix(ϕ 2 ) = abab + , and Fix(ϕ) = ϕ(Fix(ϕ 2 )) = Fix(ϕ 2 ) = abab + .

Lemma 2 .

 2 14. The morphism π is well-defined. Proof. If 1 / ∈ ϕ(S), then S 2 = S and π = Id M . Suppose 1 ∈ ϕ(S). It suffices to verify that π([a, b m ab ) = π([b, a m ab ) for all m ab = ∞. Let a, b ∈ S such that m ab = ∞. If m ab is even, or if a and b are both in S 1 or in S 2 , the equality holds trivially. Suppose we have m ab = 2k + 1 for some a ∈ S 1 , b ∈ S, and k > 0. Then ϕ n ([a, b m ab ) = (ϕ n (b)) k and ϕ n ([b, a m ab ) = (ϕ n (b)) k+1 . Thus, by cancellativity, ϕ n (b) = 1, so b ∈ S 1 and we are done as remarked above.

  for all u, v ∈ M . Further, α(u) is the unique maximal element (for ) in the set {v ∈ M red | v u}. Let M = S | [a, b m ab = [b, a m ab ; m ab = ∞ + be an Artin monoid, whose natural length function is denoted, as in the preliminaries, by ℓ S . And let W = S | (ab) m ab = 1; m ab = ∞ be the corresponding Coxeter group.

[k+1] 2 (v 1 •

 21 • • v k+1 ) = (v ′ 1 , . . . , v ′ k+1 ). Since ι [k+1] 2 (u ′ 1 • • • u ′ k+1 ) = (u ′ 1 , . . . , u ′ k+1 ) and u ′ k+1 does not left divide v ′ k+1 , it follows from Lemma 3.3 that u ′ 1 • • • u ′ k+1 does not left divide v 1 • • • v k+1 . But on the other hand, u ′ 1 • • • u ′ k+1 left divides u 1 • • • u k+1 by Lemma 3.3 i.. Thus, v 1 • • • v k+1 = u 1 • • • u k+1 and r 1 (u, v) ≤ k. Hence r 1 (u, v) ≤ r 2 (u, v) and d 2 (u, v) ≤ d 1 (u, v).Definition 3.5. A mapping ϕ : (X, d) → (X ′ , d ′ ) between metric spaces is uniformly continuous if ∀ε > 0, ∃δ > 0, ∀x, y ∈ X 1 : (d(x, y) < δ ⇒ d ′ (ϕ(x), ϕ(y)) < ε).

Example 3. 6 .

 6 i. In an Artin monoid M with m ab = ∞ for some a, b ∈ S, the metric d 1 is not uniformly equivalent (and so not equivalent) to d 2 , nor to d 3 . Indeed, write u n = (ab) n and v n = (ab) n+1 . By definition of the metrics, we haver 2 (u n , v n ) = r 3 (u n , v n ) =2n, and since u n , v n ∈ M red , then r 1 (u n , v n ) = 0. Thus we have d 1 (u n , v n ) = 1 for all n, and lim n→∞ d 2 (u n , v n ) = lim n→∞ d 3 (u n , v n ) = lim n→∞ 2 -2n = 0. So d 1 cannot be uniformly equivalent to d 2 or d 3 . ii. The metrics d 2 and d 3 are not equivalent in general. Indeed, Let M be an Artin monoid, with a, b, c ∈ S such that m ab = 2 and m ac , m bc ≥ 3. Consider u n = (ab) n and v n = (ab) n c. Then r 2 (u n , v n ) = n and r 3 (u n , v n ) = 2n. We have ∃C > 0, d 2 ≤ Cd 3 ⇔ ∃C > 0, -r 2 ≤ log 2 (C)r 3 ⇔ ∃C ′ ∈ R, r 3 ≤ r 2 + C ′ .

Note that in this case, for u, v ∈ M , we have r

Relations between d 1 , d 2 and d 3

In this subsection, we will compare the first distance d 1 with the other two for a finitely generated pre-Garside monoid M , equiped with a length ℓ S . We start with d 1 and d 3 .

Lemma 3.1. Let u lie in M . Set ι 1 (u) = (u 1 , . . . , u n ). Then, for 1 ≤ k ≤ n, we have 

Proposition 3.2. Let M be a finitely generated preGarside monoid, equiped with a length ℓ S . Then we have

Thus, r 3 (u, v) ≥ r 1 (u, v) and so

We turn now to d 1 and d 2 . Note that the existence of a length ℓ S is only necessary for d 3 , and we do not need it to compare d 1 and d 2 . The inclusion X 2 ⊆ M red , deduced from [1, Proposition 2.19], will be useful for us.

Proof.

i. The fact that n ≤ m is a consequence of [9, Proposition 4.8], also true for preGarside monoids, as stated in [START_REF] Bessis | Springer theory in braids groups and the Birman-Ko-Lee monoid[END_REF]. On the other hand, by using X 2 ⊆ M red and the same proof as [9, Proposition 4.10], we get u

. Hence, the property is true for j = 1. Assume j ≥ 2 plus the induction hypothesis. Write

2 (u ′ j v)). On the other hand, ι

The case of trace monoids

In this subsection, we focus on right angled Artin monoids (RAAM iii. if M is the free abelian monoid,

Indeed, point i. was already proved in [START_REF] Kummetz | The topology of mazurkiewicz traces[END_REF] by a topological argument. We provide an algebraic one. Let us start with the following remark :

For the remaining of the section, we fix a trace monoid M = S | ab = ba; m ab = ∞ + , and set p = |S|. For every u ∈ M , let ξ(u) denote the support of u, i.e. the set of atoms (elements of S) occurring in any expression of u.

Proof. Let w be in M and s be in S. Assume ι 2 (w) = (w 1 , . . . , w l ), and set ι 2 (ws) = (w ′ 1 , . . . , w ′ l ′ ). By [START_REF] Van Wyk | Graph groups are biautomatic[END_REF], ι 2 (ws) can be obtained in the following way. If s / ∈ ξ(w) and sw = ws, then ι 2 (ws) = (w 1 s, . . . , w l ) and |ws| 2 = l. If s ∈ ξ(w l ) or sw l = w l s, then ι 2 (ws) = (w 1 , . . . , w l , s) and

We have j 0 < l, ι 2 (ws) = (w 1 , . . . , w j 0 s, . . . , w l ) and |ws| 2 = l. In all cases, l ′ ≥ l and

s m in S, and apply the above argument to all the pairs

Lemma 3.10. We have

By Lemma 3.9, we have

Lemma 3.11. We have

Since we have m st ∈ {2, ∞} for all s, t ∈ S, then

We may now prove our proposition.

Proof of Proposition 3.7.

i. Gathering Lemmas 3.10 and 3.11, we get immediately that d 2 and d 3 are uniformly equivalent.

ii. Example 3.6 i.

iii. Assume M ≃ N p is the free abelian monoid, i.e. m ab = 2 for all a, b ∈ S. Let u, v be in M . Set ι 1 (u) = (u 1 , . . . , u n ) and ι 1 (v) = (v 1 , . . . , v m ). Since ab = ba for all a, b ∈ S, we have

Let q = min(T). We may suppose q = f j for some 1 ≤ j ≤ k. Thus, for all i ≤ q, we have u i = v i , s j ⊀ u q+1 and s j v q+1 . Therefore r 1 (u, v) = r 2 (u, v) = q. On the one hand, s q+1 j v and s q+1 j ⊀ u, therefore Pref q+1 (u) = Pref q+1 (v). On the other hand, let w ∈ M such that w u and ℓ S (w) = q. Then we can write

And if f i = g i , since q = min(T) and h i ≤ q, one has h i ≤ g i . So for all 1 ≤ i ≤ k, we have h i ≤ g i , which means that w v. Similarly, if w v with ℓ S (w) = q, then w u as well. Hence, Pref q (u) = Pref q (v), and therefore r 3 (u, v) = q. Thus,

The case of Garside monoids

In this subsection, we show that in a finitely generated Garside monoid, equiped with a length ℓ S , the metrics d 1 and d 3 are uniformly equivalent. Recall that a Garside monoid is a preGarside monoid containing a Garside element, i.e. a balanced element whose set of divisors generates the whole monoid. let M be a Garside monoid with a Garside element ∆. One of the Garside element important properties is that for all u ∈ M , α(u) is the greatest common (left) divisor of u and ∆, denoted by u ∧ ∆. In other words, we have u ∈ M red ⇔ u ∆. Proposition 3.12. Let M be a finitely generated Garside monoid, equiped with a length ℓ S . Set ℓ = ℓ S (∆). We have

Thus, by definition of the greedy normal form, u r 1 +1 v r 1 +1 and v r 1 +1 u r 1 +1 . So u r 1 +1 = v r 1 +1 , which contradicts the definition of r 1 (u, v). Therefore, one has either

Gathering propositions 3.2 and 3.12, we get : Theorem 3.13. In a finitely generated Garside monoid, equiped with a length ℓ S , the metrics d 1 and d 3 are uniformly equivalent.

Question : Are d 1 and d 2 uniformly equivalent in Garside monoids ?

Contractability of endomorphisms of Artin monoids

The aim of this section is to extend [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] to all Artin monoids. However, it is easy to verify that the assertions stated in [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] can be not equivalent in an Artin monoids (see Example 4.3 below). So [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] can not be directly extended. Actually, in the general case, the metric d 1 appears as more natural than d 2 , mainly because of Property [START_REF] Kwiatkowska | A metric for traces[END_REF]. Moreover, one can verify that Property (iii) of Lemma 4.1 is the exact translation of Property ( 14) in [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1(iii)] when replacing d 2 by d 1 . So Theorem 4.2 provided a convenient generalisation of [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] to the context of Artin monoids.

Let M = S | [a, b m ab = [b, a m ab ; m ab = ∞ + be an Artin monoid, and ϕ be in End(M ). As shown in [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF], the metric space (M, d 1 ) admits a completion ( M , d 1 ) defined as follows. Let ∂M consist of all infinite sequences of the form u 1 u 2 • • • , such that u i ∈ M red for all i, and u 1 • • • u n is a (greedy) normal form for all n ∈ N. We have M = M ∪ ∂M .

The metric d 1 extends to M in the obvious way, and it is easy to check that ( M , d 1 ) is complete: given a Cauchy sequence (U n ) n with U n = u n1 u n2 • • • , it follows easily that each sequence (u nk ) k is stationary with limit, say, u k , and we get u

is indeed the completion of (M, d 1 ). We may refer to ∂M as the boundary of M .

Assume that ϕ is uniformly continuous with respect to d 1 . Since ( M , d 1 ) is the completion of (M, d 1 ), ϕ admits a unique continuous extension Φ to ( M , d 1 ). By continuity, we must have Φ(X) = lim n→∞ ϕ(u n ) whenever X ∈ ∂M and (u n ) n is a sequence on M satisfying X = lim n→∞ u n .

Lemma 4.1. The following properties are equivalent:

(iv) for all u ∈ M , α(ϕ(u)) = α(ϕ(α(u))).

Proof. We prove that (ii) ⇒ (iv) 

). We also have α(uv 1 ) = α(uα(v)) = α(uv) = u and |v 1 | 1 = 1 < k. Then, by the case k = 1, we get α(ϕ(uv 1 )) = α(ϕ(u)). Thus α(ϕ(uv)) = α(ϕ(u)) and (ii) holds.

Recall that a mapping ϕ : (X, d) → (X, d) on a metric space is called a contraction with respect to d, if d(ϕ(u), ϕ(v)) ≤ d(u, v) for all u, v ∈ X. (ii) ϕ is a contraction with respect to d 1 ;

(iii) for all u, v ∈ M red , α(uv) = u ⇒ α(ϕ(uv)) = α(ϕ(u));

(iv) for all u ∈ M , α(ϕ(u)) = α(ϕ(α(u))).

Furthermore, in these cases

Proof. The equivalence (i) ⇔ (ii) is clear, and (iii) ⇔ (iv) follows from Lemma 4.1. Assume (ii). Let u, v be in M red such that α(uv) = u. Then d 1 (uv, u) = 1 2 , and by (ii), d 1 (ϕ(uv), ϕ(u)) ≤ 1 2 . Thus α(ϕ(uv)) = α(ϕ(u)). So (iii) holds. Conversely, assume (iii). Let u belong to M . Set ι 1 (u) = (u 1 , . . . , u n ) and ι 1 (ϕ(u)) = (U 1 , . . . , U N ). We prove by induction on k that for k ∈ {1, . . . , n}, one has ι 1 (ϕ(u 1 • • • u k )) = (U 1 , . . . , U k , . . . ). In particular n ≤ N . For k = 1, the result holds by (iv). So assume k ≥ 2 plus the induction hypothesis. By the induction hypothesis, we can write ϕ(u The following example illustrates that the equivalence between (ii) and (iii) in [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] is not true for all Artin monoïds with respect to d 2 , which is why we used d 1 to extend [START_REF] Rodaro | Fixed points of endomorphisms of trace monoids[END_REF]Theorem 4.1] into our Theorem 4.2.

Example 4.3. Let M = s, t | ststststs = tstststst + , and ϕ ∈ End(M ) such that ϕ(s) = sts and ϕ(t) = tst. Set ∆ = ststststs, and define α 2 (u) by ι [START_REF] Bessis | Springer theory in braids groups and the Birman-Ko-Lee monoid[END_REF] 2 (u) = (α 2 (u)) for u in M . We have X 2 = {s, t, ∆}, and {(u, v) ∈ X 2 2 | α 2 (uv) = u} = {(s, t), (t, s), (s, s), (t, t), (∆, s), (∆, t), (∆, ∆)}. Then, for all u, v ∈ X 2 , we have α 2 (uv) = u ⇒ α 2 (ϕ(uv)) = α 2 (ϕ(u)). However, the morphism ϕ is not a contraction with respect to d 2 , since d 2 (ϕ(s), ϕ(sts)) > d 2 (s, sts).