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Abstract—Diffusion phenomena occur in many kinds of real-
world complex networks, e.g., biological, information or social
networks. Because of this diversity, several types of diffusion
models have been proposed in the literature: epidemiological
models, threshold models, innovation adoption models, among
others. Many studies aim at investigating diffusion as an evolving
phenomenon but mostly occurring on static networks, and much
remains to be done to understand diffusion on evolving networks.
In order to study the impact of graph dynamics on diffusion, we
propose in this paper an innovative approach based on a notion of
intrinsic time, where the time unit corresponds to the appearance
of a new link in the graph. This original notion of time allows us
to isolate somehow the diffusion phenomenon from the evolution
of the network. The objective is to compare the diffusion features
observed with this intrinsic time concept from those obtained with
traditional (extrinsic) time, based on seconds. The comparison of
these time concepts is easily understandable yet completely new in
the study of diffusion phenomena. We experiment our approach
on synthetic graphs, as well as on a dataset extracted from the
Github sofware sharing platform.

I. INTRODUCTION AND CONTEXT

Diffusion phenomena occur in many kinds of real-world
complex networks, such as biological, information or social
networks. These various contexts lead to different types of dif-
fusion, like disease spreading, information broadcast or adop-
tion of innovative products. Several classes of diffusion models
have therefore been proposed in the literature, among which
epidemiological models such as Susceptible-Infected (SI),
Susceptible-Infected-Removed (SIR) or Susceptible-Infected-
Susceptible (SIS) [1], and adoption models [2].

Many studies aim at investigating diffusion as an evolving
phenomenon but mostly occurring on static networks [3],
although most real-world networks evolve over time with the
creation of new nodes or links, or their disappearance. It is
already known that this dynamic behaviour has an impact on
the diffusion process [4] and that this impact should not be
neglected [5]. Networks dynamics may eventually become an
asset as it may be used to slow down diffusion speed with
regard to static networks [6], e.g., to limit the propagation of
an epidemy [7].

One way to study diffusion in evolving networks is em-
pirical, consisting in studying real networks, in observing
them and finally in proposing a diffusion model consistent
with the observations. The authors of [8] have applied this
methodology to analyze the spreading of H1N1 virus -modeled
with a SEIR model- in a dynamic contact network. Other

works have studied diffusion processes in a phone network [9].
However, this approach is global, as it does not distinguish the
observations which are entirely related to the type of diffusion,
from the ones which are mostly due to the evolution of the
graph structure.

The goal of our work is to understand, while observing
a diffusion process, which part is intrinsically related to the
type of diffusion -and therefore which part is merely due to the
evolution of the network. It is not possible to completely sep-
arate diffusion from graph dynamics, as both phenomena are
strongly related; the goal is rather to attempt to normalize our
observations, e.g., to see whether a very significant diffusion at
a given moment is due to a sudden growth of the graph. In this
paper, we propose a simple yet innovative approach to study
the impact of graph dynamics on diffusion. This methodology
does not require any new computation once the diffusion
process has been measured; instead of observing the diffusion
phenomenon as a function of usual time -e.g., measured in
seconds- which we call here extrinsic time, we propose to
observe it as a function of what we call intrinsic time [10].
Indeed, this time is intrinsically related to graph dynamics as
an intrinsic time slot is not absolute: it corresponds to the
appearance of new links in the network, as explained in the
following of the paper.

This article is organized as follows. In Section II, we
propose our approach for studying diffusion in evolving net-
works, which relies on the intrinsic time concept. In Section
III we describe the graphs on which we have applied our
methodology, starting with synthetic Barabási-Albert (BA)
graphs [11], as these graphs have often been used in works
on diffusion [12] [13]. We then introduce the real-world
evolving network we have used, extracted from the Github
software sharing network [14]. Section IV and Section V are
dedicated to the experiments we have conducted, describing
respectively the results obtained with BA graphs and with the
Github network. We finally conclude this paper and propose
perspectives for future work in Section VI.

II. METHODOLOGY

A. Intrinsic versus Extrinsic Time

Time is a controversial concept that one can see as a
dimension in which changes occur in sequence. In this per-
spective, time is considered as absolute, i.e., changes happen
independently from the flow of time [15], [16]. But if we
consider time as a relative concept, time then depends on



space. Many techniques exist to measure it. The unit adopted
by the International System of Units is the second, which is
defined as the transition between two states of the caesium-
133 atom [17]. This unit is therefore related to movements
measured in the physical space.

In this paper we use a concept of relative time from a
network perspective, called intrinsic time of the network, as
opposed to extrinsic time, which is a concept of absolute time.
Let the extrinsic time of the network be the time measured
using the second (or its derivative units like days and years).
We call it extrinsic because its flow is independent from the
changes that occur in the network. Let the intrinsic time of the
network be the time measured by the transition between two
states of the network. The unit is thus the (spatial) change of
the network, i.e., the addition or removal of one node or one
link. We call it intrinsic because time depends on the changes
that occur in the network, and changes depend on such time
to happen.

Whereas the extrinsic time is broadly used without notice,
we have found out in [10] that these two different concepts
of time have a high impact on the measurement of statistical
properties of temporal networks. Our previous results seem
to suggest that intrinsic time is better at characterizing the
endogenous dynamics of the network, because extrinsic time
is more likely to capture exogenous patterns like day-night
activity of users in information networks.

B. Diffusion Model

In this work, we have chosen to study the impact of
graph dynamics on a very well-known diffusion model: the
Susceptible-Infected (SI) model. This model has been proposed
by [1] in 1927, and it has been widely used since then. In an
SI model, each node of the graph may be either in susceptible
(sane) or infected state. A susceptible node with an infected
neighbor has the probability p of becoming infected too.

This model is particularly interesting in this case as it has
very few parameters, namely the contamination probability p

and the choice of infected nodes at the beginning, i.e., from
which the spreading starts. In the following, the values of
both parameters are fixed in order to focus on the correlation
between graph dynamics and diffusion process. As this model
has only two parameters, it will be easier later to distinguish
observations directly related to the model from those related
to the graph topology or the time notion used.

III. STUDIED NETWORKS

In this Section, we describe the graphs to which we have
applied our methodology. We have tested it first with synthetic
growing graphs, built with Barabási-Albert (BA) model [11],
then with a real-world evolving network extracted from the
Github software sharing platform. On these two graphs, we
have computed the total -cumulated- number of infected nodes
as a function of time.

A. Barabási-Albert Graphs

In the first place, we have investigated the concept of
intrinsic versus extrinsic time scales on a random graph with
a known topology. We have chosen the BA model because

Fig. 1. Number of nodes an links in the Github graph, restricted to the largest
connected component.

nodes are added one by one to the network. Each new node
is connected to a fixed number of existing nodes of the graph
according to the preferential attachment principle: the higher
the degree of node x in the graph, the more likely the new
node connects to x. The BA model is characterized by four
parameters: the initial and final numbers of nodes in the
network, the time step between the creation of new nodes and
finally the preferential attachment parameter, noted m, which
corresponds to the number of edges generated by the creation
of new node.

B. Github Network

1) Dataset Description: Github.com is an online platform
created in 2008 to help developers share open source code
and collaborate. The Github dataset we use here describes
the complete activity between users and repositories on the
platform from March 11, 2012 to July 18, 2012. We have
extracted the data from the Github Archive [14], which is a
record of every public activity on Github. Then we built the
graph of ”who contributes to which repository”, where nodes
represent users and repositories, and where links represent any
kind of activity users have on repositories. Our dataset contains
a bit more than 336 000 nodes and 2.2 million links. In order
to study a diffusion model on this dataset, we consider only
the largest connected component of the graph, which has a
little more than 60,000 nodes.

2) A Few Statistics: Figure 1 shows the total number of
nodes and links in the network as a function of (usual) time.
We see on this figure that the total numbers of nodes and
links grow rather slowly, then suddenly increase significantly.
This change happens on July, 4th 2012 and it is correlated to
a sudden increase in the maximum degree of the sub-graph.
We discover that the Try-Git project interacts with 506 users,
which explains this high degree. This project is a tutorial for
Git, one of Github’s underlying tools; the first action required
from the user in this tutorial is to create a clone with a
new project (by sending this user a CreateEvent message).
The instant of the event corresponds to the moment when
Try-Git was made public, on July 4th, 2012 at 5 pm (this
information was confirmed by a post on the Github.com blog1).
This event radically modifies the structure of the network.
This is confirmed by the maximal node degree in the graph,
illustrated in Figure 2, whose order of magnitude changes
significantly after the appearance of a node with a very high
degree, corresponding to the event described above.

1https://github.com/blog/1183-try-git-in-your-browser



Fig. 2. Evolution of the maximal node degree in the Github graph, with
y-axis in a logarithmic scale.

IV. DIFFUSION ON BA GRAPHS

The BA graphs considered in this Section contain 500
nodes initially, and we generate 500 additional nodes using
the BA model, leading to a graph with 1000 nodes. In order
to investigate the concepts of intrinsic and extrinsic time scales
and their correlation with the diffusion process, we have sim-
ulated 3 different types of dynamics. The difference between
these dynamics is the inter-arrival delays which are generated
using three distinct probability laws. We use different laws for
the generation of links because there is no extrinsic notion of
time in the BA model, only the creation of links (which is for
us an intrinsic notion of time). More precisely, the three laws
we have used are: (i) a discrete uniform distribution where each
inter-arrival delay in the interval is equally likely to happen,
(ii) a negative exponential distribution, i.e., the probability of
observing long delays decreases exponentially fast and (iii) a
power law distribution where the probability of observing long
delays decreases polynomially. We choose the parameters of
these laws so that the average inter-arrival delay is equal for
the three laws. Finally, whatever the time unit considered, we
perform one step of the SI diffusion per time unit.

For each type of BA dynamics, we compare the different
time scales using three representations of the total number of
infected nodes over time:

• intrinsic time, i.e., we represent the speed of infection
versus the number of created links. Since the intrinsic
time does not take inter-arrival delays into account,
the diffusion should behave similarly regardless of the
delays, i.e., regardless of graph dynamics.

• extrinsic time which is the classical notion of time.

• converted extrinsic time: we convert the extrinsic
time into intrinsic time to observe the diffusion. For
instance, if the second link is created at extrinsic time
15, its intrinsic time is 2. The number of infected
nodes at extrinsic time 15 will therefore correspond
to the same number of infected nodes at intrinsic time
2. The diffusion observed with extrinsic and extrinsic
converted is the same.

We have simulated a diffusion with a SI model for these
three types of dynamics. We fixed the probability of being
infected p = 0.005.

A. Simulations in Intrinsic Time

The goal here is to show that SI simulated as a function
of intrinsic time is somehow immune to dynamics. Figure 3
shows the results of these simulations.

Fig. 3. SI diffusion on a BA graph, from 500 to 1000 nodes. The time between
the creation of 2 new nodes follows 3 distinct probability laws: uniform,
exponential and power-law. All SI simulations on this Figure are made with
the intrinsic time scale of the graph.

We observe on this Figure that the three plots have identical
behaviours. Indeed, the notion of intrinsic time only considers
the modification of the topology and not the delays between
these modifications, therefore the different inter-arrival laws
have no impact when observed with intrinsic time and we
perform one SI diffusion step per link creation.

B. Simulation in Extrinsic Time

We perform the same experiments as before but in extrinsic
time and the results are presented in Figure 4. This Figure
exhibits very different behaviors and the variation of inter-
arrival delays drastically modifies the diffusion behavior. This
result is natural, indeed it is very likely that the random inter-
arrival time generated at a given moment is higher than 1.
In extrinsic time if we generate, for instance, a delay of 10

between the arrival of two consecutive nodes, then we will
perform ten SI diffusion steps instead of one in intrinsic time.

C. Diffusion Represented with Extrinsic Converted Time

So as to compare extrinsic and intrinsic time notions, and
to understand better the diffusion behavior in extrinsic time,
we convert the previous results obtained with extrinsic time,
into intrinsic time. We therefore perform a non uniform scaling
of Figure 4 to obtain Figure 5.

The infection spreads quickly at the beginning up to a
moment when there is a strong inflexion in the speed of
diffusion (except for the power law distribution). Then all
curves follow a linear behaviour. This observation is strongly
related to the network dynamics and the SI model. Indeed, at
the beginning many nodes are susceptible of being infected,
which explains the fastly growing phase. This phase can also
be observed in extrinsic time in Figure 4. After this phase,
most nodes are infected and the infection therefore spreads at
the speed of the creation of new nodes which is exactly one
per time unit in intrinsic time.
This example shows the very important impact of graph
dynamics on the spreading behavior.



Fig. 4. SI diffusion on a BA graph, from 500 to 1000 nodes. The time between
the creation of 2 new nodes follows 3 distinct probability laws: uniform,
exponential and power-law. All SI simulations on this Figure are made with
the extrinsic time scale of the graph.

Fig. 5. SI diffusion on a BA graph, from 500 to 1000 nodes. The time between
the creation of 2 new nodes follows 3 distinct probability laws: uniform,
exponential and power-law. All SI simulations on this Figure are made with
the extrinsic time scale of the graph converted into intrinsic time.

Fig. 6. SI diffusion on the Github graph in intrinsic time, in linear scale
(top) and in y-logarithmic scale (bottom)

In the following, we perform the same experiments on the
Github dataset. Extrinsic time is the second and intrinsic time
corresponds to the creation of a new link in the network.

Fig. 7. In blue: SI diffusion on the Github graph in extrinsic time. The time
between two trials of diffusion is 30 seconds. In green: number of nodes in
the graph at each time step.

V. DIFFUSION ON GITHUB

A. Simulation in Intrinsic Time

The diffusion using the intrinsic time on the Github dataset
is presented in Figure 6. We do not see a radical change in
the diffusion at the time of the creation of the tutorial Try-Git
(which corresponds to time 50,000 in intrinsic time). Indeed,
the curve looks like a standard diffusion with the SI model: we
see an exponential growth, with a slow start, then a growing
number of nodes that accelerates quickly.
We do not observe the saturation phenomenon at the end of
the simulation, because the number of infected nodes in the
network is relatively far from the total number of nodes. These
results are confirmed by the representation of the same curve
on a logarithmic scale, which shows a linear aspect.
Finally, this confirms that diffusion using intrinsic time is
rather immune to changes of topology in the network.

B. Simulation in Extrinsic Time

We start the study of the diffusion using the extrinsic time,
i.e., the second. For the simulation we make an infection test
every 30 seconds. On average, there is a new link every 91

seconds in the Github network, therefore, there are fewer diffu-
sion steps in intrinsic time than in extrinsic time. However, we
do not compare the actual speed of diffusion on a quantitative
basis.

The results are presented in Figure 7. For interpretation
purposes, we have added the number of nodes at each time
step. We observe that the diffusion process has a slow start
and a fast growing phase, as expected with an exponential
infection. We can easily observe the impact of the creation of
the tutorial Try-Git on July 4th, 2012: the number of nodes in
the network increases fastly and similarly the diffusion itself
undergoes an acceleration. The acceleration comes from the
presence of the new high degree node which facilitates the
diffusion.

C. Simulation in Extrinsic to Intrinsic Converted Time

Finally, we perform the conversion of time from extrinsic
to intrinsic as in section IV. The results of this conversion are
presented in Figure 8.

We observe a very different behaviour from the extrinsic
time representation from Figure 7. At intrinsic time 50, 000,
which corresponds to the event of July 4th, 2012, the growth



Fig. 8. SI diffusion on the Github graph in extrinsic time converted back to
intrinsic time.

of the number of infected nodes slows down drastically. This
can be explained as follows: after the event, the creation of
links becomes much faster, i.e., there are much more links
per seconds than before the event. Intrinsic time does not
take this into account since it does not consider the speed
of link creation. Conversely, in extrinsic time the difference is
noticeable, as observed on Figure 7.
When the extrinsic time is converted to intrinsic time, we
naturally observe a plateau in the diffusion correlated with
the acceleration in intrinsic time. Indeed, in intrinsic time we
perform one infection test per link creation, while in extrinsic
time there are more than one link created per diffusion time
step.
Another way to understand this phenomenon is to consider the
number of links creation over time. Figure 1 shows this number
on which we can observe a fast increase at time 1x10

7 and
smaller accelerations at times 1.04x10

7 and 1.07x10
7. Each

increase in the number of links corresponds to a plateau in the
number of infected nodes, at intrinsic times 50000, 65000 and
71000 respectively. The increase slope is correlated with the
length of the plateau.

VI. CONCLUSION AND FUTURE WORK

In this article, we have used the concepts of intrinsic and
extrinsic times to study diffusion phenomena in evolving
networks. We have first observed the impact of these two
concepts of time on diffusion in growing synthetic graphs.
This study has shown that intrinsic time allows us to somehow
isolate the network dynamics from the diffusion phenomenon.
Subsequently, we have observed these concepts on a real
dataset from the Github platform. Our results on this dataset
have shown significant differences in the diffusion in the
extrinsic, extrinsic converted into intrinsic and intrinsic cases.
Indeed, in intrinsic time, the diffusion is not really impacted
by the evolution of the network topology. In extrinsic time
on the contrary, this network topology plays a major role.
We have shown that it is very interesting to study the same
diffusion with extrinsic time and extrinsic time converted
into intrinsic time, as converted time provides additional
information for th interpretation of diffusion in extrinsic time.
In our future work, we will first focus on the generalization
of intrinsic time notion. Indeed, for the moment, this concept
is only defined for networks which grow over time. We will
therefore study how can we extend this notion for other
types of dynamics. Thereafter, we will use these extended
definitions to study diffusion on other datasets, with different
topologies and different dynamics, where links and nodes can

appear and disappear. Once this generalization is done, we
will test it on synthetic graphs where links can appear and
disappear. We will also study other types of diffusion models:
at first, other epidemiological models like SIS or SIR, and
other classes of diffusion models like threshold models.

ACKNOWLEDGMENT

This work is supported in part by the French National
Research Agency contract DynGraph ANR-10-JCJC-0202 and
by the DiRe project, funded by the city of Paris Émergence
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