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Abstract

A low power analog front-end circuit for silicon (Si) detectors has been fabricated in 0.35µm CMOS technology. It has
been designed to read out signals from large-capacitance Sidetectors for incident electron energy ranging from 50 keV to 725
keV. In order to quantify electron energy, the front-end integrates a charge preamplifier, a pulse shaper, a peak detector and an
event-driven analog-to-digital converter (ADC). The complete front end including the ADC dissipates 2.5 mW for a maximum
electron detecting rate of 650 kHz. The charge-to-voltage gain is approximately 60 mV/fC for a charge range of 0.6 fF to 32fF.
The measured equivalent noise charge (ENC) is 3119 e− for a 40 pF detector parasitic capacitance.

Index Terms

Si Detector, Charge preamplifier, electron energy measurement.

I. I NTRODUCTION

PARTICLE instruments incorporate sensors that are used to convert particle energy into quantifiable electrical charges. These
sensors with their corresponding analog electronics circuits, also called Analog-Front-End (AFE), form detection channels

called “sensor heads” [1]–[3]. The necessity to improve both spatial and spectral resolutions requires the design of multichannel
integrated electronics. Thus, space-borne detectors withApplication Specific Integrated Circuits (ASICs) should bedeveloped.
These integrated circuits allow not only to perfectly adaptthe readout circuits to each sensor in order to optimize performances
but also to benefit from the various advantages inherent to the use of CMOS technologies: reduced power consumption, smaller
size, shorter transit time signals [4] and higher integration [5]. In this paper, the designed front-end circuits are more particularly
optimized for a Si detector used to obtain the energy spectrum of incident electrons ranging from 50 keV to 725 keV with an
energy resolution of 10 keV. More precisely, this ASIC has been developed to be associated with a detector of radiation belt
electrons, outside the South Atlantic Anomaly, on a low altitude polar orbiting spacecraft. Radiation belt electron fluxes at
600 km altitude are weak and their measurement implies a large transmission factor. The size of the detector allows reaching
a transmission factor of 4 cm2.sr., which also allows to measure Lightning induced Electron Precipitation (LEP). Further, the
spectrometer includes a collimator, which provides the possibility to obtain a rough pitch-angle distribution of the electrons
(three directions).

A specific design methodology should be employed in order to withstand constraints due to space applications. The radiation
environment can especially damage electronic systems on spacecraft and orbital satellite [6]. Two major radiation effects
should be mentioned: the total cumulative dose called TotalIonizing Dose (TID) which is related to interactions between the
semiconductor and the trapped particles, and transient events called Single Event Effects (SEE) resulting from high energy
particles and random occurrences [7], [8]. Nowadays, instead of using technologies dedicated to space (such as specific
BiCMOS or SOI) in order to improve the radiation hardness of integrated circuits, it seems appropriate to use specific design
techniques (radiation hardening by design (RHBD)) [7], [9]applied on standard CMOS technologies which are less expensive
[10], provide higher performances and for which parasitic effects are studied and well known [11], [12]. The choice of the
technology depends first on the duration of the mission as well as on the radiative environments which is related to the space
probe orbit trajectory. To fulfill this condition, we rely onstudies of CMOS technologies radiation hardness already made by
the scientific community [9]. Here, the sensor should be placed in a low Earth orbit satellite. It implies that the systemsshould
withstand a 20 krad TID for a space mission duration of 2 years. A 0.35 µm CMOS technology has thus been chosen since
it can naturally withstand more than 50 krad [9]. In particular, it was shown that for CMOS technologies with a thin oxide
thickness, TID effects are greatly reduced by tunneling mechanism. Further, in one of our previous 0.35µm CMOS design,
it was shown that TID up to 360 krad can be tolerated [13]. Further, the High-Voltage process option (HV) has also been
chosen so that guard rings could be extensively used to prevent as much as possible latchup event. In addition, digital noise
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Fig. 1. GEANT4 Simulation of the energy deposited in a Si detector of 300µm thickness shielded by an aluminium foil of 6µm thickness versus the incident
electron energy. N=200000 incident electrons with a randomincident angleθ ∈ [0;10o] and a random azimuth angle from 0o to 360o.

that can affect the analog front-end in a mixed-signal circuit with both digital and analog circuits on a common substrate can
be reduced by using triple well isolation available in HV technologies.

Here, in order to design and optimize the AFE circuits in terms of power consumption, linearity and noise, the main
characteristics of the detector should be first extracted and modelled. Then, based on [14], some details about the front-
end circuit design and its noise optimization are presented. Contrary to usual approches such as in [15], a differentialinput
stage architecture has been preferred in order to be less prone to crosstalk issues between channels. Finally, simulation and
measurement results are presented. A figure of merit (FoM) isalso proposed to compare CMOS front-end circuits designed
for various semiconductor detectors.

II. SI CMOS FRONT END ARCHITECTURE

Firstly, determining the model of the Si detector is necessary to design the Si detector circuits. As it will be explainedin
the following sections, the main parameters of such a model are the following ones: (1) the charge collection timeTc, (2) the
input parasitic capacitanceCdet and (3) the leakage currentI0. After a short description of the Si detector model, these three
parameters will thus be extracted.

A. The detector model

Here, the CMOS front-end is intented to be used with an electron energy spectrometer based on Si sensors. This instrument
is intended to analyze the atmosphere-ionosphere-magnetosphere interactions during Transient Luminous Events (TLE) that can
occur during atmospheric storms, in order to understand thephysical mechanisms responsible for vertical impulsive coupling
between the atmosphere and the ionosphere. The final aim is toassess the impact of these phenomena on the earth environment
[16].

The Si detector is divided into four cells (10 mm x 10 mm) of 0.3mm thickness and an aluminium foil of 6µm thickness
is used to shield it from incoming visible and ultra-violet light. Based on Geant4 (see [17]) simulation results, electrons with
energy higher than 50 keV (due to aluminium foil) and lower than 500 keV can be detected with a relatively good linearity
(see Fig.1). Within such an energy range, the average numberof electron-hole pairsnpairSi generated in the Si detector can be
calculated as:

npairSi =
Ein

εSi
(1)

whereEin is the energy of the incident electron in eV andεSi the silicon ionization energy (εSi=3.62 eV).
For energy higher than 500 keV, electrons can go through the Si semiconductor without losing significant amount of energy

and therefore another kind of semiconductor (such as CdTe) would be required to detect them. However, as shown in Fig. 1,
electrons with energy higher than 500 keV, can still be detected but with a much reduced detection probability. Consequently,
the electron energy detection range has been extended up to 725 keV.

Knowing the maximum charge collection timeTmax
c is important as it defines the maximum operating frequency ofthe

instruments. It can be expressed as:

Tmax
c =

d2

µh×V0
(2)
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TABLE I
CHARACTERISTICS OF THESI DETECTOR FORV0=40 V

Characteristics Symbol Si

size (mm) L× l ×d 10×10×0.3
generated pairs - 13.9×103-2.01×105

Equivalent charge (fC) Qin 2.2 - 32
Collection time (ns) Tmax

c ≈ 50
Parasitic capacitance (pF) Cdet 34.8

Leakage current (nA) I0 2

whered represents the distance between the electrodes (which is approximately the Si thickness),µh the mobility of holes
(450 cm2 ·V−1 ·s−1) andV0 the voltage applied across the electrodes.

Furthermore, the parasitic capacitance of the semiconductors (SCs) detector should also be taken into account in its electrical
model since both the AFE bandwidth and noise depend on its value as it will be shown later. The equivalent capacitance of
the SC can then be expressed as:

Cdet = ε0εr
A
d

(3)

whereA is the area of the electrodes,d the distance between them,εr=11.8 the relative permittivity of the Si material and
ε0=8.854×10−12 F·m−1 the vacuum permittivity.

Finally, the leakage currentI0 should also be taken into account since it increases the AFE output noise, affects the AFE
dynamic range and may also compromise the AFE normal operation. This currentI0 is dominated by thermally generated
electron-hole pairs that are separated by the applied electrical field. The typical measured value of the Si-detector leakage
current is 2 nA at 280 K which will be the maximal operating sensor temperature. Therefore, to design the circuit, a 10 nA
current leakage has been chosen as a worst case.

Table I summarizes the main characteristics of the Si detectors. Based on this analysis, Si cells can be electrically modeled
by a pulse current sourceIdet to simulate a charge injection in parallel with the equivalent capacitorCdet of the cell and the
leakage current sourceI0.

Knowing such parameters, the analog front end (AFE) consisting of the charge preamplifier (CPA) and pulse shaper (PS)
can be designed.

B. The Analog front End Design

The designed AFE should be able to quantify the detected charge in order to reconstruct the electron energy spectrum.
Consequently, the AFE should have a linear output response to ease the mapping of the electron energy. The first step is to
convert charge into a voltage using a charge preamplifier (CPA) [1], [15]. The CPA consists of a transconductance amplifier
(OTA) with a feedback capacitorCf (≈ 200 fF) to perform the charge integration and a resistor feedbackRf (≈ 1.2 MΩ) to
dischargeCf and to provide a DC path for the detector leakage current. Then, in order to improve the Signal-to-Noise Ratio
(SNR), the CPA output voltage is filtered by a circuit called pulse shaper (PS). As in [14], a first order semi-Gaussian PS
(RC-CR bandpass filter) is used as PS for its high-speed response and its active bandpass filtering characteristics. These two
blocks are widely used for such detectors [1]–[3], [14], [18]. The CPA and PS are presented together with the Si detector
model in Fig.3 whereCp represents the parasitic capacitance from the chip-sensorconnection, the chip input pads and the
CPA input capacitance.

The PS dynamic output range is set to∆VPSmax
S =1.65 V in order to fit the input dynamic range of the ADC. Therefore, as

stated in Table I, in order to be able to collect a charge up to 32 fC, the Si chain gain can be calculated as follows:

GCPA−PS=
∆VPSmax

S

Qmax
≈ 51.6 mV/ fC (4)

As previously mentioned, the maximum operating frequencyfop−max corresponds to the minimal shaping time of the PS
tsmin, which must be equal to the maximal collection timeTcmax (see eq.2) of the charges generated by an incident electron going
through the Si detector.Tcmax is equal to 50 ns for our Si detector. Finally, to calculate the relaxation time of the chain, the
conversion time of the SAR ADC must be taken into account. This ADC architecture has been chosen for reasons of low power
consumption, small size and simplicity [19]. An 8-bits SAR ADC is used in adequacy in our application accuracy requirements
and operates at a sampling frequency (fadc) of 1 MHz. So, the conversion timetconv set by the channel to discriminate is given
by:

tconv=
1

fop−max
+

1
fadc

+Treset (5)

with Treset the time required (≈ 200 ns) to reset the digital functions after the SAR ADC conversion. Note thattconv does not
take into account the delays through the other Si chain blocks as they are negligible compared to the shaping and conversion
times.
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Fig. 2. Schematic of the operational transconductance amplifier (OTA) used as the charge preamplifier circuit

Cp

Fig. 3. Simplified AFE circuit diagram with Si detector modelfor noise analysis.

Furthermore, the maximum integration time is defined as the discharge time of the CPA+PS which corresponds to ap-
proximately 5 times the shaping time of the CPA+PS . This timemust be inferior to the ADC conversion rate according
to:

tsmax =
1

5× fadc
= 200 ns (6)

So, ts can be increased from 50 ns up to 200 ns, which can be interesting to further reduce the circuit bandwidth and thereby
the noise. However,ts is set to be equal to 100 ns in order to add a safety margin because the reset time of the chain (ADC
reset and discharge time of the peak detector capacitance) must be taken into account.

As far as noise is concerned, the AFE has been designed to reduce both the intrinsic and extrinsic noise. With the aim to use
up to 4 channels on the same die, crosstalk between channels must be drastically reduced. This issue is of up most importance
here as each channel includes a peak-detector and a SAR ADC. Therefore, to address this extrinsic noise, a differential input
stage (Fig.2) is used instead of the usual single-ended architecture [14], [15]. Nevertheless, the equivalent input noise power
spectrum is doubled compared to a single transistor amplification stage (if each transistor is biased by the same current), which
corresponds to a noise increase by a factor of

√
2.

For the intrinsic noise, studies show that most of the noise is generated by the CPA input transistor [18]. This implies that
it should be designed properly. Fig.3 shows the circuit diagram that can be used to determine the output noise voltage of the
AFE. The Equivalent Noise Charge (ENC) defined as the ratio ofthe total output rms noise of the PS to the peak amplitude
response to one electron input charge, can be optimized either to the detriment of the power consumption by increasing the
drain currentID or to the detriment of the bandwidth by increasingts [18]. Here, the PS is limited to a first order band pass
filter, in order to reduce the power consumption and circuit complexity. Based on [14], the ENC of the system including the
Si sensor, the CPA and the PS ENCtot can be expressed as:

ENCtot =
e
q

√

R2

(

2
3

kT
gm1ts

+
K f

C2
ox(WL)1

)

+
qItts
16

(7)

with R=Cdet+Cp+Cgs1 +Cgd1 +Cf

where k is the Boltzmann constant, q the elementary charge, Tthe temperature,K f the 1/f flicker noise coefficient,It the sum
of the detector leakage current and the equivalent input noise current of the input connection,gm1 the M1 transconductance,
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Fig. 4. 3D simulation of the CPA+PS circuit ENCtot as a function of the width (W) and the drain currentID of the CPA input transistor with a first order
band-pass filter,Cdet=40 pF,Cf =200 fF, ts=100 ns,I0=10 nA and L=0.7µm.

Cgs1 andCgd1 M1 related capacitance andCox the gate oxide capacitance per unit area.
A two-stage OTA is used for the CPA with an NMOS input transistor (Fig. 2). The design methodology is based on

the separate study of the gain of each stage depending on the requested gain-bandwidth product which is affected by the
detector capacitor, the feedback capacitor and the load capacitor. In addition, the transistors are biased in the weak or moderate
inversion regions as such a biasing provides relevant advantages for high-gain/low-frequency applications comparedto the
strong inversion region [20]. However, one of the main drawback is that the slew rate decreases slightly in these regions[21].
Considering the design of the CPA, the drain currentID of the input transistor affects both the CPA noise and GBW. Therefore,
out of these two CPA parameters, one should determine which one requires the higher current value. In Fig.4 and according
to [2], the 3D simulation of the of the CPA+PS circuit in weak inversion as a function of the width (W ) and the drain current
ID of the input transistor is calculated with a first order bandpass filter andts=100 ns. Note that in Fig.4, the capacitorCd

is equal to the sum of the detectorCdet (included a variation of 10%) and the parasitic input capacitor of about 1.5 pF (pad
and wire connections capacitors). A 27.5µA ID is necessary to fulfill the minimum GBW requirement. However, as shown
in Fig. 4, for such a currentID, an ENCtot of 4750 e− can only be reached. It is located in a steeply increasing ENCtot zone
due to the thermal noise which is inversely proportional to the input transistor transconductancegm1. It is thus preferable to
increase the current up to 100µA to leave this zone and also to reduce the channel noise down to 2500 e− ENC, even if
it is to the detriment of power consumption. From these data,an electrical simulation with Cadence Spectre is performedto
determine the required input transistor size to minimize the ENCtot: W1=556 µm.

C. The Back End

To save power as well as reduce the influence of any external parasitic signals, the analog to digital conversion of the CPA+PS
output should be performed within the same chip. Thus, the following conversion channel architecture is opted: a CPA+PS, a
comparator with an adjustable threshold voltage level, a peak detector (PD) and a 1 MS/s Successive Approximations Register
(SAR) ADC (Fig.5). Such an SAR architecture has been chosen since it is a low power architecture that can easily achieve the
required accuracy. Further, it only requires one active analog component: the comparator. To summarize, the CPA+PS converts
the incident charge into a proportional voltage and the comparator detects if the incoming charge is higher or lower thanthe
desired threshold level. Note that the minimum detection threshold level can be obtained by setting the threshold voltage of the
comparator just above the noise floor. The PD is used to store the peak value of the PS output voltage, which is proportional
to the electron energy. This track-and-hold voltage is thendigitized by the SAR ADC. A control logic block of the system
(referred as the “command block”) is also designed to managethe communications between the blocks.

As it can be observed in Fig.6, six steps are necessary to convert the output signal of the PS:

1) Track the output voltage of the PS by the PD.
2) Detect the presence of an event: at the same time and independently of the PD actions, the comparator informs the

Command block (EVENT = ’1’) that an incoming charge has been detected. It is important to note that this signal is
only sent when the comparator switches back to ‘0’, which means when the amplitude of the peak falls below (after the
PS peak) to be sure that the PD has finished the track-and-holdprocess.

3) Hold the charge value: The Command block sends (CMD_EN = ’1’) to the PD blocks which is blocked in order to store
the value. Then, (CMD_READ = ’1’) is sent to the ADC to start the conversion (END_CONV = ’0’).
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Fig. 5. AFE conversion system to measure the energy deposited by an incident electron in a Si detector.

Fig. 6. From top to bottom: Transient output of the CPA, the PS, the PD and the ADC for a 50ns input charge of 32 fC andCdet=40 pF. The six steps
necessary for the detection and the conversion can be observed.

4) Analog to digital conversion: The ADC converts the value while the others blocks of the back end are in sleep mode.
When the conversion is complete, the ADC sends a signal (END_CONV = ’1 ’) at the Command block and is set in
standby mode.

5) The reset: the command unit resets the PD (CMD_RST = ’1’) in order to discharge the memory capacitor. ThenCMD_READ
is set to ’0’, which allows the ADC to recover its baseline.

6) Finally, the command system resets itself and sets (CMD_EN = ’0’) and (CMD_RST = ’0’). The system is then ready to
perform a new conversion.

III. R ESULTS

A. Simulation

Transient simulations are performed to observe the amplitude and the settling time corresponding to the charge conversion.
The CPA and PS response times for charges from 1.6 to 32 fC for a50 ns injection duration (TCmax), are respectively represented
on the left and on the right of Fig.7. A rise time of 23 ns and a fall time of 464 ns are obtained for the CPA. For the PS,
a rise time of 67 ns and a fall time of 881 ns (including over-shoot) are obtained. The shaping time is found to bets=110
ns. The conversion range (from 1.6 to 32 fC) of the AFE is linear and shows a CPA resolution of 5 mV/fC and a CPA+PS
resolution of 55 mV/fC. The Si AFE circuits consume 1152µW. The measured ENC is equal to 3277 e−, which corresponds
to a precision of 0.53 fC. These results are in agreement withthe theoretical design methodology.

B. Measurements

The Si front end circuit has been implemented in a CMOS HV 0.35µm technology. Fig.8 shows the layout view of the
complete front-end: CPA+PS, peak detector and ADC. The die size is about 0.21 mm2. To reduce crosstalk, analog and digital
circuit wells are separated from each other and the corresponding circuits have their own power supplies VDD and GND.
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Fig. 7. Transient responses of the CPA output (left) and the CPA+PS output (right) for different injected charges ranging from 1.6 fC to 32 fC, an injection
duration of 50 ns and Cdet = 40 pF.

TABLE II
PERFORMANCESCOMPARISON

This work [1] [22] [15]
Year 2013 2010 2011 2012

Detector type Si Si-W Si CdZnTe
Input charge range (C) 0.6 f - 32 f 0 - 2.4 p or 52 p - -

Technology AMS HV CMOS 0.35µm AMS CMOS 0.35µm UMC CMOS 0.18µm Globalfoundries CMOS 0.35µm
Detector capacitance (pF) 40 0-350 30 6

Shaping time (ns) 105 400 60 1000
Gain (mV/fC) 51.5 55.5 - 100

ADC yes yes yes no
Consumption (mW) <3 2.8 1.75 7.8

ENC (e−) 3119 2278+7.5/pF 880 70

FoM
15×103 8.8×103 (Cdet=40pF)

7.95×104 5.1×103
3.4×104 (CPA+PS) 4.0×104 (Cdet=350pF)

ADCPDCPA+PS

Fig. 8. Die layout of one Si CMOS front end channel implemented in a CMOS HV 0.35µm technology.

The linearity of the system can be evaluated by analyzing theADC output. Its dynamic range is 44 dB with a linearity
error of less than 0.32%. After having characterized the behavior of the ADC, the output of the Si front end (DATAOUT and
DATACS) are observed for a 50 ns (TCmax) input charge of 22.35 fC (see Fig.9). For a charge of 22.35 fC, the digital output
is ’10101001’. The detection time corresponds to the time between the arrival of the charge and the start of its conversion at
the output of the ADC (DATACS = ’1’). This detection time is equal to 320 ns. The conversiontime of the ADC is 1µs and
the reset time of the digital blocks is 200 ns. So, the effective operating frequency of the chains is approximately equalto 650
kHz.

The linearity of the Si front end is plotted in Fig.9 for 50 acquisitions for each charge step and averaged over three different
ASICs. The conversion gain is 57.7 mV/fC with an ENC of 3119 e− (or 0.5 fC) in the linear region and the saturation value
is approximately 32 fC for linearity errors less than 0.81%.The minimum detectable value is approximately 0.6 fC which is
higher than the expected detection threshold and is different from the measured ENC values. That can be explained by the
fact that the detection thresholds are affected by the PCB ground noise.

Crosstalk measurements similar to those made in [13] have shown that crosstalk is negligible. So using an isolated-well
technology (HV) and a differential pair in the CPA brings a real benefit in the integration of multiple channels on the samechip.
In Table III, the specifications, the simulated and measureddata are summarized. Measurements are very close to simulation
results which validate our design methodology.

Certainly it is very difficult to compare the performance of adedicated ASIC instrumentation to another because the detection
and specifications are very different. For instance, the ASIC described in [1] was designed to be adapted to a wide range of
detectors (0<Cdet <350 pF) and to a wide range of charge detection (0< Qin <52 pC). That adaptability was made to the
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Fig. 9. Output Linearity of the Si CMOS front-end deduced from the output of the 8-bit ADC for injected charges ranging from 0.6 fC to 35 fC (50
acquisitions for each injected charge value) measured on 3 different ASICs with a 39 pF input parasitic capacitance. Averages (line), standard deviations (error
bars), maximum (green +) and minimum (red -) values of 50 measures per step

TABLE III
SI CMOS FRONT-END PERFORMANCESUMMARY

Specification Simulated Measured

Input charge range (fC) 2.2 - 32 0.53 - 32 0.6 - 32
Detector capacitance (pF) 40 40 ≈ 40

Shaping time (ns) 100 110 ≈105
Gain (mV/fC) 51.5 55.5 57.7

Operating frequency (kHz) 1000 658 650
Power supply voltage (V) 3.3 3.3 3.3

Size (µm) 180×1750
Consumption (mW) <3 2.5 -

CPA+PS consumption (mW) 1.15
PD consumption (mW) 1.1

ADC consumption (mW) 0.25
ENC (e−) 2500 3277 3119

detriment of the speed, the gain and especially the noise (>2278 e−). A cyclic ADC is also integrated and allows to achieve
a 12 bit resolution. Conversely, the work presented in [3] was designed to be adapted to a specific application and a specific
detector by minimizing the noise (198 e−) but to the detriment of the speed and the power consumption.In the present work,
noise and power consumption are optimized for each channel for an electron-hole pair generation rate closely determined by
the Si detector.

In order to evaluate different detector front-end performances more quantitatively, based on eq.7, we propose to use the
following Figure of Merit (FoM):

FoM =
Cdet

Power·ENCtot ·
√

ts
(8)

As previously explained, both the shaping timets andCdet are closely related to the detector performances (Table I) and as
shown in eq.7, they affect directly the ENC. They can thus hinder the performances of the CMOS front-end from being correctly
assessed. Further,ts also reflects the maximum operation frequency that can be achieved. However, the power consumption of
such circuits is usually determined by the noise performances to be achieved and not by the bandwidth. Therefore,

√
ts was

chosen instead ofts. Comparison results with other recent similar works [1], [15], [22] are given in Table II.

IV. CONCLUSION

In this paper, a low noise low power CMOS front-end for particles energy measurement in space environment has been
implemented in CMOS 0.35µm HV technology. A methodology for the electronic dimensioning perfectly adapted to the
detector and the targeted application has been developed. The circuit occupies a surface area of about 0.21 mm2. The proposed
circuit conversion gain is 57.7 mV/fC for an input dynamic range of 0.6 fC to 32 fC and the ENC is 3119 e−. The power
consumption is 2.5 mW at a rate of 650 kHz.

In order to extend the linear range of detection up to 4 MeV, inthe future, another detector based on CdTe will be used
in combination with Si detectors to fit the energetic electron detector instrument (IDEE) requirements for the TARANIS
space mission [23]. Using the approach employed for the Si detectors, a CMOS front-end circuit dedicated to CdTe detectors
caracterized by high parasitic capacitance and a lower electron/hole mobility than in Si, will be designed.
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