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Abstract. We tackle the makespan minimization coupled-tasks prob-
lem in presence of incompatibility constraints. In particular, we focus
on stretched coupled-tasks, i.e.coupled-tasks having the same sub-tasks
execution time and idle time duration. We study several problems in
the framework of classic complexity and approximation for which the
compatibility graph is bipartite (star, chain, . . .). In such context, we
design efficient polynomial-time approximation algorithms according to
different parameters of the scheduling problem.

1 Introduction

We consider a non-preemptive coupled-tasks scheduling problem in presence
of incompatibility constraint on a single processor. From the point of view of
scheduling theory, the problem is also defined as a scheduling problem with ex-
act delays on single machine. In this article, we will show the close relationship
between coupled-task in presence of incompatibility constraint and the classic
bin packing problem in the framework of complexity and approximation.

The coupled-tasks model, was first introduced by Shapiro [13] in order to
model some data acquisition processes i.e. radar sensors: a sensor emits a radio
pulse (first sub-task), and finally listen for an echo reply (second sub-task).
Between these two instants (emission and reception), clearly there is an idle time
due to the propagation, in both sides, of radio pulse. Therefore, a coupled-task is
constituted by the triplet: the two sub-tasks and the idle between them. Thus, in
order to minimise the makespan (schedule length), it is necessary to execute one
or several different sub-tasks during the idle time of a coupled-task. Therefore,
the aim is to find a best packing of coupled-tasks in which the sum of idle times
is minimised. Notice that in the basic model, all coupled-tasks may be executed
in each other according to processing time of sub-tasks and the duration of the
idle time. Hereafter, we consider a relaxation of the previous model in which for
a fixed coupled-task A there are only a subset of coupled-tasks compatible to be
processed in the idle time of A. This model is motivated by the problem of data
acquisition in presence of incompatibility constraint in a submarine torpedo. A
collection of sensors acquires data for the torpedo. The incompatibility constraint
is expressed to prevent interference issues caused by tasks using sensors working



at the same frequency. So, the constraints are represented by a compatibility
graph in which vertices are the coupled-tasks and edges represent compatibility
between two tasks. In this article the variation of the complexity according to
severals structural parameters are considered and some efficient polynomial-time
approximation results on NP-hard instances are presented without omitting the
relationship to bin packing problems.

Above all, we will show the close relationship between the studied problem
and four packing-related problems, for which known approximation will be used
as routine for scheduling coupled-tasks problem:

1. The subset sum (ss) problem: given a set S of n positive values and v ∈ IN,
the aim is to find a subset S∗ ⊆ S such that

∑
i∈S∗ i = v. This problem is

known to be NP-complete (see [8]). The optimization version is sometimes
viewed as a knapsack problem, where each item profit and weight coincide
to a value in S, the knapsack capacity is v, and the aim is to find the set of
packable items with maximum profit.

2. The multiple subset sum (mss) problem: variant of bin packing in which
a number of identical bins are given and one aims to maximize the overall
weight of the items packed in the bins without violating the constraint on the
capacity of each bin. The problem is a special case of the Multiple knap-
sack problem in which all knapsacks have the same capacity and the item
profits and weights coincide. mss admits a PT AS[2] and a 3

4−approximation
algorithm [3], but does not admit a FPT AS even for only two knapsacks.

3. multiple subset sum with different knapsack capacities (mssdc)
[1] is an extension of mss considering different bin capacities. mssdc also
admits a PT AS [1].

4. As a generalization of mssdc, multiple knapsack assignment restric-
tion (mkar) problem consists in packing weighted items into non-identical
capacity-constrained bins, with the additional constraint that each item can
be packed into some bins only. Each item as a profit, the objective here is
to maximize the sum of profits of packed items. Considering that the profit
of each item is equal to its weight, [5] proposed a 1

2 -approximation.

2 Presentation of coupled-tasks and related work

We model a task Ai with a triplet (ai, Li, bi), where ai (resp. bi) is the duration
of the first (resp. second) sub-task, and Li the idle time to respect between the
execution of sub-tasks. We note A the set of tasks, and describe the incompat-
ibility constraint between tasks with a graph Gc = (A, E). There is an edge
(Ai,Aj) ∈ E iff a (or both) sub-task from Ai may be scheduled during the idle
time of Aj or reciprocally. In a valid schedule, we said that Ai is packed into
Aj if the entire task Ai is scheduled during the idle time of Aj . This is only
possible when ai + Li + bi ≤ Lj . We call stretched coupled-task a task Ai such
that ai = Li = bi = α(Ai), where α(Ai) is the stretch factor of task Ai. And for
any set W of tasks, we define seq(W ) = 3

∑
x∈W

α(x).



Due to the combinatorial nature of the parameters of the problem, we use
the Graham’s notation scheme α|β|γ [9] (respectively the machine environment,
job characteristic and objective function) to characterize the problems related to
coupled-tasks. The job characteristics summarizes the conditions made on the
values of ai, Li, bi (independent between tasks, or equal to a constant), and
the shape of the compatibility graph G. The coupled-tasks scheduling problems
under incompatibility constraints has been studied in the framework of classic
complexity and approximation in [7, 12].

3 Stretched coupled-task: model and contribution

3.1 Model

This paper focuses on stretched coupled-tasks. In the rest of the paper, all tasks
are always stretched coupled-tasks, and, for two compatible tasks Aj and Aj to
be scheduled in parallel, one of the following conditions must hold:

1. α(Ai) = α(Aj): the idle time of one task is fully exploited to schedule a
sub-task from the other (i.e. bi is scheduled during Lj , and aj is scheduled
during Li), and the completion of the two tasks is done without idle time.

2. 3α(Ai) ≤ α(Aj): task Ai is fully executed during the idle time Lj of Aj .

From this observation, one can obtain from the compatibility graph G =
(A, E) a directed compatibility graph Gc = (A, Ec) by assigning a direction to
each edge E from the task with the lowest stretch factor to the task with the
highest one. If two compatible tasks x and y have the same stretch factor, then
Ec contains both the arc (x, y) and the arc inverted (y, x). Remark that if for
any pair of compatible tasks x and y we have α(x) 6= α(y), then Gc is a directed
acyclic graph.

We note NG(v) the neighbourhood of v in G. We note dG(v) = |N(x)| the
degree of v in G, and ∆G the maximum degree of G. As we focus our work
on bipartite graphs, we recall that a k-stage bipartite graph is a digraph G =
(V0 ∪ · · · ∪ Vk, E1 ∪ · · · ∪ Ek) where V0 . . . Vk are disjoint vertex sets, and each
arc in Ei is from a vertex in Vi to a vertex in Vi+1. The vertices of Vi are said to
be at rank i, and the subgraph Gi = (Vi−1 ∪Vi, Ei) is called the i-th stage of G.
For clarity, 1-stage bipartite graphs can be referred as triplet (X,Y,E) instead
of (V0, V1, E).

4 Computational complexity

In this section,we present several NP−complete and polynomial results. We
first show the problem is NP-hard even when the compatibility graph is a star
(Theorem 1), but solvable with an O(n3) time complexity algorithm when G is
a chain (Theorem 2). Then we focus our analysis when Gc is a 1-stage bipartite
graph. We prove the problem is solvable with an O(n3) polynomial algorithm if
∆G = 2 (Theorem 3), but becomes NP-hard when ∆G = 3 (Theorem 4).



Theorem 1. The problem 1|ai = Li = bi = α(Ai), G = star|Cmax is

– polynomial if the central node admits at least one outcoming arc.

– NP-hard if the central node admits only incoming arcs.

Proof

If there exists at least one outgoing arc (x, y) ∈ Gc from the central node x,
then the optimal solution consists in executing the x-task into the y-task, then
in processing sequentially the remaining tasks after the completion of the y-task.

In the case where the central node admits only incoming arcs, first one can
easily see that 1|α(Ai) = ai = Li = bi, G = star|Cmax is NP. Second, we
propose the following polynomial construction from an instance of ss to an
instance of our problem: ∀i ∈ S we add a coupled-task x with α(x) = i; let T
be the set of these tasks; we add a task y with αy = ay = Ly = by = 3 × v; we
define an incompatibility constraint between each task x ∈ T and y modelled by
the compatibility graph G. In brief, G is a star with y as the central node. From
this transformation, one can easily show the reduction between both problems.
�

Theorem 2. The problem 1|ai = Li = bi = α(Ai), G = chain|Cmax admits a
polynomial-time algorithm.

Sketch of proof Due to space limitation, we give only the main idea of the
proof. Nevertheless, one can find the entire proof in the technical report [4].

The proof consists first in simplifying the original instance by defining some
elements of an optimal solution, in order to obtain a sub-instance where in
any solution at most one task can be packed in another. This new instance
of the problem can be solved in polynomial time by reducing it to the search
of a minimum weighted perfect matching. Basically, this reduction consists in
duplicating the compatibility graph G, then in linking each node to its clone with
an edge. From this new graph, we add for each edge {x, y} a weight w({x, y})
corresponding to half the execution time of these two tasks, and to the processing
time of x if y is the clone of x. Then we perform a minimum weighted perfect
matching in O(n2m) by [6]. �

In following, we study the variation of the complexity in presence of a 1-stage
bipartite graph according to the different values.

Theorem 3. The problem of deciding whether an instance of 1|ai = Li = bi =
α(Ai), Gc =1−stage bipartite,∆Gc

= 2|Cmax is polynomial.

Proof Let Gc = (X,Y,E) be a 1-stage bipartite compatibility graph. Y -tasks
will always be scheduled sequentially. The aim is to fill their idle time with a
maximum of tasks of X, while the remained tasks will be executed after the
Y -tasks. We just have to minimize the length of the remained tasks. Note that
dGc

(y) ≤ 2. The algorithm use three steps :



1. for each task y ∈ Y such that 3×α(x1)+ 3×α(x2) ≤ α(y) where x1 and x2

are the only two neighbors of Y , we add y to the schedule and execute x1
and x2 sequentially during the idle time of y. Then we remove y, x1 and x2

from the instance.
2. Each remaining task y ∈ Y admits at most two incoming arcs (x1, y) and/or

(x2, y). We add a weight α(x) to the arc (x, y) for each x ∈ N(y), then
perform a maximum weight matching on Gc in order to minimize the length
of the remained tasks of X. Thus, the matched coupled-tasks are executed,
and these tasks are removed from Gc.

3. Then, remaining tasks from X are allotted sequentially after the other tasks.

The complexity of an algorithm is O(n3). �

Theorem 4. The problem of deciding whether an instance of 1|ai = Li = bi =
α(Ai), Gc =1−stage bipartite,∆Gc

= 3|Cmax has a schedule of length at most
54n is NP-complete with n the number of tasks.

Proof It is easy to see that our problem is in NP. Our proof is based on a
reduction from one-in-(2,3)sat(2,1̄): does there exist an assignment of a set V
of n boolean variables with n mod 3 ≡ 0, a set of n clauses of cardinality two
and n/3 clauses of cardinality three such that:
– Each clause of cardinality 2 is equal to (x∨ ȳ) for some x, y ∈ V with x 6= y.
– Each of the n literals x (resp. of the literals x̄) for x ∈ V belongs to one of

the n clauses of cardinality 2, thus to only one of them.
– Each of the n (positive) literals x belongs to one of the n/3 clauses of cardi-

nality 3, thus to only one of them.
– Whenever (x ∨ ȳ) is a clause of cardinality 2 for some x, y ∈ V, then x and

y belong to different clauses of cardinality 3.
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Fig. 1. A partial compatibility graph for the NP-completeness of the scheduling prob-
lem 1|bipartite of depth one, d(Gc) ≤ 3, αi = ai = Li = bi|Cmax

We construct an instance π of our problem in following way (see Figure 1):
1. For all x ∈ V, we introduce four variable-tasks: x, x′, x̄ and x̄′ with

(ai, Li, bi) = (1, 1, 1), ∀i ∈ {x, x′, x̄, x̄′}. This variable-tasks set is noted VT .
2. For all x ∈ V, we introduce three literal-tasks Lx, C

x and C̄x with Lx =
(2, 2, 2);Cx = C̄x = (6, 6, 6). The set of literal-tasks is denoted LT .



3. For all clauses with a length of three, we introduce two clause-tasks Ci and
C̄i with Ci = (3, 3, 3) and C̄i = (6, 6, 6).

4. For all clauses with a length of two, we introduce one clause-task Ci with
Ci = (3, 3, 3). The set of clause-tasks is denoted CT .

5. The following arcs model the incompatibility constraints:

(a) For all boolean variables x ∈ V, we add the arcs (Lx, C
x) and (Lx, C̄

x)
(b) For all clauses with a length of three denoted Ci = (y ∨ z ∨ t), we add

the arcs (y, Ci), (z, Ci), (t, Ci) and (ȳ′, C̄i), (z̄′, C̄i), (t̄′, C̄i).
(c) For all clauses with a length of two denoted Ci = (x ∨ ȳ), we add the

arcs (x′, Ci) and (ȳ, Ci).
(d) Finally, we add the arcs (x,Cx), (x′, Cx) and (x̄, C̄x) and (x̄′, C̄x).

This transformation can be computed clearly in polynomial time. The proposed
compatibility graph is 1-stage bipartite and dGc

(x) ≤ 3, ∀x ∈ VT ∪ LT ∪ CT .
In follows, we say that a task x is merged to a task y, if it exists a incom-

patibility constraint from x to y; i.e.the coupled-task x may be executed during
the idle of coupled-task y.

⇒ Let us first assume that there is a schedule with length of 54n at most.
We prove that there is a truth assignment I : V → {0, 1} such that each clause
in C has exactly one true literal. We make some essentials remarks:

1. The length of the schedule is given by an execution time of the coupled-tasks
admitting only incoming arcs, and the value is 54n = 3αCT |CT |+αLT (|LT |−
|{Lx, x ∈ V}|) = 9|{Ci ∈ CT of length 2 and 3}|+ 18|{C̄i ∈ CT }|+ 18|{Cx

and C̄x ∈ LT }| = 9× 4n
3 + 18× n

3 + 18× 2n.
Thus, all tasks from VT ∪ {Lx, x ∈ V} must be merged with tasks from
CT ∪ (LT − {Lx, x ∈ V}).

2. By the construction, at most three tasks can be merged together.
3. Lx is merged with Cx or C̄x.
4. The allocation of coupled-tasks from CT ∪ (LT − {Lx, x ∈ V}) leads to 18n

idle time. The length of the variable-tasks VT and Lx equals 18n (in these
coupled-tasks there are 6n idle times).

5. If the variable-tasks x and x′ are not merged simultaneously with Cx, i.e.only
one of these tasks is merged with Cx, so, by with the previous discussion,
it is necessary to merge a literal-task Ly, with x 6= y one variable-task (ȳ
or ȳ′) with Cy or C̄y. It is impossible by size of coupled-tasks. In the same
ways, the variable-tasks x̄ et x̄′ are merged simultaneously with C̄x.

6. Hence, first x and x′ are merged with Cx or with clause-task where the
variable x occurs. Second, x̄ and x̄′ are merged with C̄x or a clause-task.

So, we affect the value "true" to the variable l iff the variable-task l is merged
with clause-task(s) corresponding to the clause where the variable l occurs. It is
obvious to see that in the clause of length three and two we have one and only
one literal equal to "true”.

⇐ Conversely, we suppose that there is a truth assignment I : V → {0, 1},
such that each clause in C has exactly one true literal.



1. If the variable x = true then we merged the vertices Lx with Cx; x with the
clause-task Ci corresponding to the clause of length three which x occurs;
x′ with the clause-task Ci corresponding to the clause of length two which
x occurs; and x̄, x̄′ with C̄x.

2. If the variable x = false then we merged the vertices Lx with C̄x; x̄ with
the clause-task corresponding to the clause of length two which x̄ occurs;
x̄′ with the clause-task C̄i corresponding to the clause (C) of length three
which x occurs; and x, x′ with Cx.

For a feasible schedule, it is sufficient to merge vertices which are in the same
partition. Thus, the length of the schedule is at most 54n. �

5 Polynomial-time approximation algorithms

5.1 Star graph

Theorem 5. 1|ai=Li=bi=α(Ai), G=star|Cmax admits a FPT AS.

Proof We may use the solution given by the subset sum (ss) (see [10] and [11])).
Indeed, the schedule is follows: first the central node is executed, second during
its idle time we process the coupled-tasks chosen by an FPT AS algorithm from
ss, and finally the remaining tasks are processed after the completion of the
central node. �

5.2 1−stage bipartite graph

Scheduling coupled-tasks during the idle time of others tasks can be related
to packing problems, especially when the compatibility graph Gc is a bipartite
graph. In the following, we propose several approximation results when Gc is a
1−stage bipartite graph.

Lemma 1. Let P be a problem with P ∈ {mkarmssdc,mss} such that P ad-
mits a ρ-approximation, then the following problems

1. 1|ai = Li = bi = α(Ai), Gc = 1-stage bipartite|Cmax,
2. 1|αi = ai = Li = bi, complete 1-stage bipartite|Cmax

3. 1|αi = ai = Li = bi, complete 1-stage bipartite|Cmax where the compatibility
graph is a complete bipartite G=(X,Y), and all the tasks from Y have the
same α(y).

are approximable to a factor 1 + (1−ρ)
3 .

Proof
1. Let consider an instance of 1|αi = ai = Li = bi, Gc =1−stage bipartite|Cmax

with Gc = (X,Y,E)and a stretch factor function α : X ∪ Y → IN. In such
instance, any valid schedule consists in finding for each task y ∈ Y a subset
of compatible tasks Xy ⊆ X to pack into y ∈ Y , each task of x being packed



at most once. Let Xp = ∪y∈Y Xy be the union of tasks of X packed into a
task from Y , and let Xp̄ be the set of remaining tasks, with Xp̄ = X/Xp.
Obviously, we have:

seq(Xp) + seq(Xp̄) = seq(X) (1)

As Y is an independent set in Gc, tasks from Y have to be scheduled sequen-
tially in any (optimal) solution. The length of any schedule S is then the
processing time of Y -tasks plus the execution time of the Xp̄-tasks. Formally:

Cmax(S) = seq(Y ) + seq(Xp̄)

= seq(Y ) + seq(X)− seq(Xp). (2)

We use here a reduction to mkar: each task x from X is an item having a
weight 3.α(x), each task from Y is a bin with capacity α(y), and each item
x can be packed on y if and only if the edge {x, y} belongs to Gc.
Using algorithms and results from the literature, one can compute the set Xp

of packed items. The cost of the solution for the mkar problem is seq(Xp).
If mkar is approximable to a factor ρ, then we have:

seq(Xp) ≥ ρ× seq(X∗
p ), (3)

where X∗
p is the set of packable items with the maximum profit. Combining

Eq. (2) and (3), we obtain a schedule S with a length equal to:

Cmax(S) ≤ seq(Y ) + seq(X)− ρ× seq(X∗
p ) (4)

As X and Y are two fixed sets, an optimal solution S∗ with minimal length
Cmax(S

∗) is obtained when seq(Xp) is maximum, i.e. when Xp = X∗
p . There-

fore, the ratio obtained between our solution S and the optimal one S∗ is:

Cmax(S)

Cmax(S∗)
≤

seq(Y ) + seq(X)− ρ× seq(X∗
p )

seq(Y ) + seq(X)− seq(X∗
p )

≤ 1+
(1− ρ)× seq(X∗

p )

seq(Y ) + seq(X)− seq(X∗
p )

(5)
By definition, X∗

p ⊆ X. Moreover, as the processing time of X∗
p cannot

excess the idle time of tasks from Y , we obtain: seq(X∗
p ) ≤ 1

3seq(Y ). And
thus combined to Eq. (5), we obtain the desired upper bound:

Cmax(S)

Cmax(S∗)
≤ 1 +

(1− ρ)

3
(6)

2. For the problem 1|αi = ai = Li = bi, complete 1−stage bipartite|Cmax, the
proof is identical using mssdc as a special case of mkar where each item
can be packed in any bin.

3. For the problem 1|αi = ai = Li = bi, complete 1−stage bipartite|Cmax

where all the tasks from Y have the same stretch factor α(y), the proof is
identical as previously since mssdc is a generalisation of mss.

�



Theorem 6. These problems admit a polynomial-time approximation algorithm:

1. The problem 1|ai = Li = bi = α(Ai), Gc = 1-stage bipartite|Cmax is ap-
proximable to a factor 7

6 .
2. The problem 1|ai = Li = bi = α(Ai), Gc = complete 1-stage bipartite|Cmax

admits a PT AS.
3. The problem 1|ai = Li = bi = α(Ai), Gc = complete 1-stage bipartite|Cmax,

where all the tasks from Y have the same stretch factor α(y):

(a) is approximable to a factor 13
12 .

(b) admits a PT AS.

Proof

1. Authors from [5] proposed a ρ = 1
2−approximation algorithm for mkar.

Reusing this result with Lemma 1, we obtain a 7
6−approximation.

2. We know that mssdc admits a PT AS [1], i.e. ρ = 1−ǫ. Using this algorithm
to compute such a PT AS and the Lemma 1, we obtain an approximation
ratio of 1 + ǫ

3 for this problem.
3. (a) Authors from [3] proposed a ρ = 3

4−approximation algorithm for mss.
Reusing this result and the Lemma 1, we obtain a 13

12−approximation.
(b) They also proved that mss admits a PT AS [2] , i.e. ρ = 1 − ǫ. Using

the algorithm to compute such a PT AS and the Lemma 1, we obtain
an approximation ratio of 1 + ǫ

3 .

�

5.3 2−stage bipartite graph

Theorem 7. The problem 1|ai = Li = bi = α(Ai), Gc = 2-stage bipartite|Cmax

is approximable to a factor 13
9 .

Proof We consider an instance of the problem whith Gc = (V0∪V1∪V2, E1∪E2),
where each arc in Ei is oriented from a vertex in Vi to another one in Vi+1, for
i ∈ 1, 2.

Before presenting our heuristic and the analyse of its approximation factor,
we will give several notations, properties and equations in relation with the
specificities of this instance, in any (optimal) solution:

– ∀i = 0, 1, let Vip (p=packed), (resp. Via (a=alone) ) be the set of tasks
merged (resp. remaining) into any task from Vi+1 in a solution S, and Vib

(b=box) the set of tasks scheduled with some tasks from Vi−1 merged into
it. This notation is extended to an optimal solution S∗ by adding a star in
the involved variables.

– Given any solution S to the problem and considering the specificities of the
instance, note that {V0p, V0a} is a partition of V0, Gc, {V1p, V1a, V1b} is a
partition of V1, and Gc, {V2a, V2b} is a partition of V2.



– Any solution would consists in scheduling first each task with at least one
task merged into it, then to schedule the remaining tasks (alone). Given an
optimal solution S∗, the length of S∗ is given by the following equation:

S∗ = seq(V1
∗
b) + seq(V2b) + seq(V0

∗
a) + seq(V1

∗
a) + seq(V2

∗
a)

S∗ = seq(V2) + seq(V1
∗
b) + seq(V0

∗
a) + seq(V1

∗
a) (7)

One can remark that V0
∗
p and V1

∗
p are not part of the equation, as they are

scheduled during the idle time of V1
∗
b and V2

∗
b .

– Let consider an restricted instance of Gc to a sub-graph G0 = Gc[V0 ∪ V1]
(resp. G1 = Gc[V1∪V2]) which is the 1-th (resp. 2-th) stage of Gc. Let S[G0]
(resp. S∗[G0]) be any (an optimal) solution on G0, V0p[G0] (resp. V0

∗
p[G0])

is the set of tasks from V0 packed into tasks from V1 in S[G0] (resp. S∗[G0]),
and V0a[G0] (resp. V0

∗
a[G0]) the set of remaining tasks. In addition tho these

notation, let V1b[G0] be the set of tasks from V1 with at least one task from
V0 merged into them, and V1a[G0] the remaining tasks. A first observation
gives for G0:

S∗[G0] = seq(V1) + V0
∗
a[G0] (8)

– From Theorem 6, Lemma 1, and the demonstration presented in their proof
from [5], several equations can be computed for a solution S[G0]:

seq(V0p[G0]) ≥
1

2
seq(V0

∗
p[G0]) (9)

seq(V0
∗
a[G1])≤seq(V0

∗
a) (10)

seq(V0p[G0]) + seq(V0a[G0]) = seq(V0
∗
p[G0]) + seq(V0

∗
a[G0]) = seq(V0) (11)

seq(V0a[G0]) ≤ seq(V0
∗
a[G0]) +

1

2
seq(V0

∗
p[G0]) ≤ seq(V0

∗
a) +

1

2
seq(V0

∗
p[G0])

(12)
– We use an analog reasoning on the sub-graph G1 with equivalent notations

for V1 and V2, and we obtain:

seq(V1p[G1])≥
1

2
seq(V1

∗
p[G1]) (13)

seq(V1a[G1])≤seq(V1
∗
a[G1])+1/2seq(V1

∗
p[G1])≤seq(V1

∗
a)+1/2seq(V1

∗
p[G1])

(14)

From this notations and observation, we can propose a good heuristic. We
design the feasible solution S for Gc as follows:

– We compute a solution S[G1] on G1, then we add to S each task from V2

and the tasks from V1 merged into them (i.e. V1p[G1]) in S[G1].
– Then we compute a solution S[G0] on G0, then we add to S each task v from

V1b[G0]/V1p[G1] and the tasks from V0 merged into them.
– Tasks V1a[G1]/V1b[G0] and V0a[G0] are added to S sequentially.



– We note Vconflict the set of remaining tasks, i.e. the set of tasks from V0

which are merged into a task v ∈ V1 in S[G0], thus that v is merged into a
task from V2 in S[G1].

Remark that:

seq(V1b[G0]/V1p[G1]) + seq(V1a[G1]/V1b[G0]) = V1a[G1] (15)

Thus the cost of our solution S is
S = seq(V2) + seq(V1a[G1]) + seq(V0a[G0]) + seq(Vconflict) (16)

It is also clear that:
seq(Vconflict) ≤

1

3
seq(V1p[G1]) ≤

1

3
seq(V1

∗
p[G1]) (17)

Using Equations (12), (14) and (17) in Equation (16), we obtain

S ≤ seq(V2) + seq(V1
∗
a) +

5

6
seq(V1

∗
p[G1]) + seq(V0

∗
a) +

1

2
seq(V0

∗
p[G0]) (18)

≤ S∗ +
5

6
seq(V1

∗
p[G1]) +

1

2
seq(V0

∗
p[G0]) , using Equation (7) (19)

We know that S∗ ≥ seq(V2) and S∗ ≥ seq(V1), as V1 is an independent set
of Gc. We also know that tasks from (V1

∗
p[G1]) (resp. (V0

∗
p[G0])) must be merged

into tasks from V2 (resp. V1) and cannot exceed the idle time of V2 (resp. V1),
implying that seq(V1

∗
p[G1])) ≤

1
3seq(V2) (resp. seq(V0

∗
p[G0])) ≤

1
3seq(V1)). One

can write the following :

5
6seq(V1

∗
p[G1])

S∗
≤

5
6 × 1

3seq(V2)

seq(V2)
≤

5

18
(20)

1
2seq(V0

∗
p[G0])

S∗
≤

1
2 .

1
3seq(V1)

seq(V1)
≤

1

6
(21)

Finally, from Equations (19), (20) and (21) the proof is concluded:

S

S∗
≤ 1 +

5

18
+

1

6
=

13

9

�

6 Conclusion

The results proposed in this paper are summarised in Table 1. New presented
results suggest the main problem of coupled tasks scheduling remains difficult
even for restrictive instances, here stretched coupled-tasks when the constraint
graph is a bipartite graph. When we consider stretched coupled-tasks, the max-
imum degree ∆G seems to play an important role on the problem complexity, as
the problem is already NP-Hard to solve when the constraint graph is a star.
Approximation results presented in this paper show the problem can be approx-
imated with interesting constant ratio on k−stage bipartite graphs for k = 1 or
2. The presented approach suggests a generalisation is possible for k ≥ 3. This
part constitutes one perspective of this work. Other perspective would consists
to study coupled-tasks on other significant topologies, including degree-bounded
trees, or regular topologies like the grid.



Topology Complexity Approximation

uug(Gc)=Star graph NP − C (Theorem 1) FPT AS (Theorem 5)

uug(Gc)=Chain graph O(n3) (Theorem 2)

Gc= 1-stage bipartite, ∆(Gc) = 2 O(n3) (Theorem 3)

Gc= 1-stage bipartite, ∆(Gc) = 3 NP − C (Theorem 4) 7

6
-APX (Theorem 6)

Gc= complete 1-stage bipartite NP − C (see [12]) PT AS (Theorem 6)

Gc= complete 1-stage bipartite NP − C (see [12]) PT AS (Theorem 6)
with constraint α(x) = α(y), ∀x, y ∈ X1

13

12
-APX (Theorem 6)

Gc= 2-stage bipartite NP − C (Theorem 4) 13

9
-APX (Theorem 7)

Table 1. Complexity and approximation results.
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